Name:

Instructions:

- You only need a pen, or a pencil, your text book, notes, and an eraser.
- In particular, this means no calculator or any electronic devices - only paper!
- You must show appropriate legible work and justify your answer to receive full credit.
- There are 100 possible points. Point values for each problem are as indicated.
- Check and make sure there are four total pages including the cover page, when you begin the exam.

Good Luck!

Problem	Score	Out of
1		26
2		10
3		22
4		14
5		14
6		14
Total		100

1. The Singular Value Decomposition: Find the singular value decomposition of $A \in \mathbb{R}^{3 \times 2}$ below, and then answer the related questions. [26 points]

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)
$$

(a) $\|A\|_{2}=\max _{\mathbf{x} \in \mathbb{C}^{2} \backslash\{\mathbf{0}\}} \frac{\|A \mathbf{x}\|_{2}}{\|x\|_{2}}=$ \qquad
(b) $\|A\|_{\mathrm{F}}=$ \qquad
(c) $\|A\|_{1}=$ \qquad
(d) $\|A\|_{\infty}=$ \qquad
(e) An orthonormal basis for the column space of A is:
(f) An orthonormal basis for the column space of A^{*} is:
(g) An orthonormal basis for the null space of A is:
(h) An orthonormal basis for the null space of A^{*} is:

Extra work space for problem 1
2. Projections and Least Squares: Given $\mathbf{b}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$ and $A=\left(\begin{array}{rr}1 & -3 \\ 0 & 0 \\ 1 & -3\end{array}\right)$.
(a) Find $P_{C(A)} \mathbf{b}=$ the orthogonal projection of \mathbf{b} onto the column space of A. [6 points]
(b) Find the error vector $\mathbf{e}=\mathbf{b}-P_{C(A)} \mathbf{b}$. Check that \mathbf{e} is perpendicular to $C(A)$. [2 points]
(c) Find $\mathbf{x}=\arg \min _{\mathbf{y} \in \mathbb{R}^{2}}\|A \mathbf{y}-\mathbf{b}\|_{2}$. [2 points]
3. The QR decomposition: Let

$$
A=\left(\begin{array}{rr}
10 & 9 \\
20 & -15 \\
20 & -12
\end{array}\right)
$$

(a) Construct a matrix \hat{Q} with orthonormal columns, and an upper triangular matrix R, such that $A=\hat{Q} R$. [16 points]
(b) Find $\mathbf{x}=\arg \min _{\mathbf{y} \in \mathbb{R}^{2}}\left\|A \mathbf{y}-45 \mathbf{e}_{2}\right\|_{2}$. [6 points]
4. Householder Reflectors: Let $F \in \mathbb{C}^{n \times n}$ be a Householder reflector for a nonzero $\mathbf{x} \in \mathbb{C}^{n}$. Suppose that $F \mathbf{x}=\alpha\|\mathbf{x}\|_{2} \mathbf{e}_{1}$ for some $\alpha \in \mathbb{C}$ with $|\alpha|=1$. Compute all the eigenvalues of F. Make sure to justify your answer fully. [14 points]
5. Properties of Norms: Let $A \in \mathbb{C}^{n \times n}$ be a matrix whose induced ℓ_{2}-norm is less than 1 (i.e., with $\|A\|_{2}<1$). Prove that $I-A$ is invertible, where I is the $n \times n$ identity matrix. Hint: Argue that $(I-A) \mathbf{v} \neq \mathbf{0}$ for any nonzero vector $\mathbf{v} \in \mathbb{C}^{n}$. [14 points]
6. More on the SVD: Suppose that $A \in \mathbb{C}^{m \times n}, m \geq n$, has the block form

$$
A=\binom{A_{1}}{A_{2}}
$$

where $A_{1} \in \mathbb{C}^{n \times n}$ is invertible, and $A_{2} \in \mathbb{C}^{(m-n) \times n}$ is arbitrary. Show that the smallest singular value of A is \geq the smallest singular value of $A_{1}>0$. [14 points]

