
Multiscale Analysis for Higher-order Tensors
Alp Ozdemir, Ali Zare, Mark A. Iwen, and Selin Aviyente

Abstract

The widespread use of multisensor technology and the emergence of big datasets have created the need to develop tools to
reduce, approximate, and classify large and multimodal data such as higher-order tensors. While early approaches focused on
matrix and vector based methods to represent these higher-order data, more recently it has been shown that tensor decomposition
methods are better equipped to capture couplings across their different modes. For these reasons, tensor decomposition methods
have found applications in many different signal processing problems including dimensionality reduction, signal separation, linear
regression, feature extraction, and classification. However, most of the existing tensor decomposition methods are based on the
principle of finding a low-rank approximation in a linear subspace structure, where the definition of the rank may change depending
on the particular decomposition. Since many datasets are not necessarily low-rank in a linear subspace, this often results in high
approximation errors or low compression rates. In this paper, we introduce a new adaptive, multi-scale tensor decomposition
method for higher order data inspired by hybrid linear modeling and subspace clustering techniques. In particular, we develop
a multi-scale higher-order singular value decomposition (MS-HoSVD) approach where a given tensor is first permuted and then
partitioned into several sub-tensors each of which can be represented as a low-rank tensor with increased representational efficiency.
The proposed approach is evaluated for dimensionality reduction and classification for several different real-life tensor signals
with promising results.

Index Terms

Higher-order singular value decomposition, tensor decomposition, multi-scale decomposition, data reduction, big data
applications.

I. INTRODUCTION

Data in the form of multidimensional arrays, also referred to as tensors, arise in a variety of applications including
chemometrics, hyperspectral imaging, high resolution videos, neuroimaging, biometrics and social network analysis [1]–[3].
These applications produce massive amounts of data collected in various forms with multiple aspects and high dimensionality.
Tensors, which are multi-dimensional generalizations of matrices, provide a useful representation for such data. A crucial step
in many applications involving higher-orders tensors is multiway reduction of the data to ensure that the reduced representation
of the tensor retains certain characteristics. Early multiway data analysis approaches reformatted the tensor data as a matrix
and resorted to methods developed for classical two-way analysis. However, one cannot discover hidden components within
multiway data using conventional matrix decomposition methods as matrix based representations cannot capture multiway
couplings focusing on standard pairwise interactions. To this end, many different types of tensor decomposition methods have
been proposed in literature [4]–[9].

In contrast to the matrix case where data reduction is often accomplished via low-rank representations such as singular value
decomposition (SVD), the notion of rank for higher order tensors is not uniquely defined. The CANDECOMP/PARAFAC
(CP) and Tucker decompositions are two of the most widely used tensor decomposition methods for data reduction [10], [11].
For CP, the goal is to approximate the given tensor as a weighted sum of rank-1 tensors, where a rank-1 tensor refers to the
outer product of n vectors with n being equal to the order of the tensor. The Tucker model allows for interactions between
the factors from the different modes resulting in a typically dense, but small, core tensor. This model also introduces the
notion of Tucker rank or n-rank, which refers to the n-tuple of ranks corresponding to the tensor’s unfoldings along each of
its modes. Therefore, low rank approximation with the Tucker model can be obtained by projections onto low-rank factor
matrices. Unlike the CP decomposition, the Tucker decomposition is in general non-unique. To help obtain meaningful and
unique representations by the Tucker decomposition, orthogonality, sparsity, and non-negativity constraints are often imposed
on the factors yielding, e.g., the Non-Negative Tensor Factorization (NTF) and the Sparse Non-Negative Tucker Decomposition
[12]–[14]. The Tucker decomposition with orthogonality constraints on the factors is known as the Higher-Order Singular Value
Decomposition (HoSVD), or Multilinear SVD [11]. The HoSVD can be computed by simply flattening the tensor in each mode
and calculating the n-mode singular vectors corresponding to that mode.

With the emergence of multidimensional big data, classical tensor representation and decomposition methods have become
inadequate since the size of these tensors exceeds available working memory and the processing time is very long. In order to

A. Ozdemir (ozdemira@egr.msu.edu) and S. Aviyente (aviyente@egr.msu.edu) are with the Electrical and Computer Engineering, Michigan State University,
East Lansing, MI, 48824, USA.

Ali Zare (zareali@msu.edu) is with the Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan State University, East
Lansing, MI, 48824, USA.

Mark A. Iwen (markiwen@math.msu.edu) is with the Department of Mathematics, and the Department of Computational Mathematics, Science, and
Engineering (CMSE), Michigan State University, East Lansing, MI, 48824, USA.

This work was in part supported by NSF DMS-1416752 and NSF CCF-1615489.

address the problem of large-scale tensor decomposition, several block-wise tensor decomposition methods have been proposed
[6]. The basic idea is to partition a big data tensor into smaller blocks and perform tensor related operations block-wise using a
suitable tensor format. Preliminary approaches relied on a hierarchical tree structure and reduced the storage of d-dimensional
arrays to the storage of auxiliary three-dimensional ones such as the tensor-train decomposition (T-Train), also known as the
matrix product state (MPS) decomposition, [5] and the Hierarchical Tucker Decomposition (H-Tucker) [15]. In particular, in
the area of large volumetric data visualization, tensor based multiresolution hierarchical methods such as TAMRESH have
attracted attention [16]. However, all of these methods are interested in fitting a low-rank model to data which lies near a
linear subspace, thus being limited to learning linear structure.

Similar to the research efforts in tensor reduction, low-dimensional subspace and manifold learning methods have also been
extended for higher order data clustering and classification applications. In early work in the area, Vasilescu and Terzopoulos
[17] extended the eigenface concept to the tensorface by using higher order SVD and taking different modes such as expression,
illumination and pose into account. Similarly, 2D-PCA for matrices has been used for feature extraction from face images
without converting the images into vectors [18]. He et al. [19] extended locality preserving projections [20] to second order
tensors for face recognition. Dai and Yeung [21] presented generalized tensor embedding methods such as the extensions
of local discriminant embedding methods [22], neighborhood preserving embedding methods [23], and locality preserving
projection methods [20] to tensors. Li et al. [24] proposed a supervised manifold learning method for vector type data which
preserves local structures in each class of samples, and then extended the algorithm to tensors to provide improved performance
for face and gait recognition. Similar to vector-type manifold learning algorithms, the aim of these methods is to find an optimal
linear transformation for the tensor-type training data samples without vectorizing them and mapping these samples to a low
dimensional subspace while preserving the neighborhood information.

In this paper, we propose a novel multi-scale analysis technique to efficiently approximate tensor type data using locally linear
low-rank approximations. The proposed method consists of two major steps: 1) Constructing a tree structure by partitioning the
tensor into a collection of permuted subtensors, followed by 2) Constructing multiscale dictionaries by applying HoSVD to each
subtensor. The contributions of the proposed framework and the novelty in the proposed approach with respect to previously
published work in [25], [26] are manifold. They include: 1) The introduction of a more flexible multi-scale tensor decomposition
method which allows the user to approximate a given tensor within given memory and processing power constraints; 2) the
introduction of theoretical error bounds for the proposed decomposition; 3) the introduction of adaptive pruning to achieve a
better trade-off between compression rate and reconstruction error for the developed factorizations; 4) the extensive evaluation
of the method for both data reduction and classification applications; and 5) a detailed comparison of the proposed method to
state-of-the-art tensor decomposition methods including the HoSVD, T-Train, and H-Tucker decompositions.

The remainder of the paper is organized as follows. In Section II, basic notation and tensor operations are reviewed. The
proposed multiscale tensor decomposition method along with theoretical error bounds are then introduced in Section III.
Sections IV and V illustrate the results of applying the proposed framework to data reduction and classification problems,
respectively.

II. BACKGROUND

A. Tensor Notation and Algebra

A multidimensional array with N modes X P RI1ˆI2ˆ...ˆIN is called a tensor, where xi1,i2,..iN denotes the pi1, i2, ..iN qth

element of the tensor X . The vectors in RIn obtained by fixing all of the indices of such a tensor X except for the one that
corresponds to its nth mode are called its mode-n fibers. Let rN s :“ t1, . . . , Nu for all N P N. Basic tensor operations are
reviewed below (see, e.g., [10], [27], [28]).
Tensor addition and multiplication by a scalar: Two tensors X ,Y P RI1ˆI2ˆ...ˆIN can be added using component-wise
tensor addition. The resulting tensor X `Y P RI1ˆI2ˆ...ˆIN has its entries given by pX ` Yqi1,i2,..iN “ xi1,i2,..iN `yi1,i2,..iN .
Similarly, given a scalar α P R and a tensor X P RI1ˆI2ˆ...ˆIN the rescaled tensor αX P RI1ˆI2ˆ...ˆIN has its entries given
by pαX qi1,i2,..iN “ α xi1,i2,..iN .
Mode-n products: The mode-n product of a tensor X P RI1ˆ...Inˆ...ˆIN and a matrix U P RJˆIn is denoted as Y “ X ˆnU,
pYqi1,i2,...,in´1,j,in`1,...,iN “

řIn
in“1 xi1,...,in,...,iNuj,in . It is of size I1 ˆ ...ˆ In´1 ˆ J ˆ In`1 ˆ ...ˆ IN . The following facts

about mode-n products are useful (see, e.g., [10], [28]).

Lemma 1. Let X ,Y P RI1ˆI2ˆ...ˆIN , α, β P R, and Upnq,Vpnq P RJnˆIn for all n P rN s. The following are true:
(a) pαX ` βYq ˆn Upnq “ α

`

X ˆn Upnq
˘

` β
`

Y ˆn Upnq
˘

.
(b) X ˆn

`

αUpnq ` βVpnq
˘

“ α
`

X ˆn Upnq
˘

` β
`

X ˆn Vpnq
˘

.
(c) If n ‰ m then X ˆn Upnq ˆm Vpmq “

`

X ˆn Upnq
˘

ˆm Vpmq “
`

X ˆm Vpmq
˘

ˆn Upnq “ X ˆm Vpmq ˆn Upnq .

(d) If W P CPˆJn then X ˆn Upnq ˆn W “
`

X ˆn Upnq
˘

ˆn W “ X ˆn
´

WUpnq
¯

“ X ˆn WUpnq.

Tensor matricization: The process of reordering the elements of the tensor into a matrix is known as matricization or unfolding.
The mode-n matricization of a tensor Y P RI1ˆI2ˆ...ˆIN is denoted as Ypnq P RInˆ

ś

m‰n Im and is obtained by arranging Y’s

mode-n fibers to be the columns of the resulting matrix. Unfolding the tensor Y “ Xˆ1U
p1qˆ2U

p2q...ˆNUpNq “: X
N
ą

n“1

Upnq

along mode-n is equivalent to

Ypnq “ UpnqXpnqpU
pNq b ...Upn`1q bUpn´1q...bUp1qqJ, (1)

where b is the matrix Kronecker product. In particular, (1) implies that the matricization
`

X ˆn Upnq
˘

pnq
“ UpnqXpnq.1

It is worth noting that trivial inner product preserving isomorphisms exist between a tensor space RI1ˆI2ˆ...ˆIN and any of
its matricized versions (i.e., mode-n matricization can be viewed as an isomorphism between the original tensor vector space
RI1ˆI2ˆ...ˆIN and its mode-n matricized target vector space RInˆ

ś

m‰n Im). In particular, the process of matricizing tensors
is linear. If, for example, X ,Y P RI1ˆI2ˆ...ˆIN then one can see that the mode-n matricization of X ` Y P RI1ˆI2ˆ...ˆIN is
pX ` Yqpnq “ Xpnq `Ypnq for all modes n P rN s.
Tensor Rank: Unlike matrices, which have a unique definition of rank, there are multiple rank definitions for tensors including
tensor rank and tensor n-rank. The rank of a tensor X P RI1ˆ...Inˆ...ˆIN is the smallest number of rank-one tensors that form
X as their sum. The n-rank of X is the collection of ranks of unfoldings Xpnq and is denoted as:

n-rankpX q “
`

rankpXp1qq, rankpXp2qq, ..., rankpXpNqq
˘

. (2)

Tensor inner product: The inner product of two same sized tensors X ,Y P RI1ˆI2ˆ...ˆIN is the sum of the products of their
elements.

xX ,Yy “
I1
ÿ

i1“1

I2
ÿ

i2“1

...
IN
ÿ

iN“1

xi1,i2,...,iN yi1,i2,...,iN . (3)

It is not too difficult to see that matricization preserves Hilbert-Schmidt/Frobenius matrix inner products. That is, that xX ,Yy “
@

Xpnq,Ypnq
D

F
“ Trace

´

XJ
pnqYpnq

¯

holds for all n P rN s. If xX ,Yy “ 0, X and Y are orthogonal.
Tensor norm: Norm of a tensor X P RI1ˆI2ˆ...ˆIN is the square root of the sum of the squares of all its elements.

‖ X ‖“
a

xX ,X y “

g

f

f

e

I1
ÿ

i1“1

I2
ÿ

i2“1

...
IN
ÿ

iN“1

x2i1,i2,...,iN . (4)

The fact that matricization preserves Frobenius matrix inner products also means that it preserves Frobenius matrix norms. As
a result we have that }X } “

›

›Xpnq
›

›

F
holds for all n P rN s. If X and Y are orthogonal and also have unit norm (i.e., have

}X } “ }Y} “ 1) we will say that they are an orthonormal pair.

B. Some Useful Facts Concerning Mode-n Products and Orthogonality

Let I P RInˆIn be the identity matrix. Given a (low rank) orthogonal projection matrix P P RInˆIn one can decompose
any given tensor X P RI1ˆI2ˆ...ˆIN into two orthogonal tensors using Lemma 1 (b)

X “ X ˆn I “ X ˆn ppI´Pq `Pq “ X ˆn pI´Pq ` X ˆn P.

To check that the last two summands are orthogonal one can use (1) to compute that

xX ˆn pI´Pq,X ˆn Py “
@

pI´PqXpnq,PXpnq
D

F
“ Trace

´

XJpnqpI´PqPXpnq

¯

“ 0.

As a result one can also verify that the Pythagorean theorem holds, i.e., that }X }2 “ }X ˆn P}2 ` }X ˆn pI´Pq}2.
If we now regard X ˆn P as a low rank approximation to X then we can see that its approximation error

X ´ X ˆn P “ X ˆn pI´Pq

is orthogonal to the low rank approximation X ˆn P, as one would expect. Furthermore, the norm of its approximation error
satisfies }X ˆn pI ´ Pq}2 “ }X }2 ´ }X ˆn P}2. By continuing to use similar ideas in combination with lemma 1 for all
modes one can prove the following more general Pythagorean result (see, e.g., theorem 5.1 in [28]).

Lemma 2. Let X P RI1ˆI2ˆ...ˆIN and Upnq P RInˆIn be an orthogonal projection matrix for all n P rN s. Then,

›

›

›
X ´ X ˆ1 U

p1q ˆ2 U
p2q...ˆN UpNq

›

›

›

2

“:

›

›

›

›

›

X ´ X
N
ą

n“1

Upnq

›

›

›

›

›

2

“

N
ÿ

n“1

›

›

›

›

›

X
n´1
ą

h“1

Uphq ˆn

´

I´Upnq
¯

›

›

›

›

›

2

.

1Simply set Upmq “ I (the identity) for all m ‰ n in (1). This fact also easily follows directly from the definition of the mode-n product.

C. The Higher Order Singular Value Decomposition (HoSVD)

Any tensor X P RI1ˆI2ˆ...ˆIN can be decomposed as mode products of a core tensor C P RI1ˆI2ˆ...ˆIN with N orthogonal
matrices Upnq P RInˆIn each of which is composed of the left singular vectors of Xpnq [11]:

X “ C ˆ1 U
p1q ˆ2 U

p2q...ˆN UpNq “ C
N
ą

n“1

Upnq (5)

where C is computed as

C “ X ˆ1

´

Up1q
¯J

ˆ2

´

Up2q
¯J

...ˆN

´

UpNq
¯J

. (6)

Let Cin“α be a subtensor of C obtained by fixing the nth index to α. This subtensor satisfies the following properties:
‚ all-orthogonality: Cin“α and Cin“β are orthogonal for all possible values of n, α and β subject to α ‰ β.

xCin“α, Cin“βy “ 0 when α ‰ β. (7)

‚ ordering:
‖ Cin“1 ‖ě‖ Cin“2 ‖ě ... ě‖ Cin“In ‖ě 0 (8)

for n P rN s.

III. MULTISCALE ANALYSIS OF HIGHER-ORDER DATASETS

In this section, we present a new tensor decomposition method named Multiscale HoSVD (MS-HoSVD) for an N th order
tensor, X P RI1ˆI2ˆ...ˆIN . The proposed method recursively applies the following two-step approach: (i) Low-rank tensor
approximation, followed by (ii) Partitioning the residual (original minus low-rank) tensor into subtensors.

A tensor X is first decomposed using HoSVD as follows:

X “ C ˆ1 U
p1q ˆ2 U

p2q...ˆN UpNq, (9)

where the Upnq’s are the left singular vectors of the unfoldings Xpnq. The low-rank approximation of X is obtained by

X̂0 “ C0 ˆ1 Û
p1q ˆ2 Û

p2q...ˆN ÛpNq (10)

where Ûpnq P RInˆrns are the truncated matrices obtained by keeping the first rn columns of Upnq and C0 “ Xˆ1

´

Ûp1q
¯J

ˆ2
´

Ûp2q
¯J

... ˆN

´

ÛpNq
¯J

. The multilinear-rank of X̂0, tr1, ..., rNu, can either be given a priori, or an energy criterion can
be used to determine the minimum number of singular values to keep along each mode as:

rn “ arg min
i

i
ÿ

l“1

σ
pnq
l s.t.

ři
l“1 σ

pnq
l

řIn
l“1 σ

pnq
l

ą τ, (11)

where σpnql is the lth singular value of the matrix obtained from the SVD of the unfolding Xpnq, and τ is an energy threshold.
Once X̂0 is obtained, the tensor X can be written as

X “ X̂0 `W0, (12)

where W0 is the residual tensor.
For the first scale analysis, to better encode the details of X , we adapted an idea similar to the one presented in [25], [29].

The 0th scale residual tensor, W0 is first decomposed into subtensors as follows. W0 P RI1ˆI2ˆ...ˆIN is unfolded across
each mode yielding W0,pnq P RInˆ

ś

j‰n Ij whose columns are the mode-n fibers of W0. For each mode, rows of W0,pnq are
partitioned into cn non-overlapping clusters using a clustering algorithm such as local subspace analysis (LSA) [30] in order to
encourage the formation of new subtensors which are intrinsically lower rank, and therefore better approximated via a smaller
HoSVD at the next scale. The Cartesian product of the partitioning labels coming from the N modes yields K “

śN
i“1 ci

disjoint subtensors X1,k where k P rKs.
Let Jn0 be the index set corresponding to the nth mode of W0 with Jn0 “ rIns, and let Jn1,k be the index set of the subtensor

X1,k for the nth mode, where Jn1,k Ă Jn0 for all k P rKs and n P rN s. Index sets of subtensors for the nth mode satisfy
ŤK
k“1 J

n
1,k “ Jn0 for all n P rN s. The kth subtensor X1,k P R|J

1
1,k|ˆ|J

2
1,k|ˆ¨¨¨ˆ|J

N
1,k| is obtained by

X1,kpi1, i2, ..., iN q “W0pJ
1
1,kpi1q, J

2
1,kpi2q, ..., J

N
1,kpiN qq,

X1,k “W0pJ
1
1,k ˆ J

2
1,k ˆ ...ˆ J

N
1,kq,

(13)

where in P
”
ˇ

ˇ

ˇ
Jn1,k

ˇ

ˇ

ˇ

ı

. Low-rank approximation for each subtensor is obtained by applying HoSVD as:

X̂1,k “ C1,k ˆ1 Û
p1q
1,k ˆ2 Û

p2q
1,k...ˆN Û

pNq
1,k , (14)

where C1,k and Û
pnq
1,k P R

|Jn
1,k|ˆr

pnq
1,k s correspond to the core tensor and low-rank projection basis matrices of X1,k, respectively.

We can then define X̂1 as the 1st scale approximation of X formed by mapping all of the subtensors onto X̂1,k as follows:

X̂1pJ
1
1,k ˆ J

2
1,k ˆ ...ˆ J

n
1,kq “ X̂1,k. (15)

Similarly, 1st scale residual tensor is obtained by

W1pJ
1
1,k ˆ J

2
1,k ˆ ...ˆ J

n
1,kq “W1,k, (16)

where W1,k “ X1,k ´ X̂1,k. Therefore, X can be rewritten as:

X “ X̂0 `W0 “ X̂0 ` X̂1 `W1. (17)

Continuing in this fashion the jth scale approximation of X is obtained by partitioning Wj´1,ks into subtensors Xj,ks and
fitting a low-rank model to each one of them in a similar fashion. Finally, the jth scale decomposition of X can be written as:

X “

j
ÿ

i“0

X̂i `Wj . (18)

Algorithm 1 describes the pseudo code for this approach and Fig. 1 illustrates 1-scale MS-HoSVD.

Fig. 1: Illustration of 1-scale MS-HoSVD. Higher scale decomposition can be obtained by applying the illustrated approach
to the residual tensors recursively.

Algorithm 1 Multiscale HoSVD
1: Input: X : tensor , C “ pc1, c2, ..., cN q: the desired number of clusters for each mode, sH : the highest scale of MS-HoSVD.
2: Output: T : Tree structure containing the MS-HoSVD decomposition of X̂ .
3: Create an empty tree T
4: Create an empty list L
5: Add the node containing X “: X0,1 to L with Parentp0, 1q “ H (i.e., this is the root of the the tree).
6: while L is not empty. do
7: Pop a node corresponding to Xs,t (the tth subtensor from sth scale) from the list L where s P t0, ..., sHu and t P t1, ...,Ks

u.
8: Cs,t,

!

Û
pnq
s,t

)

Ð truncatedHOSVD(Xs,t).

9: Add the node containing Cs,t,
!

Û
pnq
s,t

)

to T as a child of Parentps, tq.
10: if s ă sH then
11: Compute Ws,t “ Xs,t ´ X̂s,t.
12: Create K subtensors Xs`1,Kpt´1q`k with Jn

s`1,Kpt´1q`k from Ws,t where k P t1, 2, ..., Ku and n P t1, 2, ..., Nu.
13: Add K nodes containing Xs`1,Kpt´1q`k and

Jn
s`1,Kpt´1q`k

(

to L with Parentps` 1,Kpt´ 1q ` kq “ ps, tq.
14: end if
15: end while

A. Memory Cost of the First Scale Decomposition

Let X P RI1ˆI2ˆ....ˆIN be an N th order tensor. To simplify the notation, assume that the dimension of each mode is the
same, i.e. I1 “ I2 “ “ IN “ I . Assume X is approximated by HoSVD as:

X̂ “ CH ˆ1 U
p1q
H ˆ2 U

p2q
H ...ˆN U

pNq
H , (19)

by fixing the rank of each mode matrix as rankpUpiqH q “ rH for i P t1, 2, ..., Nu. Let Fp¨q be a function that quantifies the
memory cost, then the storage cost of X decomposed by HoSVD is FpCHq `

řN
i“1pFpU

piq
H qq « rNH `NIrH .

For multiscale analysis at scale 1, X̂ “ X̂0` X̂1. The cost of storing X̂0 is FpC0q`
řN
i“1pFpÛpiqqq « rN0 `NIr0 where the

rank of each mode matrix is fixed at rankpUpiqq “ r0 for i P t1, 2, ..., Nu. The cost of storing X̂1 is the sum of the storage
costs for each of the K “

śN
i“1 cpiq subtensors X̂1,k. Assume cpiq “ c for all i P t1, 2, ..., Nu yielding cN equally sized

subtensors, and that each X̂1,k is decomposed using the HoSVD as X̂1,k “ C1,kˆ1Û
p1q
1,kˆ2Û

p2q
1,k...ˆN Û

pNq
1,k . Let the rank of each

mode matrix be fixed as rankpÛpiq1,kq “ r1 for all i P t1, 2, ..., Nu and k P t1, 2, ..., Ku. Then, the memory cost for the first

scale is
řK
k“1

´

FpC1,kq `
řN
i“1 FpÛ

piq
1,kq

¯

« cN
ˆ

rN1 `
NIr1
c

˙

. Choosing r1 À
r0

cpN´1q
ensures that the storage cost does not

grow exponentially so that FpX̂1q ă FpX̂0q since the total cost becomes approximately equal to rN0

ˆ

1`
1

cN2´2N

˙

` 2NIr0.

Thus, picking r0 « rH{2 can now provide lower storage cost for the first scale analysis than for HoSVD.

B. Computational Complexity

The computational complexity of MS-HoSVD at the first scale is equal to the sum of computational complexity of computing
HoSVD at the parent node, partitioning into subtensors and computing HoSVD for each one of the subtensors. Computational
complexity of HoSVD of an N-way tensor X P RI1ˆI2ˆ...ˆIN where I1 “ I2 “ ... “ IN “ I is O

`

NIpN`1q
˘

[31]. By
assuming that the partitioning is performed using K-means (via Lloyd’s algorithm) with ci “ c along each mode, the complexity
partitioning along each mode is O

`

NINci
˘

, where i is the number of iterations used in Lloyd’s algorithm. Finally, the total
complexity of applying the HoSVD to cN equally sized subtensors is O

´

cNNpI{cq
pN`1q

¯

. Therefore, first scale MS-HoSVD

has a total computational complexity of O
´

NIpN`1q `NINci` cNNpI{cq
pN`1q

¯

. Note that this complexity is similar to
that of the HoSVD whenever ci is small compared to I . The runtime complexity of these multiscale methods can be reduced
even further by computing the HoSVDs for different subtensors in parallel whenever possible, as well as by utilizing distributed
and parallel SVD algorithms such as [32] when computing all the required HoSVD decompositions.

C. A Linear Algebraic Representation of the Proposed Multiscale HoSVD Approach

Though the tree-based representation of the proposed MS-HoSVD approach used above in Algorithm 1 is useful for
algorithmic development, it is somewhat less useful for theoretical error analysis. In this subsection we will develop formulas
for the proposed MS-HoSVD approach which are more amenable to error analysis. In the process, we will also formulate a
criterion which, when satisfied, guarantees that the proposed fist scale MS-HoSVD approach produces an accurate multiscale
approximation to a given tensor.
Preliminaries: We can construct full size first scale subtensors of the residual tensor W0 P RI1ˆI2ˆ...IN from (12), X |k P
RI1ˆI2ˆ...IN for all k P rKs, using the index sets Jn1,k from (13) along with diagonal restriction matrices. Let R

pnq
k P

t0, 1u
InˆIn be the diagonal matrix with entries given by

R
pnq
k pi, jq “

#

1, if i “ j, and j P Jn1,k
0, otherwise

(20)

for all k P rKs, and n P rN s. We then define

X |k :“W0

N
ą

n“1

R
pnq
k “W0 ˆ1 R

p1q
k ˆ2 R

p2q
k ...ˆN R

pNq
k . (21)

Thus, the kth subtensor X |k will only have nonzero entries, given by W0pJ
1
1,kˆ ...ˆJ

N
1,kq, in the locations indexed by the sets

Jn1,k from above. The properties of the index sets Jn1,k furthermore guarantee that these subtensors all have disjoint support.
As a result both

W0 “

K
ÿ

k“1

X |k (22)

and
xX |k,X |jy “ 0 for all j, k P rKs with j ‰ k

will always hold.
Recall that we want to compute the HoSVD of the subtensors we form at each scale in order to create low-rank projection

basis matrices along the lines of those in (14). Toward this end we compute the top rpnqk ď rankpR
pnq
k q “ |Jn1,k| left singular

vectors of the mode-n matricization of each X |k, X|kpnq P RInˆ
ś

m‰n Im , for all n P rN s. Note that X|kpnq “ R
pnq
k X|kpnq

always holds for these matricizations since R
pnq
k is a projection matrix.2 Thus, the top r

pnq
k left singular vectors of X|kpnq

will only have nonzero entries in locations indexed by Jn1,k. Let Ûpnqk P RInˆr
pnq
k be the matrix whose columns are these top

singular vectors. As a result of the preceding discussion we can see that Û
pnq
k “ R

pnq
k Û

pnq
k will hold for all n P rN s and

k P rKs. Our low rank projection matrices Q
pnq
k P RInˆIn used to produce low rank approximations of each subtensor X |k

can now be defined as
Q
pnq
k :“ Û

pnq
k

´

Û
pnq
k

¯J

. (23)

As a consequence of Û
pnq
k “ R

pnq
k Û

pnq
k holding, combined with the fact that

´

R
pnq
k

¯J

“ R
pnq
k since each R

pnq
k matrix is

diagonal, we have that

Q
pnq
k :“ Û

pnq
k

´

Û
pnq
k

¯J

“ R
pnq
k Û

pnq
k

´

R
pnq
k Û

pnq
k

¯J

“ R
pnq
k Û

pnq
k

´

Û
pnq
k

¯J ´

R
pnq
k

¯J

“ R
pnq
k Q

pnq
k R

pnq
k (24)

holds for all n P rN s and k P rKs. Using (24) combined with the fact that Rpnqk is a projection matrix we can further see that

R
pnq
k Q

pnq
k “ R

pnq
k

´

R
pnq
k Q

pnq
k R

pnq
k

¯

“ R
pnq
k Q

pnq
k R

pnq
k “ Q

pnq
k “ R

pnq
k Q

pnq
k R

pnq
k “

´

R
pnq
k Q

pnq
k R

pnq
k

¯

R
pnq
k “ Q

pnq
k R

pnq
k (25)

also holds for all n P rN s and k P rKs.

1-scale Analysis of MS-HoSVD: Using this linear algebraic formulation we are now able to re-express the the 1st scale
approximation of X P RI1ˆI2ˆ...IN , X̂1 P RI1ˆI2ˆ...IN , as well as the 1st scale residual tensor tensor, W1 P RI1ˆI2ˆ...IN , as
follows (see (15) – (17)). We have that

X̂1 “

K
ÿ

k“1

˜

X |k
N
ą

n“1

Q
pnq
k

¸

“

K
ÿ

k“1

˜

W0

N
ą

n“1

Q
pnq
k R

pnq
k

¸

pUsing Lemma 1 and (21)q

“

K
ÿ

k“1

˜

W0

N
ą

n“1

Q
pnq
k

¸

pUsing the properties in (25)q

“

K
ÿ

k“1

˜

´

X ´ X̂0

¯

N
ą

n“1

Q
pnq
k

¸

pUsing (12)q (26)

holds. Thus, we see that the residual error W1 from (17) satisfies

X “ X̂0 `

K
ÿ

k“1

˜

´

X ´ X̂0

¯

N
ą

n“1

Q
pnq
k

¸

`W1. (27)

Having derived (27) it behooves us to consider when using such a first scale approximation of X is actually better than,
e.g., just using a standard HoSVD-based 0th scale approximation of X along the lines of (12). As one might expect, this
depends entirely on piq how well the 1st scale partitions (i.e., the restriction matrices utilized (20)) are chosen, as well as on
piiq how well restriction matrices of the type used in (20) interact with the projection matrices used to create the standard
HoSVD-based approximation in question. Toward understanding these two conditions better, recall that X̂0 P RI1ˆI2ˆ...IN in
(27) is defined as

X̂0 “ X
N
ą

n“1

Ppnq “ X ˆ1 P
p1q ˆ2 P

p2q ¨ ¨ ¨ ˆN PpNq (28)

where the orthogonal projection matrices Ppnq P RInˆIn are given by Ppnq “ Ûpnq
´

Ûpnq
¯J

for the matrices Ûpnq P RInˆrn

used in (10). For simplicity let the ranks of the Ppnq projection matrices momentarily satisfy r1 “ r2 “ ¨ ¨ ¨ “ rN “: r0 (i.e.,
let them all be rank r0 ă maxntrankpXpnqqu). Similarly, let all the ranks, rpnqk , of the 1st scale projection matrices Q

pnq
k in

(23) be r1 for the time being.
Motivated by, e.g., the memory cost analysis of Section III-A above, one can now ask when the multiscale approximation

error, }W1}, resulting from (27) will be less than a standard HoSVD-based approximation error, }X ´ X̄0}, where

X̄0 :“ X
N
ą

n“1

P̄pnq “ X ˆ1 P̄
p1q ˆ2 P̄

p2q ¨ ¨ ¨ ˆN P̄pNq, (29)

2Here we are implicitly using (1).

and each orthogonal projection matrix P̄pnq is of rank r̄n “ rH ě 2r0 ě r0 ` cN´1r1
`

i.e., where each P̄pnq projects onto
the top rH left singular vectors of Xpnq

˘

. In this situation having both }W1} ă }X ´ X̄0} and rH ě 2r0 ě r0 ` cN´1r1
hold at the same time would imply that one could achieve smaller approximation error using MS-HoSVD than using HoSVD
while simultaneously achieving better compression (recall Section III-A). In order to help facilitate such analysis we prove
error bounds in Appendix A that are implied by the choice of a good partitioning scheme for the residual tensor W0 in (20)
– (22).

In particular, with respect to the question concerning how well the 1st-scale approximation error, }W1}, from (27) might
compare to the HoSVD-based approximation error }X´X̄0} we can use the following notion of an effective partition of W0. The
partition of W0 formed by the restriction matrices R

pnq
k in (20) – (22) will be called effective if there exists another pessimistic

partitioning of W0 via (potentially different) restriction matrices
!

R̃
pnq
k

)K

k“1
together with a bijection f : rKs Ñ rKs such

that
N
ÿ

n“1

›

›

›
X |k ˆn

´

I´Q
pnq
k

¯
›

›

›

2

ď

N
ÿ

n“1

›

›

›

›

›

W0 ˆn R̃
pnq
fpkq

´

I´ P̃pnq
¯

N
ą

h‰n

R̃
phq
fpkq

›

›

›

›

›

2

(30)

holds for each k P rKs. In (30) the
!

P̃pnq
)

are the orthogonal projection matrices obtained from the HoSVD of W0 with

ranks r̃n “ rH
`

i.e., where each P̃pnq projects onto the top r̃n “ rH left singular vectors of the matricization W0,pnq

˘

. In
Appendix A, we show that (30) holding for W0 implies that the error }W1} resulting from our 1st-scale approximation in (27)
is less than an upper bound of the type often used for HoSVD-based approximation errors of the form }X ´ X̄0} (see, e.g.,
[28]). In particular, we prove the following result.

Theorem 1. Suppose that (30) holds. Then, the first scale approximation error given by MS-HoSVD in (27) is bounded by

}W1}
2
“

›

›

›
X ´ X̂0 ´ X̂1

›

›

›

2

ď

N
ÿ

n“1

›

›

›
X ˆn

´

I´ P̄pnq
¯
›

›

›

2

,

where

P̄pnq
(

are low-rank projection matrices of rank r̄n “ r̃n “ rH obtained from the truncated HoSVD of X as per (29).

Proof. See Appendix A.

Theorem 1 implies that }W1} may be less than }X ´ X̄0} when (30) holds. It does not, however, actually prove that
}W1} ď }X ´ X̄0} holds whenever (30) does. In fact, directly proving that }W1} ď }X ´ X̄0} whenever (30) holds does not
appear to be easy. It also does not appear to be easy to prove the error bound in theorem 1 without an assumption along
the lines of (30) which simultaneously controls both piq how well the restriction matrices utilized to partition W0 in (21) are
chosen, as well as piiq how poorly (worst case) restriction matrices interact with the projection matrices used to create standard
HoSVD-based approximations of W0 and/or X . The development of simpler and/or weaker conditions than (30) which still
yield meaningful error guarantees along the lines of theorem 1 is left as future work. See Appendix A for additional details
and comments, and Appendix B below for an example illustrating Theorem 1 on an idealized tensor..

D. Adaptive Pruning in Multiscale HoSVD for Improved Performance

In order to better capture the local structure of the tensor, it is important to look at higher scale decompositions. However,
as the scale increases, the storage cost and computational complexity will increase making any gain in reconstruction error
potentially not worth the additional memory cost. For this reason, it is important to carefully select the subtensors adaptively at
higher scales. To help avoid the redundancy in decomposition structure we propose an adaptive pruning method across scales.

In adaptive pruning, the tree is pruned by minimizing the following cost function H “ Error`λ ¨Compression similar to
the rate-distortion criterion commonly used by compression algorithms where λ is the trade-off parameter [33]. To minimize
this function we employ a greedy procedure similar to sequential forward selection [34]. First, the root node which stores X̂0

is created and scale-1 subtensors X̂1,k are obtained from the 0th order residual tensor Ŵ0 as discussed in Section III. These
subtensors are stored in a list and the subtensor which decreases the cost function the most is then added to the tree structure
under its parent node. Next, scale-2 subtensors belonging to the added node are created and added to the list. All of the scale-1
and scale-2 subtensors in the list are again evaluated to find the subtensor that minimizes the cost function. This procedure is
repeated until the cost function H converges or the decrease is minimal. A pseudocode of the algorithm is given in Algorithm
2. It is important to note that this algorithm is suboptimal similar to other greedy search methods.

IV. DATA REDUCTION

In this section we demonstrate the performance of MS-HoSVD for tensor type data reduction on several real 3-mode and
4-mode datasets as compared with three other tensor decompositions: HoSVD, H-Tucker, and T-Train. The performance of
tensor decomposition methods are evaluated in terms of reconstruction error and compression rate. In the tables and figures

Algorithm 2 Multiscale HoSVD with Adaptive Pruning

1: Input: X : tensor , C “ pc1, c2, ..., cN q: the desired number of clusters for each modes, sH : the highest scale of MS-HoSVD.
2: Output: T : Tree structure containing the MS-HoSVD decomposition of X̂ .
3: Create an empty tree T .
4: Create an empty list L.
5: Add node containing X to L.
6: while There is a node in L that decreases the cost function HpT q. do
7: Find the node corresponding to Xs,t (the tth subtensor from sth scale) in the list L that decreases H the most where s P t0, ..., sHu

and t P t1, ...,Ks
u.

8: Cs,t,
!

Û
pnq
s,t

)

Ð truncatedHOSVD(Xs,t).

9: Add the node containing Cs,t,
!

Û
pnq
s,t

)

to T .
10: if s ă sH then
11: Compute Ws,t “ Xs,t ´ X̂s,t.
12: Create K subtensors Xs`1,Kpt´1q`k with Jn

s`1,Kpt´1q`k from Ws,t where k P t1, 2, ..., Ku and n P t1, 2, ..., Nu.
13: Add K nodes containing Xs`1,Kpt´1q`k and

Jn
s`1,Kpt´1q`k

(

to L.
14: end if
15: end while

below the error rate refers to the normalized tensor approximation error }X´X̂ }F
}X }F and the compression rate is computed as

total bits to store X̂
total bits to store X . Moreover, we show the performance of the proposed adaptive tree prunning strategy for data reduction.

A. Datasets

1) PIE dataset: A 3-mode tensor X P R244ˆ320ˆ138 is created from PIE dataset [35]. The tensor contains 138 images from
6 different yaw angles and varying illumination conditions collected from a subject where each image is converted to gray
scale. Fig. 2 illustrates the images from different frames of the PIE dataset.

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

Fig. 2: Sample frames from PIE dataset corresponding to the 30th (left) and 80th (right) frames.

2) COIL-100 dataset: The COIL-100 database contains 7200 images collected from 100 objects where the images of each
object were taken at pose intervals of 5˝. A 4-mode tensor X P R128ˆ128ˆ72ˆ100 is created from COIL-100 dataset [36]. The
constructed 4-mode tensor contains 72 images of size 128 ˆ 128 from 100 objects where each image is converted to gray
scale. In Fig. 3, sample images of four objects taken from different angles can be seen.

Fig. 3: Image samples of four different objects from COIL-100 dataset from varying pose angles (from 0˝ to 240˝ with 60˝

increments).

3) The Cambridge Hand Gesture Dataset: The Cambridge hand gesture database consists of 900 image sequences of nine
gesture classes of three primitive hand shapes and three primitive motions where each class contains 100 image sequences
(5 different illuminations ˆ 10 arbitrary motions ˆ 2 subjects). In Fig. 4, sample image sequences collected for nine hand
gestures can be seen. The created 4-mode tensor X P R60ˆ80ˆ30ˆ900 contains 900 image sequences of size 60 ˆ 80 ˆ 30
where each image is converted to gray scale.

Fig. 4: Illustration of nine different classes in Cambridge Hand Gesture Dataset.

B. Data Reduction Experiments

In this section, we evaluate the performance of MS-HoSVD for 1 and 2-scale decompositions compared to HoSVD, H-Tucker
and T-Train decompositions. In the following experiments, tensor partitioning is performed by LSA and the cluster number
along each mode is chosen as ci “ 2. The rank used in HoSVD is selected adaptively using the energy criterion as per Section
III’s (11). In our experiments, we performed MS-HoSVD with τ “ 0.7 and τ “ 0.75 and we kept τ the same for each scale.
For the same compression rates as the MS-HoSVD, the reconstruction error of HoSVD, H-Tucker and T-Train models are
computed.

Fig. 5 explores the interplay between compression rate and approximation error for MS-HoSVD in comparison to HoSVD,
H-Tucker and T-Train for PIE, COIL-100 and hand gesture datasets. Starting from the left in Figs. 5(a), 5(b) and 5(c), the
first two compression rates correspond to 1-scale MS-HoSVD with τ “ 0.7 and τ “ 0.75, respectively while the last two are
obtained from 2-scale approximation with τ “ 0.7 and τ “ 0.75, respectively. As seen in Fig. 5, MS-HoSVD outperforms
other approaches with respect to reducing PIE, COIL-100 and hand gesture tensors at varying compression rates. Moreover,
adding 2nd scale increases the storage requirements while decreasing the error of MS-HoSVD. Fig. 6 illustrates the influence
of scale on the visual quality of the reconstructed images. As expected, introducing additional finer scales into a multiscale
approximation of video data improves image detail in each frame. Moreover, the data reduction performance of T-Train is seen
to be slightly better than H-Tucker in most of the experiments.

0.03 0.06 0.12 0.24

Compression

0

0.02

0.04

0.06

0.08
E

rr
o
r

Compression-Error results for PIE video

MS-HoSVD

HoSVD

H-Tucker

T-Train

(a) PIE

0.03 0.06 0.09 0.16

Compression

0

0.05

0.1

0.15

0.2

E
rr

o
r

Compression-Error results for COIL-100

MS-HoSVD

HoSVD

H-Tucker

T-Train

(b) COIL-100

0.05 0.11 0.17 0.30

Compression

0

0.02

0.04

0.06

0.08

0.1

0.12
E

rr
o
r

Compression-Error results for hand gesture dataset

MS-HoSVD

HoSVD

H-Tucker

T-Train

(c) Hand Gesture

Fig. 5: Compression rate versus Normalized Reconstruction Error for MS-HoSVD (dark blue), HoSVD (light blue), H-Tucker
(green) and T-Train (yellow) for a) PIE, b) COIL-100 and c) Hand Gesture datasets. Starting from the left for all (a), (b)
and (c), the first two compression rates correspond to 1-scale MS-HoSVD with τ “ 0.7 and τ “ 0.75 while the last two are
obtained from 2-scale approximation with τ “ 0.7 and τ “ 0.75, respectively. MS-HoSVD provides lower error than HoSVD,
H-Tucker and T-Train.

original frame

50 100 150

20

40

60

80

100

120

0th scale

50 100 150

20

40

60

80

100

120

0th + 1st scale

50 100 150

20

40

60

80

100

120

0th + 1st + 2nd scale

50 100 150

20

40

60

80

100

120

Fig. 6: A single frame of the PIE dataset showing increasing accuracy with scale for MS-HoSVD.

C. Data Reduction with Adaptive Tree Prunning

In this section, we evaluate the performance of adaptive tree pruning multiscale decompositions. In the pruning experiments,
clustering is performed by LSA and the cluster number along each mode is chosen as ci “ 2. The rank used in HoSVD is

selected adaptively based on the energy threshold τ “ 0.7. A pruned version of 2-scale MS-HoSVD that greedily minimizes
the cost function H “ Error ` λ ¨ Compression for is implemented for PIE, COIL-100 and Hand Gesture datasets with
varying λ values as reported in Tables I, II and III. As λ increases, reducing the compression rate becomes more important
and the algorithm prunes the leaf nodes more. For example, a choice of λ “ 0.75 prunes all of the nodes corresponding to the
second scale subtensors for PIE data (see Table I).

As can be seen from Tables I, II, and III, the best tradeoffs achieved between reconstruction error and compression rate
occur at different λ values for different datasets. For example, for PIE data, increasing λ value does not provide much change
in reconstruction error while increasing the compression. On the other hand, for COIL-100, λ “ 0.75 provides a good tradeoff
between reconstruction error and compression rate. Small changes in λ yield significant effects on pruning the subtensors of
2-scale decomposition of hand gesture data. Fig. 7 illustrates the performance of the pruning algorithm on the PIE dataset.
Applying pruning with λ “ 0.25 increases the reconstruction error from 0.0276 to 0.0506 while reducing the compression rate
by a factor of 4 (Table I). As seen in Fig. 7, the 2nd scale approximation obtained by the adaptive pruning algorithm preserves
most of the facial details in the image.

TABLE I: Reconstruction error and compression rate computed for pruned tree structure obtained by applying MS-HoSVD
with 2-scales to PIE data.

λ 0 0.22 0.25 0.30 0.75
Normalized error 0.0276 0.0395 0.0506 0.0530 0.0540

Compression 0.1241 0.0809 0.0377 0.0284 0.0261
Scales of subtensors 0+1+2 0+1+2 0+1+2 0+1+2 0+1

TABLE II: Reconstruction error and compression rate computed for pruned tree structure obtained by applying MS-HoSVD
with 2-scales to COIL-100 dataset.

λ 0 0.25 0.50 0.75 0.80
Normalized error 0.0857 0.0867 0.0913 0.1060 0.1207

Compression 0.0863 0.0840 0.0734 0.0526 0.0347
Scales of subtensors 0+1+2 0+1+2 0+1+2 0+1+2 0+1+2

TABLE III: Reconstruction error and compression rate computed for pruned tree structure obtained by applying MS-HoSVD
with 2-scales to Hand Gesture dataset.

λ 0 0.25 0.26 0.27 0.28
Normalized error 0.0691 0.0869 0.0913 0.0946 0.0999

Compression 0.1694 0.1056 0.0827 0.0698 0.0514
Scales of subtensors 0+1+2 0+1+2 0+1+2 0+1+2 0+1

0th scale

100 200 300

50

100

150

200

0th + 1st scale

100 200 300

50

100

150

200

0th + 1st + 2nd scale

100 200 300

50

100

150

200

0th + 1st + 2nd scale with prunning

(λ = 0.25)

100 200 300

50

100

150

200

Fig. 7: Reconstruction error and compression rate computed for the pruned tree structure obtained by applying MS-HoSVD
with 2-scales to the PIE dataset. The top-left and right image is the sample frame obtained by reconstructing the tensor using
only the 0th scale, and 0th and 1st scales, respectively. The bottom-left image is a sample frame reconstructed using the 2-scale
approximation with all the sub-tensors, and the bottom-right image is the reconstruction using the 2 scale analysis with the
pruning approach where λ “ 0.25.

Performance of the pruning algorithm reported in Tables I, II and III is also compared with HoSVD, H-Tucker and T-Train
decompositions in Fig. 8. As seen in Fig. 8 (b) and (c), MS-HoSVD outperforms other approaches for compressing COIL-100
and Hand Gesture datasets at varying compression rates. However, for PIE data, the performance of MS-HoSVD and HoSVD
are very close to each other while both approaches outperform H-Tucker and T-Train, as can be seen in Fig. 8 (a). In Fig.
9, sample frames of PIE data reconstructed by T-Train (top-left), H-Tucker (top-right), HoSVD (bottom-left) and pruned MS-
HoSVD with 2-scales (bottom-right) are shown. It can be easily seen that the reconstructed images by H-Tucker and T-Train are
more blurred than the ones obtained by HoSVD and MS-HoSVD. One can also see the facial details captured by MS-HoSVD
are clearer than HoSVD although the performances of both algorithms are very similar to each other. The reason for capturing
facial details better by MS-HoSVD is that the higher scale subtensors encode facial details.

0.03 0.04 0.08

Compression

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
E

rr
o
r

Compression-Error results for PIE video

MS-HoSVD-AP

HoSVD

H-Tucker

T-Train

(a) PIE

0.03 0.05 0.08

Compression

0

0.05

0.1

0.15

E
rr

o
r

Compression-Error results for COIL-100

MS-HoSVD-AP

HoSVD

H-Tucker

T-Train

(b) COIL-100

0.07 0.08 0.10

Compression

0

0.02

0.04

0.06

0.08

0.1

0.12
E

rr
o
r

Compression-Error results for hand gesture dataset

MS-HoSVD-AP

HoSVD

H-Tucker

T-Train

(c) Hand Gesture

Fig. 8: Compression rate versus Normalized Reconstruction Error for MS-HoSVD with adaptive pruning (dark blue), HoSVD
(light blue), H-Tucker (green) and T-Train (yellow) for a) PIE, b) COIL-100 and c) Hand Gesture datasets. 2-scale MS-HoSVD
tensor approximations are obtained using τ “ 0.7 for each scale and varying pruning trade-off parameter λ.

Fig. 9: Reconstructed frame samples from PIE data compressed by T-Train (top-left), H-Tucker (top-right), HoSVD (bottom-
left) and pruned MS-HoSVD with 2-scales (bottom-right). 2-scale MS-HoSVD tensor approximation is obtained using τ “ 0.7
for each scale and λ “ 0.25.

V. FEATURE EXTRACTION AND CLASSIFICATION

In this section, we evaluate the features extracted from MS-HoSVD for classification of 2-mode and 3-mode tensors containing
object images and hand gesture videos.

The classification accuracy of MS-HosVD features are compared to the features extracted by HoSVD and T-Train using
three different classifiers: 1-NN, Adaboost and Naive Bayes.

A. COIL-100 Image Dataset

For computational efficiency, each image was downsampled to a gray-scale image of 32ˆ 32 pixels. Number of images per
object used for training data was gradually increased from 18 to 54 and selected randomly. A 3-mode tensor X tr P R32ˆ32ˆItr

is constructed from training images where Itr P 100ˆ t18, 36, 54u and the rest of the images are used to create the testing
tensor X te P R32ˆ32ˆIte where Ite “ 7200´ Itr.

B. The Cambridge Hand Gesture Dataset

For computational efficiency, each image was downsampled to a gray-scale image of 30 ˆ 40 pixels. Number of image
sequences used for training data gradually increased from 25 to 75 per gesture and selected randomly. A 4-mode tensor
X tr P R30ˆ40ˆ30ˆItr is constructed from training image sequences where Itr P 9 ˆ t25, 50, 75u and the rest of the image
sequences are used to create the testing tensor X te P R30ˆ40ˆ15ˆIte where Ite “ 900´ Itr.

C. Classification Experiments

1) Training: For MS-HoSVD, the training tensor X tr is decomposed using 1-scale MS-HoSVD as follows. Tensor
partitioning is performed by LSA and the cluster number along each mode is chosen as c “ t2, 3, 1u yielding 6 subtensors
for COIL-100 dataset and c “ t2, 2, 3, 1u yielding 12 subtensors for hand gesture dataset. We did not partition the tensor
along the last mode that corresponds to the classes to make the comparison with other methods fair. The rank used in 0th
scale is selected based on the energy criterion with τ “ 0.7, while the full rank decomposition is used for the 1st scale. The
0th scale approximation:

X̂ tr
0 “ Ctr0 ˆ1 Û

tr,p1q ˆ2 Û
tr,p2q...ˆN Ûtr,pNq (31)

provides 0th scale core tensor Ctr0 , factor matrices Ûtr,piq and residual tensor Wtr
0 “ X tr´ X̂ tr

0 . Next, 0th scale feature tensor
Str0 for the training data is created by projecting X trs onto the first N ´ 1 factor matrices Utr,piq as:

Str0 “ X tr ˆ1

´

Ûtr,p1q
¯J

ˆ2

´

Ûtr,p2q
¯J

...ˆN´1

´

Ûtr,pN´1q
¯J

. (32)

Subtensors of Wtr
0 obtained by X tr

1,k “Wtr
0 pJ

tr,1
1,k ˆ J

tr,2
1,k ˆ ...ˆ J

tr,N
1,k q are used to extract 1st order core tensors C1,k and

factor matrices U
tr,piq
1,k as:

X tr
1,k “ Ctr1,k ˆ1 U

tr,p1q
1,k ˆ2 U

trp2q
1,k ...ˆN U

trpNq
1,k . (33)

1st order feature tensors are then created by projecting X tr
1,ks onto the first N ´ 1 factor matrices U

tr,piq
1,k as:

Str1,k “ X tr
1,k ˆ1

´

U
tr,p1q
1,k

¯J

ˆ2

´

U
tr,p2q
1,k

¯J

...ˆN´1

´

U
tr,pN´1q
1,k

¯J

. (34)

Unfolding the feature tensors Str0 and Str1,k along the sample mode N and concatenating them to each other yields a high
dimensional feature vector for each of the training samples. From these vectors, Nf features with the highest Fisher Score
[37] are selected to form the lower-dimensional feature vectors xtr P RNfˆ1 for each training sample where the number of
features (Nf) is determined 100 for COIL-100 and 200 for hand gesture dataset emprically. For HoSVD and T-Train, full rank
decompositions are computed and feature vectors are created by selecting Nf features with the highest Fisher Score from the
core tensors as described above. For T-Train, the procedure described in [38] is used without reducing the dimensionality.

2) Testing: To create 0th order feature tensor Ste0 for testing samples, first, the testing tensor Xte is projected onto Ûtr,piq

where i P rN ´ 1s as:

Ste0 “ X te ˆ1

´

Ûtr,p1q
¯J

ˆ2

´

Ûtr,p2q
¯J

...ˆN´1

´

Ûtr,pN´1q
¯J

. (35)

0th order residual tensor Wte
0 of testing data is computed as Wte

0 “ X te´X te
Śn“N

n“1

´

Ûtr,pnq
¯J

. Then 1st order subtensors

are created from Wte
0 using the same partitioning as the 0th order training residual tensor Wtr

0 as X te
1,k “Wte

0 pJ
tr,1
1,k ˆJ

tr,2
1,k ˆ

...ˆ J tr,N1,k q. 1st order feature tensors Ste1,k for the testing samples are then obtained by

Ste1,k “ X te
1,k ˆ1

´

U
tr,p1q
1,k

¯J

ˆ2

´

U
tr,p2q
1,k

¯J

...ˆN´1

´

U
tr,pN´1q
1,k

¯J

. (36)

Similar to the training step, unfolding the feature tensors Ste0 and Ste1,k along the sample mode N and concatenating them
with each other yields high dimensional feature vectors for the testing samples. The features corresponding to the features
selected from the training step are used to form the feature vectors for testing samples xte P RNfˆ1. A similar two-step

procedure, i.e projecting the testing tensor onto training factor matrices followed by selecting Nf features, is used to create
testing feature vectors for HoSVD and T-Train. Discrimination performance of the feature vectors are evaluated using different
classifiers including 1-NN, Adaboost and Naive Bayes.

Tables IV and V summarize the classification accuracy for the three methods using three different classifiers for COIL-100
and Hand gesture data sets, respectively. As it can be seen from these Tables, for both data sets and all classifiers MS-HoSVD
performs the best except for a Naive Bayes Classifier trained by 25% of the data to classify hand gesture dataset. As seen
in Tables IV and V, the performance of HoSVD, T-Train and MS-HoSVD become close to each other as the size of the
training dataset increases, as expected. The reason for the superior performance of MS-HoSVD is that MS-HoSVD captures
the variations and nonlinearities across the modes such as rotation or translation better than the other methods. In both of the
datasets used in this section, the images are rotated across the different frames. Since these nonlinearities are encoded in the
higher scale (1st scale) features while the average characteristics, which are the same as HoSVD, are captured by the lower
scale (0th scale) MS-HoSVD features, the classification performance of the MS-HoSVD is slightly better than HoSVD. It is
also seen that T-Train features are not as good as MS-HoSVD and HoSVD features for capturing rotations and translations in
the data and requires larger training set to reach the performance of MS-HoSVD and HoSVD.

TABLE IV: Classification results for COIL-100 dataset over 20 trials with Nf “ 100.

Training Size Method 1-NN Adaboost Bayes
mean ˘ std. mean ˘ std. mean ˘ std.

25%
MS-HoSVD 93.71 ˘ 1.28 88.90 ˘ 1.24 89.88 ˘ 2.08

HoSVD 93.07 ˘ 1.33 87.47 ˘ 1.53 87.36 ˘ 3.32
T-Train 92.29 ˘ 2.23 87.26 ˘ 1.84 88.43 ˘ 1.36

50%
MS-HoSVD 97.41 ˘ 0.69 92.54 ˘ 1.58 91.62 ˘ 1.21

HoSVD 97.10 ˘ 0.83 91.29 ˘ 2.16 90.43 ˘ 1.60
T-Train 96.99 ˘ 1.09 91.36 ˘ 1.44 91.21 ˘ 1.66

75%
MS-HoSVD 98.38 ˘ 0.65 93.66 ˘1.35 92.60 ˘ 1.79

HoSVD 98.16 ˘ 0.72 92.23 ˘1.46 92.38 ˘ 1.92
T-Train 98.25 ˘ 0.41 93.10 ˘1.33 92.33 ˘ 1.52

TABLE V: Classification results for hand gesture dataset over 20 trials with Nf “ 200.

Training Size Method 1-NN Adaboost Bayes
mean ˘ std. mean ˘ std. mean ˘ std.

25%
MS-HoSVD 75.40 ˘ 3.87 77.81 ˘ 1.87 82.89 ˘ 1.84

HoSVD 75.01 ˘ 3.99 77.37 ˘ 2.51 83.11 ˘ 2.89
T-Train 69.20 ˘ 2.63 67.53 ˘ 2.27 72.99 ˘ 4.91

50%
MS-HoSVD 83.86 ˘ 3.12 85.46 ˘ 1.66 85.86 ˘ 2.25

HoSVD 83.15 ˘ 2.90 85.14 ˘ 1.45 84.00 ˘ 1.68
T-Train 78.97 ˘ 2.25 78.82 ˘ 2.87 81.46 ˘ 1.37

75%
MS-HoSVD 87.47 ˘ 2.07 88.15 ˘ 2.20 86.75 ˘ 2.63

HoSVD 86.93 ˘ 2.31 88.08 ˘ 2.51 85.04 ˘ 2.41
T-Train 85.64 ˘ 2.57 82.60 ˘ 3.16 83.64 ˘ 2.31

VI. CONCLUSIONS

In this paper, we proposed a new multi-scale tensor decomposition technique for better approximating the local nonlinearities
in generic tensor data. The proposed approach constructs a tree structure by considering similarities along different fibers of
the tensor and decomposes the tensor into lower dimensional subtensors hierarchically. A low-rank approximation of each
subtensor is then obtained by HoSVD. We also introduced a pruning strategy to find the optimum tree structure by keeping the
important nodes and eliminating redundancy in the data. The proposed approach is applied to a set of 3-way and 4-way tensors
to evaluate its performance on both data reduction and classification applications. As it is illustrated in the Results section,
any application involving tensor data reduction and classification would benefit from the proposed method. Some examples
include hyper-spectral image compression, high-dimensional video clustering and functional connectivity network analysis in
neuroscience.

Although this paper focused on the integration of a single existing tensor factorization technique (i.e., the HoSVD) into
a clustering-enhanced multiscale approximation framework, we would like to emphasize that the ideas presented herein are
significantly more general. In principal, for example, there is nothing impeding the development of multiscale variants of
other tensor factorization approaches (e.g., PARAFAC, T-Train, H-Tucker, etc.) in essentially the same way. In this paper it
is demonstrated that the use of the HoSVD as part of a multiscale approximation approach leads to improved compression
and classification performance over standard HoSVD approaches. However, this paper should additionally be considered as
evidence that similar improvements are also likely possible for other tensor factorization-based compression and classification
schemes, as well as for other related applications.

Future work will consider automatic selection of parameters such as the number of clusters and the appropriate rank
along each mode. The computational efficiency of the proposed method can also be improved through parallelization of the

algorithm by, e.g., constructing the disjoint subtensors at each scale in parallel, as well as by utilizing distributed and parallel
SVD algorithms such as [32] when computing their required HoSVD decompositions (see also, e.g., [39] for other related
parallel implementations). Such efficient implementations will enable the computation of finer scale decompositions for higher
order and higher dimensional tensors.

REFERENCES

[1] Letexier et al., “Nonorthogonal tensor matricization for hyperspectral image filtering,” Geoscience and Remote Sensing Letters, IEEE, vol. 5, no. 1, pp.
3–7, 2008.

[2] Kim and Cipolla, “Canonical correlation analysis of video volume tensors for action categorization and detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, no. 8, pp. 1415–1428, 2009.

[3] Miwakeichi et al., “Decomposing eeg data into space–time–frequency components using parallel factor analysis,” NeuroImage, vol. 22, no. 3, pp.
1035–1045, 2004.

[4] Cichocki et al., “Tensor decompositions for signal processing applications: From two-way to multiway component analysis,” IEEE Signal Processing
Magazine, vol. 32, no. 2, pp. 145–163, 2015.

[5] Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
[6] De Lathauwer, “Decompositions of a higher-order tensor in block terms-part ii: definitions and uniqueness,” SIAM Journal on Matrix Analysis and

Applications, vol. 30, no. 3, pp. 1033–1066, 2008.
[7] Merhi et al., “Face Recognition Using M -Band Wavelet Analysis,” in Proc. World Academy of Science, Engineering and Technology, vol. 68, 2012.
[8] Cheng et al., “Probabilistic tensor canonical polyadic decomposition with orthogonal factors,” IEEE Transactions on Signal Processing, vol. 65, no. 3,

pp. 663–676, 2015.
[9] Fu et al., “Joint tensor factorization and outlying slab suppression with applications,” IEEE Transactions on Signal Processing, vol. 63, no. 23, pp.

6315–6328, 2015.
[10] Kolda and Bader, “Tensor decompositions and applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.
[11] De Lathauwer et al., “A multilinear singular value decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–1278,

2000.
[12] Shashua and Hazan, “Non-negative tensor factorization with applications to statistics and computer vision,” in Proceedings of the 22nd international

conference on Machine learning. ACM, 2005, pp. 792–799.
[13] Cichocki et al., “Non-negative tensor factorization using alpha and beta divergences,” in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.

IEEE International Conference on, vol. 3. IEEE, 2007, pp. III–1393.
[14] Cichocki et al., “Novel multi-layer non-negative tensor factorization with sparsity constraints,” in International Conference on Adaptive and Natural

Computing Algorithms. Springer, 2007, pp. 271–280.
[15] Grasedyck, “Hierarchical singular value decomposition of tensors,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 4, pp. 2029–2054,

2010.
[16] Suter et al., “Tamresh–tensor approximation multiresolution hierarchy for interactive volume visualization,” in Computer Graphics Forum, vol. 32, no.

3pt2. Wiley Online Library, 2013, pp. 151–160.
[17] Vasilescu and Terzopoulos, “Multilinear image analysis for facial recognition,” in Pattern Recognition, 2002. Proceedings. 16th International Conference

on, vol. 2. IEEE, 2002, pp. 511–514.
[18] Yang et al., “Two-dimensional pca: a new approach to appearance-based face representation and recognition,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 26, no. 1, pp. 131–137, 2004.
[19] He et al., “Tensor subspace analysis,” in Advances in neural information processing systems, 2005, pp. 499–506.
[20] Niyogi, “Locality preserving projections,” in Neural information processing systems, vol. 16. MIT, 2004, p. 153.
[21] Dai and Yeung, “Tensor embedding methods,” in Proceedings of the National Conference on Artificial Intelligence, vol. 21, no. 1. Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006, p. 330.
[22] Chen et al., “Local discriminant embedding and its variants,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, vol. 2. IEEE, 2005, pp. 846–853.
[23] He et al., “Neighborhood preserving embedding,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2. IEEE, 2005,

pp. 1208–1213.
[24] Li et al., “Discriminant locally linear embedding with high-order tensor data,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, vol. 38, no. 2, pp. 342–352, 2008.
[25] Özdemir et al., “Multiscale tensor decomposition,” in Signals, Systems and Computers, 2016 50th Asilomar Conference on. IEEE, 2016, pp. 625–629.
[26] Ozdemir et al., “Multi-scale higher order singular value decomposition (ms-hosvd) for resting-state fmri compression and analysis,” in Acoustics, Speech

and Signal Processing (ICASSP), 2017 IEEE International Conference on. IEEE, 2017, pp. 6299–6303.
[27] De Silva and Lim, “Tensor rank and the ill-posedness of the best low-rank approximation problem,” SIAM Journal on Matrix Analysis and Applications,

vol. 30, no. 3, pp. 1084–1127, 2008.
[28] Vannieuwenhoven et al., “A new truncation strategy for the higher-order singular value decomposition,” SIAM Journal on Scientific Computing, vol. 34,

no. 2, pp. A1027–A1052, 2012.
[29] Ozdemir et al., “Locally linear low-rank tensor approximation,” in Signal and Information Processing (GlobalSIP), 2015 IEEE Global Conference on.

IEEE, 2015, pp. 839–843.
[30] Yan and Pollefeys, “A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate,” in Computer

Vision–ECCV 2006. Springer, 2006, pp. 94–106.
[31] Karami et al., “Compression of hyperspectral images using discerete wavelet transform and tucker decomposition,” IEEE journal of selected topics in

applied earth observations and remote sensing, vol. 5, no. 2, pp. 444–450, 2012.
[32] Iwen and Ong, “A distributed and incremental svd algorithm for agglomerative data analysis on large networks,” SIAM Journal on Matrix Analysis and

Applications, vol. 37, no. 4, pp. 1699–1718, 2016.
[33] Ramchandran and Vetterli, “Best wavelet packet bases in a rate-distortion sense,” IEEE Transactions on Image Processing, vol. 2, no. 2, pp. 160–175,

1993.
[34] Pudil et al., “Floating search methods in feature selection,” Pattern recognition letters, vol. 15, no. 11, pp. 1119–1125, 1994.
[35] Sim et al., “The cmu pose, illumination, and expression database,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 12,

pp. 1615–1618, 2003.
[36] Nene et al., “Columbia object image library (coil-20),” 1996.
[37] Gu et al., “Generalized fisher score for feature selection,” arXiv preprint arXiv:1202.3725, 2012.
[38] Bengua et al., “Matrix product state for higher-order tensor compression and classification,” IEEE Transactions on Signal Processing, vol. 65, no. 15,

pp. 4019–4030, 2016.
[39] Liavas and Sidiropoulos, “Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers,” IEEE Transactions on

Signal Processing, vol. 63, no. 20, pp. 5450–5463, 2015.

APPENDIX

A. Effective Partitioning, and Error Analysis

In order to facilitate error analysis for the 1-scale MS-HoSVD that is similar to the types of error analysis available for
various HoSVD-based low-rank approximation strategies (see, e.g., [28]), we will engage in a more in depth discussion of
condition (30) herein. Recall that the partition of W0 formed by the restriction matrices Rpnqk in (20) – (22) is called effective if

there exists another pessimistic partitioning of W0 via restriction matrices
!

R̃
pnq
k

)K

k“1
together with a bijection f : rKs Ñ rKs

such that
N
ÿ

n“1

›

›

›
X |k ˆn

´

I´Q
pnq
k

¯
›

›

›

2

ď

N
ÿ

n“1

›

›

›

›

›

W0 ˆn R̃
pnq
fpkq

´

I´ P̃pnq
¯

N
ą

h‰n

R̃
phq
fpkq

›

›

›

›

›

2

(37)

holds for each k P rKs. In (37) the
!

P̃pnq
)

are the orthogonal projection matrices obtained from the HoSVD of W0 with

ranks r̃n ě r̄n ě rn
`

i.e., where each P̃pnq projects onto the top r̃n left singular vectors of the matricization W0,pnq

˘

. Below
we will show that (37) holding for W0 implies that the error }W1} resulting from our 1st-scale approximation in (27) is less
than an upper bound of the type given for a high-rank standard HoSVD-based approximation (29) in [28].

Considering condition (37) above, we note that experiments show that it is regularly satisfied on real datasets when piq

the effective restriction matrices
!

R
pnq
k

)K

k“1
in (20) – (22) are first formed by clustering the rows of each unfolding of W0

using, e.g., local subspace analysis (LSA), after which piiq pessimistic restriction matrices
!

R̃
pnq
k

)K

k“1
are randomly generated

in order to create another (random) partition of W0 into K different disjoint subtensors for comparison. The bijection f can
then be created by, e.g., piq sorting the left-hand side errors in (37) for each k P rks, piiq sorting the right-hand side errors in
(37) for each k P rKs, and then piiiq matching the largest left-hand and right-hand errors for comparision, the second largest
left-hand and right-hand errors for comparision, etc.. When checked in this way the sorted right-hand side errors often dominate
(entrywise) the sorted left-hand side errors for various reasonable ranks r̄n “ r̃n “ rH “ r0` c

N´1r1 (as a function of r0 and
r1 with, e.g., c “ 2) on every dataset considered in Section IV above, thereby verifying that (37) does indeed regularly hold.

We will now begin to prove Theorem 1 with a lemma that shows our subtensor-based approximation of W0 is accurate
whenever (37) is satisfied.

Lemma 3. Let W0 “ X ´ X̂0 P RI1ˆI2ˆ...IN . Suppose that
!

R
pnq
k

)

is a collection of effective restriction matrices that form

an effective partition of W0 with respect to a pessimistic partition formed via pessimistic restriction matrices
!

R̃
pnq
k

)

as per

(37) above. Similarly, let P̃pnq be the rank r̃n ě r̄n @n orthogonal projection matrices from (37) obtained via the truncated
HoSVD of W0 as above. Then,

›

›

›
W0 ´ X̂1

›

›

›

2

“

›

›

›

›

›

´

X ´ X̂0

¯

´

K
ÿ

k“1

˜

´

X ´ X̂0

¯

N
ą

n“1

Q
pnq
k

¸
›

›

›

›

›

2

ď

N
ÿ

n“1

›

›

›

´

X ´ X̂0

¯

ˆn

´

I´ P̃pnq
¯
›

›

›

2

.

Proof. We have that

›

›

›
W0 ´ X̂1

›

›

›

2

“

›

›

›

›

›

W0 ´

K
ÿ

k“1

W0

N
ą

n“1

Q
pnq
k

›

›

›

›

›

2

pUsing (12) and (26)q

“

›

›

›

›

›

K
ÿ

k“1

W0

N
ą

n“1

R
pnq
k ´

K
ÿ

k“1

W0

N
ą

n“1

Q
pnq
k R

pnq
k

›

›

›

›

›

2

pUsing (21), (22), and (25)q

“

›

›

›

›

›

K
ÿ

k“1

W0

N
ą

n“1

´

R
pnq
k ´Q

pnq
k R

pnq
k

¯

›

›

›

›

›

2

pUsing Lemma 1q

“

K
ÿ

k“1

›

›

›

›

›

X |k
N
ą

n“1

´

I´Q
pnq
k

¯

›

›

›

›

›

2

. pUsing Lemma 1, (21), (25), and support disjointnessq (38)

Applying lemmas 1 and 2 to (38) we can now see that

›

›

›
W0 ´ X̂1

›

›

›

2

“

K
ÿ

k“1

N
ÿ

n“1

›

›

›

›

›

X |k
n´1
ą

h“1

Q
phq
k ˆn

´

I´Q
pnq
k

¯

›

›

›

›

›

2

ď

K
ÿ

k“1

N
ÿ

n“1

›

›

›
X |k ˆn

´

I´Q
pnq
k

¯›

›

›

2

since the Q
pnq
k matrices are orthogonal projections. Using assumption (37) we now get that

›

›

›
W0 ´ X̂1

›

›

›

2

ď

K
ÿ

k“1

N
ÿ

n“1

›

›

›

›

›

W0 ˆn R̃
pnq
k

´

I´ P̃pnq
¯

N
ą

h‰n

R̃
phq
k

›

›

›

›

›

2

“

N
ÿ

n“1

›

›

›
W0 ˆn

´

I´ P̃pnq
¯
›

›

›

2

where we have used the fact that the pessimistic restriction matrices R̃
pnq
k partition W0 in the last line.

Lemma 3 indicates that the error in approximating W0 via low-rank approximations of its effective subtensors is potentially
smaller than the error obtained by approximating W0 via (higher rank) truncated HoSVDs whenever (37) holds.3 The following
theorem shows that this good error behavior extends to the entire 1st scale approximation provided by (27) whenever (37)
holds.

Theorem 2 (Restatement of Theorem 1). Let X P RI1ˆI2...ˆIN . Suppose that (37) holds. Then, the first scale approximation
error given by MS-HoSVD (27) is bounded by

}W1}
2
“

›

›

›
X ´ X̂0 ´ X̂1

›

›

›

2

ď

N
ÿ

n“1

›

›

›
X ˆn

´

I´ P̄pnq
¯
›

›

›

2

where

P̄pnq
(

are low-rank projection matrices of rank r̄n ě rn obtained from the truncated HoSVD of X as per (29).

Proof. Using (12) and (17) together with lemma 3 we can see that

}W1}
2
“

›

›

›
X ´ X̂0 ´ X̂1

›

›

›

2

“

›

›

›
W0 ´ X̂1

›

›

›

2

ď

N
ÿ

n“1

›

›

›

´

X ´ X̂0

¯

ˆn

´

I´ P̃pnq
¯
›

›

›

2

ď

N
ÿ

n“1

›

›

›

´

X ´ X̂0

¯

ˆn

´

I´ Q̄pnq
¯
›

›

›

2

(39)

where Q̄pnq P RInˆIn is the orthogonal projection matrix of rank r̃n which projects onto the subspace spanned by the top
r̃n left singular vectors of Xpnq. Here (39) holds because the orthogonal projection matrices P̃pnq are chosen in (37) so that
P̃pnqW0,pnq is a best possible rank r̃n approximation to W0,pnq. As a result, we have that

›

›

›

´

X ´ X̂0

¯

ˆn

´

I´ P̃pnq
¯
›

›

›

2

“

›

›

›

´

I´ P̃pnq
¯

W0,pnq

›

›

›

2

F
ď

›

›

›

´

I´ Q̄pnq
¯

W0,pnq

›

›

›

2

F
“

›

›

›

´

X ´ X̂0

¯

ˆn

´

I´ Q̄pnq
¯
›

›

›

2

must hold for each n P rN s.
Continuing from (39) we can use the definition of X̂0 in (28) to see that

}W1}
2
ď

N
ÿ

n“1

›

›

›

›

›

˜

X ´ X
N
ą

h“1

Pphq

¸

ˆn

´

I´ Q̄pnq
¯

›

›

›

›

›

2

“

N
ÿ

n“1

›

›

›

›

›

X ˆn
´

I´ Q̄pnq
¯

´ X
N
ą

h“1

Pphq ˆn

´

I´ Q̄pnq
¯

›

›

›

›

›

2

(40)

by lemma 1. Due to the definition of Q̄pnq together with the fact that its rank is r̃n ě rn we can see that
`

I´ Q̄pnq
˘

Ppnq “ 0.
As a consequence, lemma 1 implies that X

ŚN
h“1 P

phq ˆn
`

I´ Q̄pnq
˘

“ 0 for all n P rN s. Continuing from (40) we now
have that

}W1}
2
ď

N
ÿ

n“1

›

›

›
X ˆn

´

I´ Q̄pnq
¯
›

›

›

2

.

Again appealing to the definition of both Q̄pnq and P̄pnq in (29), combined with the fact that r̃n ě r̄n, finally yields the desired
result.

We refer the reader to the strong empirical performance of MS-HoSVD in Section IV for additional evidence supporting the
utility of (27) as a means of improving the compression performance of standard HoSVD-based compression techniques. In
addition, we further refer the reader to Section V where it is empirically demonstrated that MS-HoSVD is also capable
of selecting more informative features than HoSVD-based methods for the purposes of classification. These two facts
together provide strong evidence that combining the use of clustering-enhanced multiscale approximation with existing tensor
factorization techniques can lead to improved performance in multiple application domains.

3That is, the upper bound on the error provided by Lemma 3 is less than or equal to the upper bound on the error for truncated HoSVDs provided by, e.g.,
[28] when/if (37) holds.

B. Experiment for Error Analysis

In this experiment we evaluate the error obtained by the 1st scale MS-HoSVD analysis of a tensor along the lines of the
model described in Section III. Herein we consider a three-way tensor X P R20ˆ20ˆ20 that is the sum of two tensors as
X “ X0 ` X1 where X0 P R20ˆ20ˆ20 has n-rank p2, 2, 2q, and X1 P R20ˆ20ˆ20 is formed by concatenating 8 subtensors
Xk P R10ˆ10ˆ10 each also with n-rank p2, 2, 2q. Low-rank approximations for X and its subtensors are always obtained via
the truncated HoSVD. The 1-scale MS-HoSVD is applied with the ground truth partitions R

pnq
k , partitions provided by Local

Subspace Analysis (LSA) clustering R̂
pnq
k , and also with randomly chosen partitions R̃

pnq
k of the 0th-scale residual error W0

into 8 different 10ˆ 10ˆ 10 subtensors. For the LSA clustering the cluster numbers are selected as 2 along each mode also
yielding 8 subtensors.

The 0th scale n-rank for MS-HoSVD is selected as p2, 2, 2q, and the 1st scale ranks are varied in the experiments as shown
in Table VI. The normalized reconstruction error computed for these varying 1st scale n-ranks can also be seen in Table VI. As
seen there, using ground truth partition provides lower-rank subtensors, and using clustering as part of the 1-scale MS-HoSVD
leads to much better approximations than HoSVD does in general.

TABLE VI: Mean and standard deviation for reconstruction error of low-rank approximations of X over 20 trials.

Reconstruction Error
0th scale rank p2, 2, 2q p2, 2, 2q p2, 2, 2q
1st scale rank p2, 2, 2q p4, 4, 4q p6, 6, 6q
Ground Truth 0.2502 0.0304 -
Partitioning ˘ 0.0263 ˘ 0.0077 -
Clustering 0.3587 0.1099 0.0254
by LSA ˘ 0.0583 ˘ 0.0391 ˘ 0.0152
Random 0.6095 0.3588 0.1855

Partitioning ˘ 0.0398 ˘ 0.0298 ˘ 0.0251
rank p4, 4, 4q p8, 8, 8q p12, 12, 12q

truncated 0.5457 0.2127 0.0733
HoSVD ˘0.0449 ˘ 0.0195 ˘ 0.0129

In addition, the left (LHS) and right (RHS) sides in Theorem 1 are computed where the first scale projections Q
pnq
k each

have rank r1 “ 2 and are obtained via both ground truth partitioning and clustering after the 0th scale Ppnq are obtained from
the truncated HoSVD of X with r0 “ 2. For comparison the P̄pnq are also computed from the truncated HoSVD of X with
varying ranks r̄n “ κr0 for κ P t2 , 3 , 4u. In Table VII, we report the mean value and standard deviation of both the right
hand side (RHS) and left hand side (LHS) of the error bound in Theorem 1. As seen in Table VII, Theorem 1 holds for the
1st scale approximation of X via MS-HoSVD since the RHS errors based on the P̄pnq projections are larger than the LHS
errors no matter whether the Q

pnq
k are obtained via ground truth partitioning or LSA clustering.

TABLE VII: Computed reconstruction error (mean and std.) corresponding to Theorem 1 for simulated data over 20 trials.

LHS RHS
0th scale rank p2, 2, 2q rank
1st scale rank p2, 2, 2q p4, 4, 4q p6, 6, 6q p8, 8, 8q
Ground Truth 0.2618
Partitioning ˘ 0.0236 2.9928 1.1835 0.4228
Clustering 0.3469 ˘0.5081 ˘0.3010 ˘0.0978
by LSA ˘ 0.0513

