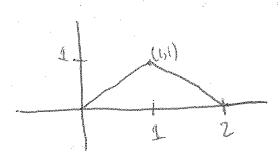
Name: ANSWER KEY

Instructions:

- You only need a pen, or a pencil and eraser.
- In particular, this means no calculator or any electronic devices, nor notes, textbooks, etc.
- You must show appropriate legible work and justify your answer to receive full credit.
- There are 50 possible points. Point values for each problem are as indicated.
- Check and make sure there are four total pages including the cover page, when you begin the exam.
- You must read and sign the honor code below before your test will be graded.

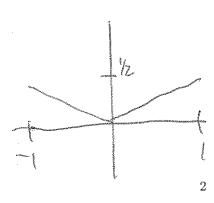
Good Luck!


Problem	Score	Out of
1		7
2		6
3		6
4		11
5		8
Total		38

ACADEMIC HONOR CODE

As a student and citizen of the Michigan State University Community I pledge to not lie, cheat, or steal in my academic endeavors.

SIGNED: ANSWER KEY


- 1. Basic Signals: Let x(t) = r(t) 2r(t-1) + r(t-2), where $r(t) = t \ u(t)$ is the ramp function. [7 points]
 - (a) Plot x(t). Label all important values on your plot axes. [3 points]

(b) Plot both the even and the odd parts of z(t) = t [u(t) - u(t-1)]. Label all important values on your plot axes. [4 points]

2 () ()

Zur

- 2. Signal Properties: Answer both questions below. [6 points]
 - (a) Is $x(t) = u(t+4) \exp(-t)$ a power signal? Show your work. [3 points]

$$=\lim_{t\to 0} \frac{e^{-2t}}{2t} + \frac{e^{8}}{2t} = Of0$$

(b) Is $x(t) = 5\cos(2t) + \cos(\frac{3}{4}t) + \sin^2(5t)$ periodic? Show your work. [3 points]

Vafonuls (=) This

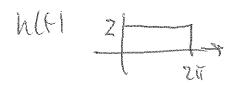
3 Signal is flaios

3. Linearity and Time-Invariance: For the system described by the following input-output relationship.

$$\frac{d}{dt} \left[y(t) \right] = \int_{-\infty}^{t+2} 5x(\tau) \ d\tau$$

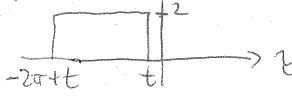
determine the following. [6 points]

(a) Is the system linear? Explain your answer, and show all work. [3 points]

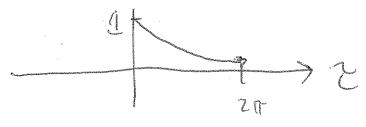

If
$$\frac{1}{4}$$
 [Y(4)] = $\int_{\infty}^{+\infty} 5 \times_{2}(2) d2$ $\frac{1}{4}$ $\frac{1}{4}$ [Y(4)] = $\int_{\infty}^{+\infty} 5 \times_{2}(2) d2$

(b) Is the system time-invariant? Explain your answer, and show all work. [3 points]

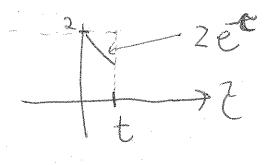
$$\int_{a}^{4\pi} 5 \times (2+t_0) dt = \int_{a}^{4\pi} 5 \times (2) dt$$

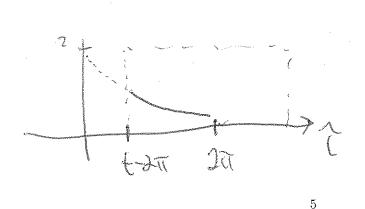

$$\int_{a}^{4\pi} 5 \times (2+t_0) dt = \int_{a}^{4\pi} 5 \times (2) dt$$

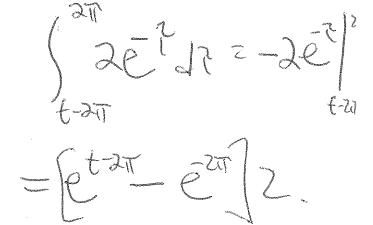
$$\int_{a}^{4\pi} \left[\frac{1}{1} \left(\frac{1}{1} + \frac{1}{1} \right) \right] = \int_{a}^{4\pi} 5 \times (2) dt = \int_{a}^{4\pi} 5 \times (2$$



- 4. LTI System Responses: A Linear Time-Invariant System T has the impulse response h(t) = $2[u(t)-u(t-2\pi)]$, where u(t) is the step function. Find the system response y(t) for the input $x(t) = \exp(-t) [u(t) - u(t - 2\pi)]$ by completing parts (a) - (d) below. [11 points]
 - (a) Plot both $h(t-\tau)$ and $x(\tau)$ as functions of τ for a fixed t. Label all important values on your plot axes. [6 points]




(b) Find the system response of T to x(t) for times $t \leq 0$ and $t \geq 4\pi$. Justify your answer. [1 point]


Then the works part of (c) Find the system response of T to x(t) for times $0 \le t \le 2\pi$. Show your work. [2 points]

$$= 2e^{t} = -2e^{t} + 2$$

(d) Find the system response of T to x for times $2\pi \le t \le 4\pi$. Show your work. [2 points]

5. Other System Properties: Consider the Linear Time-Invariant (LTI) system with the following input/output relationship,

$$y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} x(\tau - 2) d\tau.$$

Answer the following questions about this system. Justify your answers. [8 points]

(a) Find the impulse response for this system, h(t). Show your work. [3 points]

$$h(t)^{2} = e^{-(t-2)} \int_{-\infty}^{\infty} (t-2) dt$$

$$= e^{-(t-2)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (t-2) dt = e^{-(t-2)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (t-2) dt = e^{-(t-2)} \int_{-\infty}^{\infty} \int_{-\infty}^$$

(b) Is this system BIBO stable? Justify your answer. [3 points

$$Suppre |X(Z-Z)| \leq M + 2. Tony.$$
 $|Y(t)| \leq \int_{-\infty}^{\infty} e^{-(t-z)} |X(Z-z)| dz$
 $fuller \leq M \int_{-\infty}^{\infty} e^{-t} dz = M \int_{-\infty$

(c) Is this system causal? Why, or why not? [1 point]

(d) Is this system instantaneous/memoryless? Why, or why not? [1 point]

o - X(t) is evaluated over 6 all previous times up to