Name: _____

1. **BY HAND - Arnoldi:** Let $A \in \mathbb{R}^{4 \times 4}$ and $\mathbf{b} \in \mathbb{C}^4$ be

$$A = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & \frac{7}{3} & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ -3 \\ 4 \end{pmatrix}.$$

Do one Arnoldi iteration beginning with **b** in order to generate a the factorization $AQ_1 = Q_2H_1$ where $Q_1 \in \mathbb{C}^{4\times 1}$ consists of a single unit norm column, $Q_2 \in \mathbb{C}^{4\times 2}$ has two orthonormal columns, and $H_1 \in \mathbb{C}^{2\times 1}$. CHECK YOU ANSWER WITH A NEIGHBOR! 2. BY HAND - GMRES: Approximate the solution to $A\mathbf{x} = \mathbf{b}$ using your answer to the first question by: (i) solving for

$$\beta := \arg\min_{\alpha \in \mathbb{C}} \|AQ_1\alpha - \mathbf{b}\|_2$$

and then (*ii*) using β to approximate the solution $\mathbf{x} \in \mathbb{C}^4$.

3. BY HAND - Arnoldi: Let $A \in \mathbb{R}^{4 \times 4}$ and $\mathbf{b} \in \mathbb{C}^4$ be

$$A = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & \frac{7}{3} & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ -3 \\ 4 \end{pmatrix}.$$

Do two Arnoldi iterations beginning with **b** in order to generate a the factorization $AQ_2 = Q_3H_2$ where $Q_2 \in \mathbb{C}^{4\times 2}$ has two orthonormal columns, $Q_3 \in \mathbb{C}^{4\times 3}$ has three orthonormal columns, and $H_2 \in \mathbb{C}^{3\times 2}$ is in Hessenberg form. CHECK YOU ANSWER WITH A NEIGHBOR! 4. BY HAND - Arnoldi: Let $A \in \mathbb{R}^{4 \times 4}$ and $\mathbf{b} \in \mathbb{C}^4$ be

$$A = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & \frac{7}{3} & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ -3 \\ 4 \end{pmatrix}.$$

- (a) Write down all eigenvalues of A.
- (b) Use the upper 2×2 submatrix of H_2 from the last problem in order to approximate two eigenvalues and eigenvectors of A.

(c) Did you find any real eigenvalues and eigenvectors of A this way?