Name:

1. BY HAND - Arnoldi: Let $A \in \mathbb{R}^{4 \times 4}$ and $\mathbf{b} \in \mathbb{C}^{4}$ be

$$
A=\left(\begin{array}{cccc}
-1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & \frac{7}{3} & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \text { and } \mathbf{b}=\left(\begin{array}{c}
0 \\
0 \\
-3 \\
4
\end{array}\right)
$$

Do one Arnoldi iteration beginning with \mathbf{b} in order to generate a the factorization $A Q_{1}=Q_{2} H_{1}$ where $Q_{1} \in \mathbb{C}^{4 \times 1}$ consists of a single unit norm column, $Q_{2} \in \mathbb{C}^{4 \times 2}$ has two orthonormal columns, and $H_{1} \in \mathbb{C}^{2 \times 1}$. CHECK YOU ANSWER WITH A NEIGHBOR!
2. BY HAND - GMRES: Approximate the solution to $A \mathbf{x}=\mathbf{b}$ using your answer to the first question by: (i) solving for

$$
\beta:=\arg \min _{\alpha \in \mathbb{C}}\left\|A Q_{1} \alpha-\mathbf{b}\right\|_{2}
$$

and then (ii) using β to approximate the solution $\mathbf{x} \in \mathbb{C}^{4}$.
3. BY HAND - Arnoldi: Let $A \in \mathbb{R}^{4 \times 4}$ and $\mathbf{b} \in \mathbb{C}^{4}$ be

$$
A=\left(\begin{array}{cccc}
-1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & \frac{7}{3} & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \text { and } \mathbf{b}=\left(\begin{array}{c}
0 \\
0 \\
-3 \\
4
\end{array}\right)
$$

Do two Arnoldi iterations beginning with \mathbf{b} in order to generate a the factorization $A Q_{2}=Q_{3} H_{2}$ where $Q_{2} \in \mathbb{C}^{4 \times 2}$ has two orthonormal columns, $Q_{3} \in \mathbb{C}^{4 \times 3}$ has three orthonormal columns, and $H_{2} \in \mathbb{C}^{3 \times 2}$ is in Hessenberg form. CHECK YOU ANSWER WITH A NEIGHBOR!
4. BY HAND - Arnoldi: Let $A \in \mathbb{R}^{4 \times 4}$ and $\mathbf{b} \in \mathbb{C}^{4}$ be

$$
A=\left(\begin{array}{cccc}
-1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & \frac{7}{3} & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \text { and } \mathbf{b}=\left(\begin{array}{c}
0 \\
0 \\
-3 \\
4
\end{array}\right)
$$

(a) Write down all eigenvalues of A.
(b) Use the upper 2×2 submatrix of H_{2} from the last problem in order to approximate two eigenvalues and eigenvectors of A.
(c) Did you find any real eigenvalues and eigenvectors of A this way?

