Name: _____

Instructions:

- You only need a pen, or a pencil, your text book, notes, and an eraser.
- In particular, this means no calculator or any electronic devices only paper!
- You must show appropriate legible work and justify your answer to receive full credit.
- There are 100 possible points. Point values for each problem are as indicated.
- Check and make sure there are four total pages including the cover page, when you begin the exam.

Good Luck!

Problem	Score	Out of
1		26
2		10
3		22
4		14
5		14
6		14
Total		100

1. The Singular Value Decomposition: Find the singular value decomposition of $A \in \mathbb{R}^{3 \times 2}$ below, and then answer the related questions. [26 points]

$$A = \left(\begin{array}{rrr} 1 & 1\\ 1 & 1\\ 1 & 1 \end{array}\right).$$

- (a) $||A||_2 = \max_{\mathbf{x} \in \mathbb{C}^2 \setminus \{\mathbf{0}\}} \frac{||A\mathbf{x}||_2}{||x||_2} =$ ______.
- (b) $||A||_{\rm F} =$ _____.
- (c) $||A||_1 =$ _____.
- (d) $||A||_{\infty} =$ _____.

(e) An orthonormal basis for the column space of A is:

- (f) An orthonormal basis for the column space of A^* is:
- (g) An orthonormal basis for the null space of A is:
- (h) An orthonormal basis for the null space of A^* is:

Extra work space for problem 1

2. Projections and Least Squares: Given $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & -3 \\ 0 & 0 \\ 1 & -3 \end{pmatrix}$.

(a) Find $P_{C(A)}\mathbf{b}$ = the orthogonal projection of **b** onto the column space of A. [6 points]

(b) Find the error vector $\mathbf{e} = \mathbf{b} - P_{C(A)}\mathbf{b}$. Check that \mathbf{e} is perpendicular to C(A). [2 points]

(c) Find $\mathbf{x} = \arg\min_{\mathbf{y} \in \mathbb{R}^2} ||A\mathbf{y} - \mathbf{b}||_2$. [2 points]

3. The QR decomposition: Let

$$A = \left(\begin{array}{rrr} 10 & 9\\ 20 & -15\\ 20 & -12 \end{array}\right).$$

(a) Construct a matrix \hat{Q} with orthonormal columns, and an upper triangular matrix R, such that $A = \hat{Q}R$. [16 points]

(b) Find $\mathbf{x} = \arg\min_{\mathbf{y} \in \mathbb{R}^2} ||A\mathbf{y} - 45\mathbf{e}_2||_2$. [6 points]

4. Householder Reflectors: Let $F \in \mathbb{C}^{n \times n}$ be a Householder reflector for a nonzero $\mathbf{x} \in \mathbb{C}^n$. Suppose that $F\mathbf{x} = \alpha \|\mathbf{x}\|_2 \mathbf{e}_1$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = 1$. Compute all the eigenvalues of F. Make sure to justify your answer fully. [14 points] 5. **Properties of Norms:** Let $A \in \mathbb{C}^{n \times n}$ be a matrix whose induced ℓ_2 -norm is less than 1 (i.e., with $||A||_2 < 1$). Prove that I - A is invertible, where I is the $n \times n$ identity matrix. *Hint: Argue that* $(I - A)\mathbf{v} \neq \mathbf{0}$ for any nonzero vector $\mathbf{v} \in \mathbb{C}^n$. [14 points]

6. More on the SVD: Suppose that $A \in \mathbb{C}^{m \times n}$, $m \ge n$, has the block form

$$A = \left(\begin{array}{c} A_1 \\ A_2 \end{array}\right)$$

where $A_1 \in \mathbb{C}^{n \times n}$ is invertible, and $A_2 \in \mathbb{C}^{(m-n) \times n}$ is arbitrary. Show that the smallest singular value of A is \geq the smallest singular value of $A_1 > 0$. [14 points]