- 1. Compute the following convolutions x * h using either the integration and/or the graphical computation methods. Show all work. [10 points]
 - (a) $x(t) = \exp(t)u(-t), h(t) = -\delta(t) + 2\exp(-t)u(t)$
 - (b) $x(t) = \sin(3t)u(t), h(t) = \exp(-t)u(t)$
 - (c) $x_1(t)$ and $x_2(t)$ in Figure P2.4-18 (a) on page 237.
 - (d) x(t) = t [u(t+1) u(t-1)], h(t) = u(t) + u(t-2) u(t-4)
 - (e) x(t) = 2u(t+2) 2u(t-2), $h(t) = \exp(-|t|)[u(t+4) u(t-4)]$
- 2. In this problem you will use MATLAB to numerically compute some convolutions. Answer all the questions and submit all the plots described below. [5 points]
 - (a) We want to convolve the rectangular function x(t) = u(t) u(t-4) with itself using MATLAB. To do this, we sample x(t) at t = 1, 2, 3, 4 in order to form a vector x with four entries, x=[1,1,1,1]. This can be accomplished quickly by typing

$$x=ones(1,4)$$

at the MATLAB prompt. Here we interpret the first entry of x as the value of x(t) at t = 1, the second entry of x as the value of x(t) at t = 2, etc.. Next, compute the numerical convolution of the vector x with itself in MATLAB by typing

$$y = conv(x, x)$$

at the prompt. Plot the result, and then describe/interpret each entry of the resulting vector y as a sample from the convolution function (x * x)(t) at a particular time. That is, find times $t_1 < t_2 < \ldots$ so that the first entry of the vector y is equal to $(x * x)(t_1)$, the second entry of the vector y is equal to $(x * x)(t_2)$, etc..

- (b) Now convolve the vectors \mathbf{x} and \mathbf{y} from above using conv, and then plot the result. What is the true time duration of x*(x*x), and how does it compare to what's graphed in your plot of $\operatorname{conv}(\mathbf{x},\mathbf{y})$? Describe the plot's appearance does it look more like a constant function, a piecewise linear function, or a quadratic function?
- (c) Now convolve a rectangular function on [0,1] with itself in the same way as for part (a). That is, represent this new function $x_1(t) = u(t) u(t-1)$ as a vector of its values at the times t = .25, .5, .75, and 1, and consider it to be zero for times outside of [0,1]. Use the conv function to plot $x_1 * x_1$. What do you have to do differently in order to make sure that your plot has the correct maximum height? Why does it make sense?
- 3. Consider the LTI system, T, with the input and output related by

$$y(t) = T[x(t)] = \int_0^t \exp(-\tau)x(t-\tau) d\tau.$$

Answer the following questions [5 points].

- (a) Find the system impulse response h(t) by letting $x(t) = \delta(t)$.
- (b) Is this system causal? Why?
- (c) Determine the system response y(t) for the input x(t) = u(t+1).
- (d) Suppose we form a new system, T_{new} , by setting $T_{\text{new}}[x(t)] = T[x(t) x(t-1)]$. Find the impulse response of T_{new} .
- (e) Find the response of T_{new} to the input x(t) = u(t+1).

 $=-2x+2-x^2+y^2-y^2-y^2-y^2-y^2+y^2+2x^2+2x^2-y^2-1-2x^2$ (5 overlap with $\frac{1}{2}\int (t-7)dt + \int (t-7)dt$ [t7-22] + t7-72 | t+ on your own --

```
% Clear the memory
clear;
% Sample u(t) - u(t-3) at t = 0, 1, 2, 3.
x = ones(1,4);
\ensuremath{\$} Compute the convolution of x with itself, and then plot the result
y = conv(x,x);
figure;
plot(y);
% Compute the convolution of x with y.
z = conv(x,y);
figure;
plot(z);
% Now compute the convolution of x1 = u(t) - u(t-1) with itself, and plot
% the result.
x1 = ones(1,4);
y1 = .25*conv(x1,x1); % We multiply by .25 because our spacing between
    samples from x1 is .25!
figure;
plot( 25*[1:7],y1);
```


=4+8=1(21

plot for (1) (1) X, (+) = u(+) -u(+-1). no this is the plot of 4. conv(X1,1X2) socrect time duration is 12 Opens of it gets apported & stored height 0.9 0.8 0.4 0.3 Implying by 1/4 gets the plot)
because our time spacing is 1/4!

	•			·

3) YH)= Je X(t-7)d7 a) h(+)= j e= (51+-7)d= 1000 $= e^{-t} \int_{0}^{t} S(t-\tau) d\tau$ $= e^{-t} \int_{0}^{t} S(t-\tau) d\tau$ $e^{-\tau} d\tau = -e^{-\tau} | t+1 \rangle_0$ 1) c (1-e-E+D) ult+1 hnew (+) = h(+) - h(+-1) = $e^{-(t-1)}u(t-1)$ e) Ynew (+)= hnew (+) * a(++1) = h(+) & u(++1) - h(+-1)

