1. Do 12.1 on page 96 of Trefethen and Bau.
2. MATLAB EXERCISE - Turn in printouts of your programs and plots: Do 12.2 on page 96 of Trefethen and Bau. Example 1.1 is on page 4, and Figure 11.1 is on page 79. For this problem you are given $\mathbf{d} \in \mathbb{R}^{n}$, where the $j^{\text {th }}$ entry of \mathbf{d} is interpreted as being an $n-1$ degree polynomial p 's value at $x_{j}=-1+\frac{2 j}{n}$ for $j=1, \ldots n$. That is,

$$
d_{j}=p\left(-1+\frac{2 j}{n}\right)=p\left(x_{j}\right)
$$

for $j=1, \ldots n$. Our objective is to compute a new vector $\mathbf{y} \in \mathbb{R}^{m}$, for $m \geq n$, with entries $y_{k}=p\left(-1+\frac{2 k}{m}\right)$ for the same polynomial p. Part (d) is asking how well we do if the trivial polynomial $p(x)=1$ generates our given data \mathbf{d}.
3. MATLAB EXERCISE - Turn in printouts of your programs and plots: Do 12.3 on page 96 of Trefethen and Bau.
4. MATLAB EXERCISE - Turn in printouts of your programs and plots: Do 13.3 on page 101 of Trefethen and Bau. For part (a) the book is asking you to compute $p(x)$ by summing it as written above (a) for each value of x.
5. Do 14.1 on page 107 of Trefethen and Bau. Use the precise book definition of $\mathcal{O}()$ discussed on pages 104 and 105. (Note, furthermore, that this definition is indeed completely consistent with our lecture discussions!)
6. Do 15.2 on page 113 of Trefethen and Bau.

