Name:

1. BY HAND - Basic Eigenvalue Estimates: Let $A \in \mathbb{R}^{3 \times 3}$ be

$$
A=\left(\begin{array}{lll}
5 & 2 & -1 \\
2 & 5 & -1 \\
-1 & -1 & 8
\end{array}\right)
$$

Use Gerschgorin's disk theorem to show that A is positive definite.
2. BY MATLAB - Householder Reflectors: Recall that

$$
A=\left(\begin{array}{lll}
5 & 2 & -1 \\
2 & 5 & -1 \\
-1 & -1 & 8
\end{array}\right)
$$

Produce a tridiagonal matrix $T \in \mathbb{R}^{3 \times 3}$ with the same eigenvalues as A.
3. BY HAND - Bisection Method: Use the bisection method to count the number of eigenvalues of

$$
T=\left(\begin{array}{lll}
5 & 2 & 0 \\
2 & 5 & -1 \\
0 & -1 & 8
\end{array}\right)
$$

in the interval $[6,9]$.
4. BY HAND, THEN MATLAB - QR Decomposition: Find the QR decomposition of the matrix

$$
B=\left(\begin{array}{lll}
3 & 4 & 0 \\
4 & -3 & \sqrt{11} \\
0 & \sqrt{11} & 0
\end{array}\right)
$$

Check your answer with MATLAB after you give up.
5. BY MATLAB - The QR Algorithm: Use your answer from the last problem to complete one iteration of the QR algorithm on

$$
B=\left(\begin{array}{lll}
3 & 4 & 0 \\
4 & -3 & \sqrt{11} \\
0 & \sqrt{11} & 0
\end{array}\right)
$$

in order to find $B^{(1)}$. After this single iteration you should already be able to estimate one of B 's eigenvalues to within an error of about 0.6 - do so! Produce $B^{(2)}$ and $B^{(3)}$ next, and see if you're eigenvalue estimates tighten up...
6. Find the eigenvalues of

$$
A=\left(\begin{array}{lll}
5 & 2 & -1 \\
2 & 5 & -1 \\
-1 & -1 & 8
\end{array}\right)
$$

any way you like. Then, use the shifted inverse power method (by hand!!) to find the eigenvector for the second largest eigenvalue.

