
Sparse Harmonic Transforms II: Best s-Term Approximation

Guarantees for Bounded Orthonormal Product Bases in

Sublinear-Time

Bosu Choi∗ Mark Iwen† Toni Volkmer‡

Abstract

In this paper we develop a sublinear-time compressive sensing algorithm for ap-
proximating functions of many variables which are compressible in a given Bounded
Orthonormal Product Basis (BOPB). The resulting algorithm is shown to both have
an associated best s-term recovery guarantee in the given BOPB, and also to work
well numerically for solving sparse approximation problems involving functions con-
tained in the span of fairly general sets of as many as ∼ 10230 orthonormal basis
functions. All code is made publicly available.

As part of the proof of the main recovery guarantee new variants of the well known
CoSaMP algorithm are proposed which can utilize any sufficiently accurate support
identification procedure satisfying a Support Identification Property (SIP) in order to
obtain strong sparse approximation guarantees. These new CoSaMP variants are then
proven to have both runtime and recovery error behavior which are largely determined
by the associated runtime and error behavior of the chosen support identification
method. The main theoretical results of the paper are then shown by developing a
sublinear-time support identification algorithm for general BOPB sets which is robust
to arbitrary additive errors. Using this new support identification method to create a
new CoSaMP variant then results in a new robust sublinear-time compressive sensing
algorithm for BOPB-compressible functions of many variables.

Keywords High-dimensional function approximation · Sublinear-time algorithms ·
Function learning · Sparse approximation · Compressive Sensing · Sparse Fourier trans-
forms (SFT)

Mathematics subject classification 65T40 · 68W25

∗University of Texas at Austin, Oden Institute for Computational Engineering and Sciences,
choibosu@utexas.edu.
†Michigan State University, Department of Mathematics, and the Department of Computational Math-

ematics, Science and Engineering (CMSE), markiwen@math.msu.edu.
‡Chemnitz University of Technology, Faculty of Mathematics, toni.volkmer@math.tu-chemnitz.de.

1

1 Introduction

In this paper we focus on rapidly computing best s-term approximations in the sense of
compressive sensing [13, 17] for functions of many variables f : D ⊆ RD → C. More specif-
ically, we develop a numerical method that aims to very quickly approximate any given
function f using a near optimal s-sparse linear combination of N ′ fixed basis functions
B = {b1, . . . , bN ′} chosen in advance. The developed method has two basic components:
(i) a low-cardinality grid of evaluation points, G ⊂ D, and (ii) a fast deterministic algo-
rithm H : C|G| → span(B) which takes f evaluated on G, f(G) ∈ C|G|, as input, and then
outputs an accurate s-sparse approximation to f of the form

∑s
j=1 a`jb`j ∈ span(B). In

particular, we require that H can approximate all functions f near-optimally based only
on the evaluations of f on G so that

‖f −H (f(G))‖ . C inf
z∈CN′ , ‖z‖0≤s

∥∥∥∥∥∥f −
N ′∑
j=0

zjbj

∥∥∥∥∥∥ (1.1)

holds with respect to suitable norms for all functions f : D → C in a sufficiently general
function class.

Note that we are requiring several strong properties of both G and H above. First,
we want the approximation algorithm H to succeed for all functions f in a suitably large
class when only given access to function evaluations of each f on the same fixed and
nonadaptive grid G. Second, we require that H is fast, which will mean in this paper
that we require it to use a total number of scalar arithmetic and read/write operations
that scales sublinearly with respect to the basis size N ′ (e.g., herein we will focus on
methods with runtimes that scale like O(logc(N ′)) for all sufficiently small sparsities s).
This second requirement has several other beneficial repercussions beyond computational
speed. Principally among them is the fact that the deterministic procedure H can use at
most o(N ′) function evaluations since its fast runtime constrains the number of function
evaluations H can use. This effectively constrains the size of the nonadaptive grid G ⊂ D
that it makes sense to use in the first place. Similarly, any such H must also have low
o(N ′) memory requirements given that it only has time to perform o(N ′)-total scalar
operations involving memory accesses.

The first work on sublinear-time algorithms H of this kind focused almost exclusively
on the one-dimensional Fourier basis where, e.g., B = {e2πiωx

∣∣ ω ∈ (dN ′/2e, bN ′/2c]∩Z}.
The first of these [30, 21, 19, 22] were randomized algorithms which used grids G that
varied from function to function and that failed with some nonzero probability for each
given f . All of these methods have runtimes that scale like O(s logcN ′) and achieve
approximation errors along the lines of (1.1) with high probability (w.h.p.) for each given
f : [0, 1] → C. Later on, entirely deterministic and explicit O(s2 logcN ′)-time methods

2

H were then devised which use one fixed and nonadaptive grid G in order to guarantee
approximation errors of the form (1.1) for all sufficiently smooth and periodic functions
f : [0, 1] → C (see [24, 25, 3, 39]). These deterministic methods were then randomized
in [31] to achieve highly efficient O(s logcN ′)-time randomized discrete Fourier transform
methods (generally known as “sparse Fourier transforms”) with high probability best
s-term approximation guarantees (1.1) along the lines of the first methods mentioned
above, as well as sped up to produce entirely deterministic methods that are significantly
faster than the generic O(s2 logcN ′)-time deterministic algorithms for periodic functions
f : [0, 1]→ C which exhibit structured sparsity in the Fourier domain [5]. Code for many
of these methods is publicly available1, and a nice survey article covering the standard
techniques used to construct many of these first sublinear-time Fourier methods appeared
in 2014 [20].

As sublinear-time methods for the one-dimensional Fourier basis started to mature,
similar algorithms began to be developed for other one-dimensional bases B as well,
including for the cosine, Chebyshev, and Legendre polynomial bases [23, 4] (see also
[37] for traditional compressive sensing methods which focus on the Legendre polyno-
mial basis). Recently these ideas have been extended yet further to produce sublinear-
time algorithms with reconstruction guarantees for restricted classes of signals exhibit-
ing approximate sparsity in any given one-dimensional Jacobi polynomial basis [18].
Another direction of research has focused on extending the types of sparse approxi-
mation algorithms discussed above to higher dimensional settings in order to approxi-
mate, e.g., functions f : [0, 1]D → C with respect to either multidimensional Fourier
[36, 26, 34, 10, 28, 32, 27, 11, 29] or Chebyshev [35] bases B of cardinality N ′ = ND.
In these cases achieving fast algorithms H that run in o(N ′)-time becomes increasing
important as D grows.

As in the one-dimensional setting, sublinear-time methods H for approximating func-
tions of D variables are most well developed in the case of the multidimensional Fourier
basis where, e.g., B = {e2πiω·x ∣∣ ω ∈ (dN ′/2e, bN ′/2c]D∩ZD}. For example, see Theorem
8 in [26] and Theorems 10 and 12 in [32] for explicit and deterministic O(s2 logc(N ′))-time
methods that use function evaluations on a single fixed and nonadaptive grid G ⊂ [0, 1]D

in order to guarantee approximation errors of the form (1.1) for all sufficiently smooth
and periodic functions f : [0, 1]D → C. When it comes to approximating functions of
many variables with respect to non-Fourier bases B in o(N ′)-time, however, very little is
currently known. The first result in this direction [12] provided sublinear-time recovery
guarantees for all functions that are exactly s-sparse2 in any tensor product basis B of one-

1The code for an implementation of [31] is available at https://sourceforge.net/projects/

aafftannarborfa/. The code for an implementation of [5] is available at https://www.math.msu.edu/

~markiwen/Code/FAST_block_sparse.zip.
2A function is exactly s-sparse in B if it is a linear combination of ≤ s unknown elements of B.

3

dimensional bounded orthonormal bases. The aim of this paper is to augment this first
general result with best s-term approximation guarantees along the lines of (1.1) while
maintaining its fast runtime and small fixed and nonadaptive grid size. In doing so the
authors aim to complement existing compressive sensing approaches for uncertainty quan-
tification and function approximation [38, 9, 1, 7, 2] with a new class of methods whose
runtimes scale sublinearly in the basis size used for approximation. These new meth-
ods will then hopefully allow for the extension of such techniques to, e.g., functions of
hundreds or even thousands of variables in a more computationally feasible fashion.

1.1 Setup and Main Results

Let L2(D, µ) for D := ×j∈[D]Dj ⊂ RD denote all functions f : D → C that are square-
integrable with respect to a given product of probability measures µ := ×j∈[D]µj over D,
and suppose that you are given a countable orthonormal (with respect to µ) basis,

B′ :=
{
Tn : D → C

∣∣ n ∈ ND
}
, (1.2)

of L2(D, µ) so that

〈Tk, Tl〉(D,µ) :=

∫
D
Tk(ξ)Tl(ξ)dµ(ξ) = δk,l =

{
1 if k = l

0 if k 6= l
.

Furthermore, suppose that B′ is a tensor product basis so that

Tn(ξ) :=
∏
j∈[D]

Tj;nj (ξj) (1.3)

holds for all n ∈ ND and ξ ∈ D, where each set B′j :=
{
Tj;nj : Dj → C

∣∣ nj ∈ N} with
j ∈ [D] := {0, . . . , D−1} is itself an orthonormal (with respect to the probability measure
µj over Dj ⊂ R) basis of L2(Dj , µj). We will call any such basis B′ an Orthonormal
Product Basis (OPB) with respect to µ.

Our objective in this paper is to approximate smooth functions f ∈ L2(D, µ) as rapidly
as possible using just a few point evaluations. Toward this end we will take the tradi-
tional approach of considering only a finite subset BN,d of B′, and then approximating
f by approximating its projection f̃ onto the span of BN,d (consider, e.g., hyperbolic
cross/sparse grid methods for approximating functions of several variables [40, 16, 8]).
The potential improvement that the sublinear-time methods considered herein will then
potentially provide over such standard methods in some cases will come from the fact
that the finite basis BN,d can be chosen to be extremely large herein (e.g., experiments
were performed for Section 5 on a standard workstation using bases of cardinality 200100).

4

More specifically, herein we will consider two different types of bases B′, each of which will
allow us to demonstrate that the finite basis BN,d ⊂ B′ we select below for approximation
purposes also promote computational efficiency.

We will characterize B′ below based on the behavior of its lowest order elements

BN :=
{
Tn
∣∣ ‖n‖∞ < N

}
⊂ B′

which we will assume throughout this paper is a finite Bounded Orthonormal System
(BOS) with respect to the probability measure µ over D with a finite BOS constant

K ′ := max
n∈[N]D

‖Tn‖∞ := max
n∈[N]D

supξ∈D |Tn(ξ)| ∈ [1,∞).

Note that this implies that each set Bj;N :=
{
Tj;nj : Dj → C

∣∣ nj ∈ [N]
}
⊂ B′j with

j ∈ [D] is itself also a BOS with respect to the probability measure µj over Dj ⊂ R with
BOS constant

Kj := max
nj∈[N]

‖Tj;nj‖∞ ∈ [1,∞). (1.4)

Finally, we will further define K0
j to be

1 ≤ K0
j := ‖Tj;0‖∞ ≤ Kj (1.5)

for each j ∈ [D]. Note that K0
j is strictly smaller than Kj for many BOSs of interest

(e.g., the cosine and Chebyshev polynomial bases as B′j both have K0
j = 1 < Kj =

√
2).

From these two definitions we can also see, e.g., that
∏
j∈[D]K

0
j ≤ K ′ =

∏
j∈[D]Kj always

holds. Due to the boundedness of K ′ assumed throughout the remainder of this paper
we will always refer to BN (as well as B′ with slight abuse) as a Bounded Orthonormal
Product Basis (BOPB) going forward.

We will approximate any given smooth f ∈ L2(D, µ) by approximating its projection
f̃ onto the span of the finite BOS set

BN,d :=
{
Tn
∣∣ n ∈ [N]D and ‖n‖0 ≤ d

}
⊆ BN ⊂ B′ (1.6)

for some d ∈ [D + 1], where d is used to the help constrain the BOS constant. The
BOS constant K ≤ K ′ of BN,d will be referred to as the effective BOS constant below.
As is usually the case in compressive sensing scenarios involving BOSs, its size will be
a significant consideration with respect to sampling and computational efficiency. In
order to limit K’s size we will concentrate on the following two types of BOPBs going
forward:

• BOPBs of TYPE I: We will say a BOPB is of type I if the BOS constants Kj

are 1 for all but at most d̃ ∈ Z ∩ [0, D] BOS basis sets Bj;N . In this case we let

5

K∞ := maxj∈[D]Kj and note that 1 ≤ K ≤ K ′ ≤ K d̃
∞ so that K will scale sub-

exponentially in D when d̃� D independently of our choice of d in (1.6). We note
that this type of BOPB includes several interesting examples of bases including the
multidimensional Fourier basis (for which d̃ = 0), and mixed BOPBs B′ that have
one-dimensional Fourier bases used for all but d̃ of their B′j component bases.

• BOPBs of TYPE II: We will say a BOPB is of type II if K0 := maxj∈[D]K
0
j = 1.

This type of BOPB includes many bases where having a small number of inter-
acting dimensions, d, helps to limit the effective BOS constant K involved in the
underlying sparse approximation problem. Examples include the multivariate co-
sine, Chebyschev, and Legendre polynomial bases, as well as mixed polynomial bases
where each one-dimensional component basis B′j is, e.g., a potentially different Ja-
cobi polynomial basis.

In either case above one can see that K ≤ Kd
∞K

D−d
0 will always hold. In particular,

K = 2d/2 always holds if B′ is either the multivariate cosine or Chebyshev basis in the type

II case. In the type I case we note that 1 ≤ K ≤ K
min(d,d̃)
∞ K

d̃−min(d,d̃)
0 ≤ K d̃

∞ will always
hold so that d can be set to D without causing K to become too large if, e.g., d̃ � D.
This is certainly the case if B′ is the multidimensional Fourier basis where d̃ = 0.

Let f ∈ L2(D, µ) be smooth enough3 that there exists a sequence {cn}n∈ND such
that

f(ξ) =
∑
n∈ND

cnTn(ξ) (1.7)

holds pointwise for all ξ ∈ D. Given such an f : D → C, we will denote its orthogonal
projection onto the span of BN,d by f̃ : D → C. Let

IN,d :=
{
n ∈ [N]D

∣∣ ‖n‖0 ≤ d ≤ D} ⊂ ND

be the set of indices corresponding to the basis elements in BN,d. We then have that

f̃(ξ) :=
∑

n∈IN,d

c̃nTn(ξ) (1.8)

for all ξ ∈ D, where c̃ will be considered to be a vector in C|IN,d| indexed by IN,d. Note
further that the entries of c̃ will satisfy c̃n = cn for all n ∈ IN,d.

As mentioned above, we will ultimately approximate f by producing a sparse approxi-
mation in BN,d to f̃ . The best possible s-term approximation to f̃ in BN,d will be denoted

3Given that we will be recovering f based on point samples we will require at least enough smoothness
to guarantee that any particular point sample we might possibly utilize actually contains information
about the given function’s basis coefficients {cn}n∈ND . Of course, the details regarding this smoothness
requirement will vary with the choice of basis B′.

6

by f̃opt
s : D → C, and will be defined as follows: Order the basis coefficients c̃ ∈ C|IN,d|

of f̃ by their magnitudes so that

|c̃n1 | ≥ |c̃n2 | ≥ |c̃n3 | ≥ · · · ≥
∣∣∣c̃n|IN,d|

∣∣∣ ,
where ties are broken lexicographically using the entries’ indices in IN,d. Then f̃opt

s will
be defined to be

f̃opt
s (ξ) :=

s∑
j=1

c̃njTnj (ξ)

for all ξ ∈ D, and its (potentially) nonzero coefficients’ indices will be denoted by

Ωopt

f̃,s
:= {n1, . . . ,ns} ⊂ IN,d.

Note that f̃opt
s will indeed have the property that

∥∥∥f̃ − f̃opt
s

∥∥∥
L2(D,µ)

= inf
z∈C|IN,d|, ‖z‖0≤s

∥∥∥∥∥∥f̃ −
∑

n∈IN,d

znTn

∥∥∥∥∥∥
L2(D,µ)

.

Furthermore, if we let c̃Ωopt

f̃,s

∈ C|IN,d| denote the BN,d basis coefficients of f̃opt
s then we

can see that both

∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
0

≤ s and

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

=
∥∥∥f̃ − f̃opt

s

∥∥∥
L2(D,µ)

will hold. As a

result, norms involving the vector c̃ − c̃Ωopt

f̃,s

∈ C|IN,d| can be interpreted as best s-term

approximation errors of f̃ in a natural way.

Finally, to prove our main result below we will effectively be considering the point
samples we take from f to instead be point samples taken from f̃ that are contaminated

with evaluation errors of size
(
f − f̃

)
(ξ) at each evaluation point ξ ∈ G. To bound all of

these errors in a uniform fashion we will define

γ :=
∥∥∥f − f̃∥∥∥

∞
= supξ∈D

∣∣∣(f − f̃) (ξ)
∣∣∣ . (1.9)

The following theorem is proven in Section 3.

Theorem 1. (Main Result). Let η ∈ (0,∞) and s, d,N ∈ N \ {1} with d ≤ D and
s < |IN,d|/2. There exists a finite set of grid points G ⊂ D, an algorithm H : C|G| →
(IN,d ×C)s, and an absolute universal constant C ′ ∈ R+ such that the function a : D → C

defined by a(ξ) :=
∑

(n,an)∈H(f(G)) anTn(ξ) satisfies

‖f−a‖L2(D,µ) ≤
∥∥∥f − f̃∥∥∥

L2(D,µ)
+C ′

(√
s

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ γ
√
s

)
+η (1.10)

7

for all f =
∑
n∈ND cnTn ∈ L2(D, µ) with γ :=

∥∥∥f − f̃∥∥∥
∞

= supξ∈D

∣∣∣(f − f̃) (ξ)
∣∣∣ < ∞,

where f̃ : D → C is the finite dimensional approximation to f defined as per (1.8).

If the BOPB BN,d is of type I so that the BOS constants Kj are 1 for all but at most
d̃ ∈ Z ∩ [0, D] BOS basis sets Bj;N , then

|G| = O
(
s3DK4d̃

∞d
4 · log4

(
DN

d

)
log2(s) log2(D)

)
,

and the algorithm H will have runtime complexity

O
((
s5 + s3N

)
D2K4d̃

∞d
4 · log4

(
DN

d

)
log2(s) log2(D) log

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

))
.

If the BOPB BN,d is of type II so that K0 = 1, then

|G| = O
(
s3DK4d

∞d
4 · log4

(
DN

d

)
log2(s) log2(D)

)
,

and the algorithm H will have runtime complexity

O
((
s5 + s3N

)
D2K4d

∞d
4 · log4

(
DN

d

)
log2(s) log2(D) log

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

))
.

Here we have assumed that any desired basis function Tn ∈ BN,d can be evaluated at any
desired point in D in O(ND)-time (which will be the case, e.g., for polynomial product
bases of degree ≤ ND).

Proof. This is a restatement of Corollary 1.

Looking at Theorem 1 we can see that it effectively subsumes the theoretical recovery
results of [12]. Consider, for example, the case where f = f̃ = f̃opt

s (so that f is exactly s-

sparse in BN,d). In this setting we will have both
∥∥∥f − f̃∥∥∥

L2(D,µ)
= γ = 0 and c̃−c̃Ωopt

f̃,s

= 0

hold true so that (1.10) implies that f is recovered exactly (up to any chosen tolerance
η). Unlike the results in [12], however, Theorem 1 also guarantees that the method H will
work well for functions f which have ‖f− f̃opt

s ‖L2(D,µ) relatively small, but nonzero.

The authors would also like to emphasize the generality of Theorem 1, which is unique
to the best of their knowledge in the literature related to sublinear-time sparse approx-
imation methods. If, for example, one chooses BN,d to be the multidimensional Fourier
basis with d = D and d̃ = 0 then one immediately obtains a new sparse Fourier transform
result for functions of many variables whose sampling and runtime requirements scale only

8

polylogarithmically in the total basis size |BN,d| = ND. Though this new Fourier result
does not compare favorably to the best deterministic multidimensional Fourier results of
this kind [26, 32] with respect to achievable runtimes or error guarantees, it also does not
use any of the specific algebraic structure of the Fourier basis. This allows Theorem 1
to be significantly more flexible than these older Fourier results in that it can apply to
situations which they don’t cover. For example, it can generate entirely discrete Fourier
results where G ⊂ { jN

∣∣ j ∈ [N]}D (unlike [26]) by using a discrete and finite multidimen-

sional Fourier BOBP with f = f̃ which will work for any choice of N (unlike [32], which
requires N to be prime).

Finally, the astute reader has likely noticed that Theorem 1 is phrased in the form
of an existence result, which may be troubling to the practical numerical analyst who
actually wants to know how to compute an accurate solution. Let us allay any anxieties
that this choice of theoretical statement may have birthed – the algorithm H referred to
above is a modified version of the well known CoSaMP algorithm [33] (see Algorithm 1
in Section 3). It has been implemented and evaluated in Section 5, and the code made
publicly available.4 In short, the result is entirely explicit and constructive with respect to
the algorithm H. The grid G ⊂ D, which ultimately responsible for the form of Theorem 1
as an existence result, on the other hand, is a bit more nuanced with respect to its practical
construction.

As we shall see below, the grid G ⊂ D is constructed by randomly selecting points from
D according to several prescribed probability distributions that are ultimately derived
from the orthogonality measure µ (see Theorems 3 and 6 and their proofs for details). It is
then proven that this randomly constructed grid will allowH to satisfy the error guarantee
(1.10) for all functions f as per (1.7) with high probability while simultaneously satisfying
the stated upper bounds on its cardinality. The runtime complexity of H follows from the
boundedness of |G|. Hence, the existence result is proven by randomly constructing a grid
G which is guaranteed to satisfy the conclusions of Theorem 1 with high probability.

In fact, this is completely analogous to the role of random sampling matrices in stan-
dard compressive sensing results involving the Restricted Isometry Property (RIP). Many
compressive sensing methods are guaranteed to be accurate if they are used in combination
with a random sampling matrix that has the RIP, a condition which can only be achieved
near-optimally with high probability. Herein, the conclusions of Theorem 1 will hold for
any grid G that can be used to form two associated random sampling matrices: one with
the RIP, and another with a property known as the Support Identification Property (SIP)
which will be defined in Section 1.3. The conclusions of Theorem 1 will hold whenever
these two conditions are satisfied by G, and it will be shown that a randomly constructed

4See “SHT II: Best s-Term Approximation Guarantees for Bounded Orthonormal Product Bases in
Sublinear-Time” on Mark Iwen’s code page https://www.math.msu.edu/~markiwen/Code.html.

9

grid G will satisfy both conditions with high probability.

1.2 An Outline of the Paper and of the Proof of Theorem 1

After reviewing some relevant compressive sensing results and establishing necessary no-
tation in Section 2, we will begin proving Theorem 1 in Section 3. The first step in that
process will be to prove a compressive sensing recovery guarantee for a generalized version
of the well known CoSaMP method [33]. This new theorem, Theorem 3, will establish
a best s-term recovery guarantee for the CoSaMP algorithm where the support identi-
fication step is performed by any algorithm A and grid G pair which has the SIP (see
Section 1.3 below for details on the SIP). With Theorem 3 in hand we will then turn our
attention to constructing a sublinear-time algorithm A and grid G pair that have the SIP,
an effort whose results are summarized by Theorem 4 (see also Proposition 1). Combining
Theorems 3 and 4 then quickly establishes our main result above which appears in the
form of Theorem 5 and Corollary 1 in Section 3.

The vast majority of the effort in the paper will be focussed on proving Theorem 4 in
Section 4. That is, to demonstrate that Algorithm 2 therein can be used together with a
randomly constructed grid G in order to effectively achieve the SIP with high probability.
This is done by Theorem 6 (a specialized version of Theorem 9 in Section 4.1) which
formalizes the random sampling strategy one must use in order to construct G so that the
SIP is achieved with high probability, and by Theorem 7 which translates the conclusions
of Theorem 6 into a SIP-type statement. Theorem 9, in turn, follows from Theorem 8
which is proven in Section 4.2.

Finally, the authors would like to note that the reader who is interested in seeing the
proof of Theorem 1 unfold from basic compressive sensing principals in a more direct
fashion (though without the benefit of waypoints explaining the relevance of each result
to the final goal) might consider the following alternate reading order for the sections
below: Such readers can begin with Section 4.2 after reviewing Section 2, followed by the
first 4 paragraphs of Section 4, then Section 4.1, and finally the remainder of Section 4
after which Theorem 4 will have been proven. Reading Section 4 in this bottom up fashion
first will then allow Section 3 to be read without having to temporarily take any of the
theoretical statements therein for granted along the way. For readers who are mostly
interested in the numerical ramifications of the methods developed herein, we suggest
skipping down to conduct a careful review of Algorithms 1 and 2 (together with the
equations referred to therein) after reading Section 2, after which the careful numerical
evaluation conducted in Section 5 should be understandable.

Before moving on to establish some additional required notation, however, we will

10

first discuss the SIP in the next subsection. This is crucial as the notion of the SIP
will allow for easier sublinear-time methods to be developed in the future. To emphasize
this last point: Any basis for which the SIP can be established via a sublinear-time
algorithm can be combined with Theorem 3 below in order to produce a new sublinear-
time compressive sensing method for that basis. We expect that this new pathway for
developing future sublinear-time algorithms will help to stimulate the further improvement
and generalization of sparse Fourier transform techniques to other bases of interest going
forward.

1.3 The Support Identification Property (SIP)

As above, let [N] := {0, . . . , N − 1} for all N ∈ N and further define P([N]) to be the
power set of any such set [N]. In Section 3 we will prove that CoSaMP will still produce
accurate sparse approximations as long as its support identification step employs a triple
with the support identification property.

Definition 1 (The Support Identification Property (SIP)). Let s ∈ [N], β ∈ (0, 1),
Φ ∈ Cm×N , A : Cm → P([N]), and Γ : Cm → [0,∞) with Γ(0) = 0. The triple (Φ,A,Γ)
is said to have the Support Identification Property (SIP) of order (s, β) if∥∥vA(Φv+e)c

∥∥
2
≤ β‖v‖2

holds for all e ∈ Cm and v ∈ CN with ‖v‖0 ≤ s that also satisfy ‖v‖2 > Γ(e).

Note that many triples with the SIP exist. One completely trivial example is the triple
consisting of the N × N identify matrix I, the function A which always outputs [N],
and the zero function Γ. Of course this example is extremely unsatisfying – generally
for compressive sensing applications we prefer that the any SIP triple (Φ ∈ Cm×N ,A :
Cm → P([N]),Γ) has m� N and an efficient computational complexity for A (preferably
sublinear-in-N herein). Thankfully these types of SIP triples also exist – in fact it is easy
to see that any fast and error-robust compressive sensing algorithm A must in fact be a
member of such a triple.

Lemma 1. Let Γ′ : Cm → R+ be such that Γ′(0) = 0, and let A : Cm → CN be a
compressive sensing algorithm with an associated measurement matrix Φ ∈ Cm×N that
satisfies

‖x−A (Φx+ e) ‖2 ≤ Γ′(e)

for all e ∈ Cm and x ∈ CN with ‖x‖0 ≤ s. Furthermore, let supp : CN → P([N])
output the indices of the nonzero entries of any given input vector. Then, the triple
(Φ, supp ◦ A, (1/β′)Γ′) will have the SIP of order (s, β′) for all β′ < 1.

11

Proof. Let e ∈ Cm and note that∥∥xsupp(A(Φx+e))c
∥∥2

2
≤
∥∥xsupp(A(Φx+e))c

∥∥2

2
+
∥∥∥(x−A (Φx+ e))supp(A(Φx+e))

∥∥∥2

2

= ‖x−A (Φx+ e)‖22 ≤
(
Γ′(e)

)2
.

Thus, if ‖x‖2 > (1/β′)Γ′(e) then
∥∥xsupp(A(Φx+e))c

∥∥
2
≤ β′ ((1/β′)Γ′(e)) ≤ β′‖x‖2.

Lemma 1 demonstrates that many nontrivial SIP triples of the type we are interested
in exist. Of course, using a compressive sensing method in order to create a SIP triple
seems slightly nonsensical given that one would generally want to create a SIP triple in
order to develop a new compressive sensing method in the first place. This immediately
raises the question of whether nontrivial SIP triples exist which do not in themselves
already effectively serve as a compressive sensing method. The answer to that question
is “yes”, and the easiest example is the SIP triple which the original CoSaMP method is
itself already implicitly utilizes. Given x ∈ CN and s ∈ [N] let x

∣∣
s
∈ CN be the vector

obtained from x by setting all but its s-largest magnitude entries to 0. The following
lemma explicitly demonstrates the SIP triple on which the original CoSaMP algorithm
[33] is implicitly based.

Lemma 2 (The CoSaMP SIP Triple). Let Φ ∈ Cm×N have the RIP of order (2s, 0.1)
(so that its Restricted Isometry Constants (RIC)s satisfy δs ≤ δ2s ≤ 0.1), s ∈ [N],
β ∈ (0.2223, 1), and define A : Cm → P([N]) by A(y) := supp

(
(Φ∗y)

∣∣
s

)
, and Γ : Cm →

[0,∞) by Γ(e) :=
(

2.34
β−0.2223

)
‖e‖2. Then, the triple (Φ,A,Γ) has the SIP of order (s, β).

Proof. Lemma 4.2 of [33] implies that
∥∥xA(Φx+e)c

∥∥
2
≤ 0.2223‖x‖2 + 2.34‖e‖2 holds for

all e ∈ Cm and x ∈ CN with ‖x‖0 ≤ s. Suppose, furthermore, that ‖x‖2 > Γ(e) =(
2.34

β−0.2223

)
‖e‖2. Then,

∥∥xA(Φx+e)c
∥∥

2
≤ 0.2223‖x‖2 + 2.34‖e‖2 < 0.2223‖x‖2 + 2.34

(
β − 0.2223

2.34

)
‖x‖2

= β‖x‖2

holds. Also, Γ(0) = 0.

In Section 3 we will demonstrate that the original SIP triple implicitly used by the
CoSaMP algorithm can be replaced with any other SIP triple of similar quality without
substantively changing the performance of the resulting CoSaMP variant as a compres-
sive sensing algorithm. Before we can do this, however, we will require some additional
notation and preliminary infrastructural results.

12

2 Notation and Preliminaries

Recall that D ∈ N is the number of variables in the function of interest f : ×j∈[D]Dj → C

(where Dj ⊂ R for all j ∈ [D], and D := ×j∈[D]Dj). Vectors n ∈ [N]D with ‖n‖0 ≤ d ≤ D
will always index a basis function in

B := BN,d =
{
Tn : D → C

∣∣ n ∈ [N]D with ‖n‖0 ≤ d
}
, (2.1)

where we have suppressed the basis subscripts for ease of discussion. In addition, we fur-
ther assume that the BOS B is a product basis so that Tn(ξ) satisfies (1.3) as above.

2.1 Restrictions and Partial Evaluations

The following notation will be utilized heavily during the analysis of the proposed support
identification procedure. Let S ⊂ [D], w ∈ ×j∈SDj with wj ∈ Dj , and n ∈ [N]D. The
function TS;n : ×j∈SDj → C is defined to be

TS;n(w) :=
∏
j∈S

Tj;nj (wj). (2.2)

Then, the set
BS :=

{
TS;n

∣∣ n ∈ [N]D with ‖n‖0 ≤ d
}

(2.3)

is a BOS with respect to the probability measure µS := ⊗j∈Sµj over DS := ×j∈SDj ⊂ R|S|

with BOS constant KS ≤ min
{∏

j∈S Kj ,K
d
∞K

max{|S|−d,0}
0

}
. For any set E, let P(E)

denote the power set of E containing all possible subsets of E. Given any vector v ∈ Cp
and T ⊂ [p] we will let vT ∈ Cp have entries

(vT)j =

{
vj if j ∈ T
0 if j /∈ T

.

For t ∈ [p], we let vt ∈ Cp a vector restricting v to its t largest-magnitude entries. Let
Sc := [D] \ S for all S ⊂ [D]. We will then construct fS;w : DSc → C from f : D → C by
defining

fS;w(z) := f(ξ)

where ξ ∈ D ⊂ RD is the unique vector with ξS = w and ξSc = z. In this context, we
define the permutation function %S : DS ×DSc → D given by

%S(w, z) = ξ such that ξS = w and ξSc = z. (2.4)

13

This yields the alternative characterization fS;w(z) = f (%S(w, z)).

The restricted vectors of the input vector ξ such as ξS and ξSc have the reduced dimen-
sions. However, the coefficient vectors such as c̃ and r̃ will maintain the full dimension
even though they are restricted to some subset of indices.

If n,m ∈ IN,d and S ⊂ [D] then we will define (n,m)S ∈ IN,d to be the vector
nS +mSc . Furthermore, for a given v ∈ C|IN,d|, n ∈ IN,d, and S ⊂ [D], we will let the
vector vS;n ∈ C|IN,d| indexed by k ∈ IN,d have entries given by

(vS;n)k =

{
vk, if kS = nS

0 otherwise
. (2.5)

Note that vS;n ∈ C|IN,d| will only have at most N |S
c| nonzero entries corresponding to

the entries of v ∈ C|IN,d|, vm ∈ C, whose indices m match those of n on S (i.e., so that
mS = nS).

The following calculation will be repeated sufficiently often that it merits being referred
to as a lemma. It concerns the partial sum approximation to f from (1.7) in B given by
(1.8). Recall that c̃ contains only the entries of the sequence c corresponding to the indices
in IN,d.

Moreover, the next lemma also demonstrates the usage of the newly introduced nota-
tion. Its statement will be used later in the proofs of Lemmas 10 and 11.
Lemma 3. Let S ⊂ [D], w ∈ DS = ×j∈SDj with wj ∈ Dj, and n ∈ IN,d. Then〈

f̃S;w, TSc;n

〉
(DSc ,µSc)

=
〈
c̃Sc;n,ΦS;n;w

〉
where f̃ is as in (1.8), and ΦS;n;w ∈ C|IN,d| is a vector indexed by k ∈ IN,d with entries

(ΦS;n;w)k :=

{
TS;k(w) if kSc = nSc

0 otherwise
. (2.6)

Proof. Computing the inner product one quickly sees that〈
f̃S;w, TSc;n

〉
(DSc ,µSc)

=

∫
DSc

f̃S;w(z) TSc;n(z) dµSc(z)

=

∫
DSc

 ∑
k∈IN,d

c̃k TS;k(w) TSc;k(z)

TSc;n(z) dµSc(z)

14

=
∑
k∈IN,d

(c̃Sc;n)k TS;k(w).

The stated result follows.

Let m ∈ N and n ∈ IN,d. For any matrix A ∈ Cm×|IN,d|, we define (A)n be the
column of A corresponding to the index n. Also, we can choose multiple columns, e.g.,
for n1,n2 ∈ IN,d, (A){n1,n2} refers the columns of A corresponding to the indices n1 and

n2. More generally, for any S ⊂ IN,d the matrix (A)S = AS ∈ Cm×|S| will consist of the
columns of A indexed by S.

2.2 Sampling Matrices associated to a BOS and Restricted Isometry
Constants

Given a BOS as in (2.1), let {ξ`}`∈[m] ⊂ D be sampling points drawn independently at

random according to µ with corresponding samples {ỹ` := f̃(ξ`)}`∈[m] from f̃ in (1.8).

The random sampling matrix Φ ∈ Cm×|IN,d| associated with the points {ξ`}`∈[m] and the
BOS has entries given by

Φ`,n = Tn(ξ`) (2.7)

with indices ` ∈ [m] and n ∈ IN,d. One can see that, e.g., ỹ = Φc̃ will hold in this
case. Furthermore, results from the compressive sensing literature guarantee that 1√

m
Φ

will also have well-behaved restricted isometry constants as soon as m is sufficiently large.

Definition 2 (See Definition 6.1 in [17]). The s-th restricted isometry constant δs of a
matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22

holds for all s-sparse vectors x ∈ CN . The matrix A is said to satisfy the restricted
isometry property (RIP) of order (s, δ) if 1 > δ ≥ δs ≥ 0.

Theorem 2 (See Theorem 12.32 and Remark 12.33 in [17]). Let Φ ∈ Cm×|IN,d| be the
random sampling matrix associated to a BOS with constant K ≥ 1 for m, |IN,d| , s ∈
Z+ \ {1}. If, for δ, p ∈ (0, 1),

m ≥ aK2δ−2s ·max
{

ln2(s) ln (|IN,d|) ln(m), ln(p−1)
}
,

then with probability at least 1 − p the restricted isometry constant δs of 1√
m

Φ satisfies

δs ≤ δ so that Φ has the RIP of order (s, δ). Here the constant a ∈ R+ is universal.

15

In addition, one can also, e.g., bound the `2 operator norm of the random sampling
matrix Φ in the event that it has the RIP. We have the following consequence of Theorem 2.

Lemma 4 (See Proposition 3.5 in [33]). Suppose A ∈ Cm×|IN,d| has the restricted isometry
property (RIP) of order (s, δ). Then,

‖Ax‖2 ≤
√

1 + δ

(
‖x‖1√
s

+ ‖x‖2
)

holds for all x ∈ C|IN,d|.

We are now prepared to develop the new CoSaMP variants on which our new sublinear-
time algorithms will be based.

3 Robust Sublinear-Time Sparse Approximation via CoSaMP
with Fast Support Identification

Algorithm 1 CoSaMP with the new support identification

1: procedure CoSaMPnewSupportID
2: Input: ySID = ΦSIDxs + eSID, ΦSID, A, yCE = ΦCExs + eCE, ΦCE, κ, s, d, d̃
3: Output: s-sparse approximation a of x
4: a0 = 0 {Initial approximation}
5: vSID ← ySID

6: k ← 0
7: repeat
8: k ← k + 1
9: Ω̃← A(vSID) {|Ω̃| ≤ 2s, New support identification step (e.g., Algorithm 2)}

10: Ω← Ω̃ ∪ supp(ak−1) {Merge supports}
11: Φ′ ← 1√

mCE
ΦCE|Ω

12: b|Ω ← (Φ′)† yCE√
mCE

{approximated using 3 LS iterations (Richardson’s or CG)}
13: ak ← (b|Ω)s {Prune to obtain next approximation}
14: vSID ← ySID − ΦSIDa

k {Update current samples I}
15: vCEold ← vCE, vCE ← yCE − ΦCEa

k {Update current samples II}
16: until ‖vCE‖22 > ‖vCEold‖22, or k ≥ κ {Halting criteria}
17: If ‖vCE‖22 > ‖vCEold‖22 then a← ak−1 else a← ak

18: end procedure

In this section we analyze a generalized CoSaMP variant which uses any support iden-
tification method satisfying the SIP introduced in Definition 1 above (see Algorithm 1).

16

In Theorem 3 we provide error guarantees as well as the general sampling and runtime
complexities that one can obtain for such CoSaMP variants with a particular choice of
halting criteria. Later, in Section 4, we then propose a new admissible support iden-
tification method which runs in sublinear time for BOPBs with sufficiently small BOS
constants (see Algorithm 2). This method is proven to satisfy the SIP as stated in Theo-
rem 4 of this section. Finally, combining Algorithms 1 and 2, we obtain Theorem 5 which
combines the error guarantees from Theorem 3 due to the SIP with the specific sampling
and runtime complexities of the support identification algorithm presented in Section 4
for BOPBs. We hasten to point out that the modularity of this proof approach makes
it easier to improve upon than prior works have been. If a better (e.g., faster) support
identification method satisfying the SIP is developed for a particular basis in the future it
can immediately replace the one from Section 4 and produce an improved CoSaMP type
algorithm with a better performance for that particular basis.

We assume herein that the function f in (1.7) can be written as

f := f̃ + e′ (3.1)

where f̃ : D → C is as per (1.8) with the coefficient vector c̃ ∈ CIN,d in B, and where
e′ : D → C is bounded so that ‖e′‖∞ ≤ γ. Now, we rewrite f as

f = f̃ + e′ = f̃opt
s +

(
f̃ − f̃opt

s + e′
)

︸ ︷︷ ︸
=: e

. (3.2)

Our goal is to approximate the best s-term approximation c̃Ωopt

f̃,s

of c̃, which is the coef-

ficient vector of f̃opt
s . Since CoSaMP from [33] approximates the best s-term of a given

vector efficiently while allowing mild noise on the samples, we modify the CoSaMP algo-
rithm in order to make it handle our high-dimensional problem more efficiently. Since the
analysis of our CoSaMP type algorithm will be based on [33], it is helpful to introduce
the connection between our notation and the notation from [33]. Toward that end, going
forward we will set xs := c̃Ωopt

f̃,s

, x := c̃, and Φ := 1√
mCE

ΦCE in the notation of [33].

The samples u = Φx+ e in [33] can then be viewed as containing renormalized function
evaluations of f , and accordingly, e contains renormalized function evaluations of the e
defined in (3.2). In particular, e = eCE√

mCE
.

In the pseudocode of Algorithm 1, most of the steps are identical to the original
CoSaMP except the “New support identification step”, “Update current samples I &
II”, and “Halting criteria” lines. The inputs ySID ∈ CmSID and yCE ∈ CmCE of Algo-
rithm 1 contain function evaluations of f which will be used for support identification and
coefficient estimation (i.e., via least squares), respectively. Accordingly, eSID ∈ CmSID and
eCE ∈ CmCE appearing in Theorem 3 contain the corresponding function evaluations of

17

e from (3.2), and ΦSID ∈ CmSID×|IN,d| and ΦCE ∈ CmCE×|IN,d| have the function evalu-
ations of Tn for n ∈ IN,d at the corresponding evaluation points. Note that eSID and
eCE do not change over the iterations of Algorithm 1. We define e′SID ∈ CmSID and
e′CE ∈ CmCE as the vectors whose entries are the function evaluations of e′ from (3.1).
Each row number (mSID and mCE) is, therefore, the total number of function evaluations
used for support identification and the coefficient estimation, respectively. In the k-th
iteration, Algorithm 1 starts with an s-sparse approximation ak−1 of xs and then tries
to approximate the at most 2s-sparse residual vector rk−1 := xs − ak−1. The support
identification procedure A in the “New support identification” step begins approximating
rk−1 by finding a support set Ω̃ ⊂ IN,d of cardinality at most 2s which contains the
indices of the entries where most of the energy of rk−1 is located. As noted above, any
support identification method satisfying the SIP can substitute the “New support identi-
fication step” in Algorithm 1 in order to accomplish this task – the algorithm developed
and analyzed in Section 4 is a specific instance.

After the support identification, in the “Merge supports” step, a new support set Ω of
cardinality at most 3s is then formed from the union of Ω̃ with the support of the current
approximation ak−1. At this stage Ω should contain the overwhelming majority of the
important (i.e., energetic) index vectors for rk−1. As a result, restricting the columns of
the sampling matrix ΦCE to those in Ω (or constructing them on the fly in a low memory
setting) in order to solve for bΩ := argminu∈C|Ω|

1√
mCE
‖(ΦCE)Ω u− yCE‖2 should yield

accurate estimates for the true coefficients of xs = c̃Ωopt

f̃,s

indexed by the elements of Ω,(
c̃Ωopt

f̃,s

)
Ω

.5 The vector (bΩ)s then becomes the next approximation ak of xs = c̃Ωopt

f̃,s

.

Theorem 3 provides the error guarantees for

∥∥∥∥c̃Ωopt

f̃,s

− a
∥∥∥∥

2

, as well as the runtime com-

plexity of Algorithm 1 in terms of the provided support identification algorithm’s runtime.

Theorem 3. Let Γ̄ ≥ 0, β ∈ (0, 0.2228], κ ∈ N and δ ∈ (0, 0.025] be fixed, and let K be the
BOS constant of (1.6). Suppose that xs := c̃Ωopt

f̃,s

is s-sparse with ySID = ΦSIDxs+eSID and

yCE = ΦCExs + eCE where the triple
(
ΦSID ∈ CmSID×|IN,d|,A : CmSID → P([|IN,d|]),Γ :

CmSID → [0,∞)
)

has the SIP of order (2s, β) and Γ(eSID) ≤ Γ̄, and 1√
mCE

ΦCE ∈
CmCE×|IN,d| has RIP constant δ2s ≤ δ and mCE = O(sK2 log4 |IN,d|). Suppose that
rk := xs−ak is a 2s-sparse vector such that vSID = ΦSID(xs−ak)+eSID = ΦSIDr

k+eSID.
Furthermore, suppose that the support identification procedure A’s output always has car-

5In practice, it suffices to approximate the least-squares solution bΩ by an iterative least-squares ap-
proach such as Richardson’s iteration or conjugate gradient [6, 14] since computing the exact least squares
solution can be expensive when s is large. The argument of [33] shows that it is enough to take three
iterations for Richardson’s iteration or conjugate gradient if the initial condition is set to ak−1, and if ΦCE

has an RIP constant δ2s < 0.025. In fact, both of these methods have similar runtime performance.

18

dinality at most 2s, that it runs in O(LA)-time, and that it uses mSID = O (L′A) function
evaluations. Then, for all k ≥ 0, the signal approximation ak in Algorithm 1 is s-sparse
and satisfies ∥∥∥xs − ak+1

∥∥∥
2
≤ 0.5

∥∥∥xs − ak∥∥∥
2

+
2.124
√
mCE

‖eCE‖2,

as long as
∥∥rk∥∥

2
=
∥∥xs − ak∥∥2

> Γ̄. In particular, if minj∈[k]

∥∥rj∥∥
2
> Γ̄ then∥∥∥xs − ak∥∥∥

2
≤ 2−k‖xs‖2 +

4.248
√
mCE

‖eCE‖2. (3.3)

As a consequence, CoSaMP with any such support identification method A will produce
an s-sparse approximation a that satisfies

‖xs − a‖2 ≤ max

{
1.03Γ̄ + 2.03

‖eCE‖2√
mCE

, 2−κ‖xs‖2 + 4.3
‖eCE‖2√
mCE

, 8.625
‖eCE‖2√
mCE

}
. (3.4)

The sampling complexity of Algorithm 1 will be mSID +mCE = O
(
L′A + sK2 log4 |IN,d|

)
.

The runtime complexity of Algorithm 1 will be O
((
LA + s2K2LΦ log4 |IN,d|+ sLΦmSID

)
·

κ
)
, where O (LΦ) is the runtime complexity of computing any desired matrix entry (ΦCE)j,`,

or (ΦSID)j,`, for any valid choice of j, `.

Proof. When k < κ and ‖rk‖2 > Γ̄ ≥ Γ(eSID), we obtain∥∥∥xs − ak+1
∥∥∥

2
≤ 2‖xs − b‖2 (Lemma 4.5 in [33], ak+1 = (b|Ω)s, b = b|Ω)

≤ 2.224 ‖(xs)Ωc‖2 + 0.0044‖rk‖2 +
2.124
√
mCE

‖eCE‖2 (Corollary 5.3 in [33])

≤ 2.224
∥∥∥rk

Ω̃c

∥∥∥
2

+ 0.0044‖rk‖2 +
2.124
√
mCE

‖eCE‖2 (Lemma 4.3 in [33])

≤ 2.224 · β‖rk‖2 + 0.0044‖rk‖2 +
2.124
√
mCE

‖eCE‖2 (The SIP assumption)

≤ 0.5‖rk‖2 +
2.124
√
mCE

‖eCE‖2

= 0.5
∥∥∥xs − ak∥∥∥

2
+

2.124
√
mCE

‖eCE‖2 .

In order to obtain the bound in (3.3) we may now simply solve the recursion for the final
error after noting that

(1 + 0.5 + 0.25 + · · ·) · 2.124
√
mCE

‖eCE‖2 =
4.248
√
mCE

‖eCE‖2.

19

If the last k ≥ κ in Algorithm 1, and ‖rk‖2 > Γ̄ ≥ Γ (eSID) for all k < κ, then

‖xs − a‖2 ≤ 2−κ‖xs‖2 +
4.248
√
mCE

‖eCE‖2.

On the other hand, if the last k ≥ κ in Algorithm 1, ‖vCE‖2 ≤ ‖vCEold‖2 for all k < κ,
and ‖rk‖2 ≤ Γ̄ for some k < κ, then

1
√
mCE

‖yCE − ΦCEa
κ‖2 ≤

1
√
mCE

∥∥∥yCE − ΦCEa
k
∥∥∥

2

≤
∥∥∥∥ 1
√
mCE

ΦCE(xs − ak) +
eCE√
mCE

∥∥∥∥
2

≤
∥∥∥∥ 1
√
mCE

ΦCE(xs − ak)
∥∥∥∥

2

+
‖eCE‖2√
mCE

≤
√

1 + δ
∥∥∥xs − ak∥∥∥

2
+
‖eCE‖2√
mCE

≤ Γ̄
√

1 + δ +
‖eCE‖2√
mCE

,

and

1
√
mCE

‖yCE − ΦCEa
κ‖2 ≥

1
√
mCE

(‖ΦCE(xs − aκ)‖2 − ‖eCE‖2)

≥
√

1− δ ‖xs − aκ‖2 −
‖eCE‖2√
mCE

.

By combining the upper and lower bounds, we obtain

‖xs − a‖2 ≤ ‖xs − aκ‖2 ≤
√

1 + δ√
1− δ

Γ̄ +
2‖eCE‖2√
mCE

√
1− δ

≤ 1.0254Γ̄ +
2.0255
√
mCE

‖eCE‖2.

Now assume that the first condition ‖vCE‖22 > ‖vCEold‖22 of the halting criteria in
line 16 of Algorithm 1 holds. There are two possible cases : (i) ‖rk−1‖2 ≤ Γ̄ and (ii)
‖rk−1‖2 > Γ̄. The case (i) implies that ‖xs − a‖2 ≤ Γ̄. For the case (ii), note first that
‖xs − ak‖2 ≤ 0.5‖xs − ak−1‖2 + 2.124√

mCE
‖eCE‖2. Also, from the halting criterion,

1
√
mCE

∥∥∥ΦCE

(
xs − ak

)
+ eCE

∥∥∥
2
≥ 1
√
mCE

∥∥∥ΦCE

(
xs − ak−1

)
+ eCE

∥∥∥
2
,∥∥∥∥ 1

√
mCE

ΦCE

(
xs − ak

)∥∥∥∥
2

+
‖eCE‖2√
mCE

≥
∥∥∥∥ 1
√
mCE

ΦCE

(
xs − ak−1

)∥∥∥∥
2

− ‖eCE‖2√
mCE

,

20

√
1 + δ

∥∥∥xs − ak∥∥∥
2

+
‖eCE‖2√
mCE

≥
√

1− δ
∥∥∥xs − ak−1

∥∥∥
2
− ‖eCE‖2√

mCE
,∥∥∥xs − ak∥∥∥

2
≥
√

1− δ
1 + δ

∥∥∥xs − ak−1
∥∥∥

2
− 2√

1 + δ

‖eCE‖2√
mCE

.

By combining the upper and lower bounds of
∥∥xs − ak∥∥2

, we obtain

‖xs − a‖2 =
∥∥∥xs − ak−1

∥∥∥
2
≤

(
2.124 + 2√

1+δ

)
‖eCE‖2

√
mCE

(√
1−δ
1+δ − 0.5

)
≤ 8.625

‖eCE‖2√
mCE

. (3.5)

The support identification algorithm A is assumed to have O (LA) runtime complex-
ity in line 9. A conjugate gradient least square solver can approximate line 12 with
O
(
s2K2 log4 |IN,d|

)
runtime complexity per iteration (see, e.g., Chapter 7 of [6], and

Section 3 of [23]). Furthermore, a constant number of iterations (e.g. three in [33]) suf-
fices. Lines 11, 14, and 15 require the generation of an mCE × O(s) or mSID × O(s)
submatrix of either ΦCE or ΦSID, respectively. This will take O(sLΦmCE + sLΦmSID)
-time. Finally, the iteration number of the entire CoSaMP loop is bounded by κ, so that
the overall runtime complexity is O

((
LA + s2K2LΦ log4 |IN,d|+ sLΦmSID

)
· κ
)
. With re-

spect to the sampling complexity, the support identification requires mSID = O (L′A) func-
tion evaluations and the conjugate gradient method requires mCE = O

(
sK2 log4 |IN,d|

)
function evaluations [6, 23], and thus the overall sampling complexity is mSID + mCE =
O
(
L′A + sK2 log4 |IN,d|

)
.

Results concerning randomized constructions of RIP matrices 1√
mCE

ΦCE ∈ CmCE×|IN,d|

for BOBPs with δ2s ≤ δ and mCE = O(sK2 log4 |IN,d|) are well known (see, e.g., Theo-
rem 2 and Chapter 12 of [17]). Our next result gives a qualitatively similar construction
of a triple

(
ΦSID,A, Γ̄

)
with what is essentially the SIP for BOPBs (see Proposition 1 for

an explicit SIP statement regarding this triple). More specifically, Theorem 4 constructs
a support identification procedure with the properties required by Theorem 3, and also
bounds its computational and sampling requirements. We remind the reader that the
error vector eSID ∈ CmSID appearing in both Theorems 3 and 4 does not change from
iteration to iteration in the analysis of Algorithm 1.

Theorem 4. (Sublinear-Time Support Identification for BOPBs). There exists an algo-
rithm A : CmSID → P (IN,d) that always outputs a set of at most 2s index vectors ∈ IN,d,
and a sampling strategy for randomly selecting a set of mSID grid points {ξ`}`∈[mSID] ⊂ D,

21

such that the random sampling matrix ΦSID ∈ CmSID×|IN,d| associated with {ξ`}`∈[mSID]

as per (2.7) will have the following property with probability ≥ 0.99:

A
(
ΦSIDr

k + eSID

)
=6 A

(
ΦSID

(
c̃− ak

)
+ e′SID

)
will output a set Ω̃ ⊂ IN,d

such that∥∥∥rk
Ω̃c

∥∥∥
2
≤ 0.2086

∥∥∥rk∥∥∥
2

+ 2.4172

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

≤ 0.2203
∥∥∥rk∥∥∥

2
(3.6)

holds for any rk = xs − ak = c̃Ωopt

f̃,s

− ak satisfying
∥∥rk∥∥

2
> Γ̄, where

Γ̄ :=
(

25
√

23s+ 1
)∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ 22γ
√

23s. (3.7)

In order to achieve this property with probability ≥ 0.99 it suffices that

mSID = O
(
L′A
)

= O
(
DK4d̃

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if the BOS constants Kj are 1 for all but at most d̃ ∈ Z ∩ [0, D] BOS basis sets Bj, and
that

mSID = O
(
L′A
)

= O
(
DK4d

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if K0 = 1. In the first case the runtime complexity of A will be

O (LA) = O
((
s5 + s3N

)
DK4d̃

∞d
4 · log4

(
DN

d

)
log2(s) log2(D)

)
,

and in the second case its runtime complexity will be

O (LA) = O
((
s5 + s3N

)
DK4d

∞d
4 · log4

(
DN

d

)
log2(s) log2(D)

)
when K0 = 1.

Proof. See Section 4. This is a slight restatement of Theorem 7. The algorithm A is
Algorithm 2, and the mSID points {ξ`}`∈[mSID] ⊂ D should be randomly selected as per
the first paragraph of Theorem 6. The runtime and sampling complexities then also follow
from Theorem 6.

6Note that A
(
ΦSIDr

k + eSID

)
= A

(
ΦSID

(
xs − ak

)
+ eSID

)
= A

(
ΦSID

(
c̃

Ω
opt

f̃,s

− ak

)
+ eSID

)
=

A
(
ΦSID

(
c̃− ak

)
+ e′

SID

)
where e′

SID := eSID − ΦSID

(
c̃− c̃

Ω
opt

f̃,s

)
.

22

The first inequality in (3.6) follows directly from Theorem 7. In order to see that the
second inequality

0.2086
∥∥∥rk∥∥∥

2
+ 2.4172

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

≤ 0.2203
∥∥∥rk∥∥∥

2

holds whenever
∥∥rk∥∥

2
> Γ̄, we note that∥∥∥rk∥∥∥

2
> Γ̄ =

(
25
√

23s+ 1
)∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ 22γ
√

23s

≥
(

25
√

23s+ 1
)∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

≥
(

43
√

23 + 1
)∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

.

Thus, one can see that

0.2086
∥∥∥rk∥∥∥

2
+ 2.4172

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

<

(
0.2086 +

2.4172

43
√

23 + 1

)∥∥∥rk∥∥∥
2

which yields the desired effective SIP constant β = 0.2203 ∈ (0, 0.2228].

The following proposition is a variant of Theorem 4 that more formally establishes
exactly the type of SIP triple(

ΦSID ∈ CmSID×|IN,d|,A : CmSID → P([|IN,d|]),Γ : CmSID → [0,∞)
)

defined in Section 1. Its main contribution is to explicitly define a function Γ : CmSID →
[0,∞) as per Definition 1 which produces a SIP triple when combined with the algorithm
A and matrix ΦSID from Theorem 4. We hasten to point out, however, that only a valid
upper bound Γ̄ of Γ(eSID) as per (3.7) is actually necessary in order to apply Theorem 3
– one doesn’t actually have to know the exact form of the best achievable function Γ.
Nonetheless, for completeness we provide a function Γ in the next proposition which al-
lows us to formally satisfy Definition 1 as stated in Section 1.

Proposition 1. Let A : CmSID → P (IN,d) and ΦSID ∈ C
mSID×|IN,d| be

the algorithm and random sampling matrix referred to by Theorem 4, where⋃
j∈[2D−1]

{
%Sj

(
wj
` , z

j
k

)}
`∈[m1],k∈[m2]

denotes the mSID = m1m2(2D− 1) random sampling

23

points7 used to create ΦSID. In addition, define

Γ(eSID) := C

√
s

√
m1m2

max
j∈[2D−1]

∥∥∥ejSID

∥∥∥
2
,

where C ∈ R+ is an absolute constant ≤ 29 fixed below8, and where ejSID ∈ Cm1m2

corresponds to the portion of eSID ∈ CmSID formed by evaluating e in (3.2) at the

evaluation points
{
%Sj

(
wj
` , z

j
k

)}
`∈[m1],k∈[m2]

for each j ∈ [2D − 1]. Then, with

probability ≥ 0.99 the triple (ΦSID,A,Γ) formed using the random evaluation points⋃
j∈[2D−1]

{
%Sj

(
wj
` , z

j
k

)}
`∈[m1],k∈[m2]

will have both of the following properties:

(i) (ΦSID,A,Γ) will have the SIP of order (2s, β = 0.2203), and

(ii) Γ̄ := Γ̄

(
c̃− c̃Ωopt

f̃,s

, γ

)
in (3.7) will satisfy Γ̄ ≥ Γ(eSID) for all inputs ΦSIDr

k+eSID =

ΦSID

(
c̃− ak

)
+ e′SID with ‖e′SID‖∞ ≤ γ.

Proof. The fact that Γ̄ in (3.7) satisfies Γ̄ ≥ Γ(eSID) is ultimately a consequence of Lem-
mas 7 and 14. The SIP holding for (ΦSID,A,Γ) follows from the fact that Theorem 4
still holds if the condition

∥∥rk∥∥
2
> Γ̄ is replaced by the condition

∥∥rk∥∥
2
> Γ(eSID). This

can be seen by tracing through Theorem 4’s proof beginning with the proof of Theorem 8
where one need not apply Lemma 14, and from which an alternate version of Theorem 9
with (4.9) involving Γ(eSID) instead of its current right-hand side trivially follows. With
such an alternate form of Theorem 9 in hand one can then immediately recover a similar
variant of Theorem 6 involving Γ(eSID) which, in turn, can then provide an alternate
(though less easily stated and interpretable) version of Theorem 4 involving the condition∥∥rk∥∥

2
> Γ(eSID).

Finally, in Theorem 5, it is shown that Algorithm 2 can be utilized as the support iden-
tification algorithm A in a SIP triple (ΦSID,A,Γ : CmSID → [0,∞)) for use in Theorem
3. The sublinear runtime and sampling complexities of Algorithm 2 listed in Theorem 4
then result in a new sublinear-time and memory efficient compressive sensing approach

7See the input of Algorithm 2 for a description of the sampling points and note that the 2D− 1 blocks
have been reindexed for ease of discussion, and that the index sets Sj must therefore correspond to either
{j} or [j + 1] accordingly. For a description of how to generate the component points wj

` ,z
j
k we refer the

reader to Theorem 6.
8See (4.20) in Theorem 10 for a definition of Γ with explicit constants, where we further point out that

α is fixed to be
√

23 in Theorem 6. When looking at Theorem 10 one should keep in mind that the matrix
EhS ∈ Cm1×m2 therein is nothing other than a matricized version of ej

SID with S = Sj for any desired
choice of j ∈ [2D − 1].

24

for BOPB-compressible functions f : D → C. We would like to remind the reader be-
fore stating this main result that xs = c̃Ωopt

f̃,s

is s-sparse with ySID = ΦSIDxs + eSID and

yCE = ΦCExs + eCE. Furthermore, the triple (ΦSID,A,Γ) constructed from the support
identification procedure in Algorithm 2 with α :=

√
23 satisfies the SIP of order (2s, β)

with β ∈ [0.2203, 0.2228] with high probability (see Theorem 4 and Proposition 1), and
the matrix 1√

mCE
ΦCE has a RIP constant δ2s ≤ δ for δ ∈ (0, 0.025] with high probability

(see Theorem 2). Finally, A always outputs a set of cardinality at most 2s as noted in
Algorithm 1.

Theorem 5. (Sublinear-Time Compressive Sensing for BOPB-compressible Signals). Let

N, d ∈ N \ {1}, s < |IN,d|/2, δ ∈ (0, 0.025], η ∈ (0,∞), κ =

⌈
log2

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

)⌉
, K the

BOS constant of (1.6), ySID = ΦSIDc̃Ωopt

f̃,s

+eSID, and yCE = ΦCEc̃Ωopt

f̃,s

+eCE where we as-

sume that both e′SID := eSID − ΦSID

(
c̃− c̃Ωopt

f̃,s

)
and e′CE := eCE − ΦCE

(
c̃− c̃Ωopt

f̃,s

)
have ‖e′SID‖∞ ≤ γ and ‖e′CE‖∞ ≤ γ, respectively. Suppose further that the triple
(ΦSID,A,Γ) with Γ̄ ∈ R+ such that Γ̄ ≥ Γ(eSID) satisfies the SIP of order (2s, β) with
β ∈ [0.2203, 0.2228] as per Theorem 4, and that 1√

mCE
ΦCE ∈ CmCE×|IN,d| has a RIP con-

stant δ2s ≤ δ and mCE = O(sK2 log4 |IN,d|) = O
(
sK2 d4 · log4

(
DN
d

))
(see (4.23)). Then,

for each k ≥ 0 the signal approximation ak in Algorithm 1 is s-sparse and satisfies∥∥∥∥c̃Ωopt

f̃,s

− ak+1

∥∥∥∥
2

≤ 0.5

∥∥∥∥c̃Ωopt

f̃,s

− ak
∥∥∥∥

2

+
2.124
√
mCE

‖eCE‖2, (3.8)

as long as∥∥∥∥c̃Ωopt

f̃,s

− ak
∥∥∥∥

2

> Γ̄ :=
(

25
√

23s+ 1
)∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ 22γ
√

23s.

As a consequence, Algorithm 1 produces an s-sparse approximation a that satisfies∥∥∥∥c̃Ωopt

f̃,s

− a
∥∥∥∥

2

≤ max

{
1.03Γ̄ + 2.03

‖eCE‖2√
mCE

, 2−κ
∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

+ 5
‖eCE‖2√
mCE

, 9
‖eCE‖2√
mCE

}
(3.9)

≤ C
(√

s

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ γ
√
s

)
+ η, (3.10)

where C ∈ R+ is an absolute universal constant.

In order to achieve (3.10) for all such possible inputs ySID and yCE with probability
≥ 0.99 it suffices that

m := mSID +mCE = O
(
DK4d̃

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
25

if the BOS constants Kj are 1 for all but at most d̃ ∈ Z∩ [0, D] BOS basis sets Bj (BOPB
of type I), and that

m = O
(
DK4d

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if K0 = 1 (BOPB of type II).

In the BOPB of type I, the runtime complexity of the entire algorithm will be

O
((
s5 + s3N

)
D2K4d̃

∞d
4 · log4

(
DN

d

)
log2(s) log2(D) log

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

))
,

and in the BOPB of type II, the runtime complexity will be

O
((
s5 + s3N

)
D2K4d

∞d
4 · log4

(
DN

d

)
log2(s) log2(D) log

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

))
.

Here we have assumed that the runtime complexity of computing any desired matrix entry
(ΦCE)j,`, or (ΦSID)j,`, for any valid choice of j, ` is O (LΦ) = O(ND)-time.

Proof. The result follows by combining Theorems 3 and 4 which immediately yields (3.9),
as well as the stated runtime and sampling complexities. Note that Theorem 4 assumes
that we are sampling from a BOPB-sparse function with arbitrary additive noise e′ : D →
C that has ‖e′‖∞ ≤ γ, which leads to the restriction on ‖e′SID‖∞ and ‖e′CE‖∞. To obtain
(3.10) one can simply substitute our choice of κ into (3.9) and use Lemma 4 to see that

‖eCE‖2√
mCE

=

∥∥∥∥ e′CE√
mCE

+
1

√
mCE

ΦCE

(
c̃− c̃Ωopt

f̃,s

)∥∥∥∥
2

≤ γ +
√

1 + δ

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1√

s
+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

 .

Finally, we note that the runtime and sampling complexity bounds have been simplified
by collecting and removing dominated terms along with the fact that K ≤ K d̃

∞ (BOPB
of type I) or K ≤ Kd

∞ (BOPB of type II) as discussed in Section 1.1.

With Theorem 5 in hand we may now prove our main result concerning function ap-
proximation in a Hilbert space L2(D, µ) spanned by a countable orthonormal product
basis

{
Tn | n ∈ ND

}
⊃ B.

26

Corollary 1. (Main Result). Let η ∈ (0,∞) and s, d,N ∈ N \ {1} with d ≤ D and
s < |IN,d|/2. There exists a finite set of grid points G ⊂ D, an algorithm H : C|G| →
(IN,d ×C)s, and an absolute universal constant C ′ ∈ R+ such that the function a : D → C

defined by a(ξ) :=
∑

(n,an)∈H(f(G)) anTn(ξ) satisfies

‖f − a‖L2(D,µ) ≤
∥∥∥f − f̃∥∥∥

L2(D,µ)
+ C ′

(√
s

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ γ
√
s

)
+ η

for all f =
∑
n∈ND cnTn ∈ L2(D, µ) with γ := ‖f − f̃‖∞ = supξ∈D

∣∣∣(f − f̃) (ξ)
∣∣∣ < ∞,

where f̃ : D → C is the finite dimensional approximation to f defined as per (1.8).

If the BOS constants Kj are 1 for all but at most d̃ ∈ Z∩ [0, D] BOS basis sets Bj then

|G| = O
(
DK4d̃

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
,

and the algorithm H will have runtime complexity

O
((
s5 + s3N

)
D2K4d̃

∞d
4 · log4

(
DN

d

)
log2(s) log2(D) log

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

))
.

If K0 = 1 then

|G| = O
(
DK4d

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
,

and the algorithm H will have runtime complexity

O
((
s5 + s3N

)
D2K4d

∞d
4 · log4

(
DN

d

)
log2(s) log2(D) log

(∥∥∥∥c̃Ωopt

f̃,s

∥∥∥∥
2

/η

))
.

Here we have assumed that any desired basis function Tn ∈ B can be evaluated at any
desired point in D in O(ND)-time.

Proof. This follows from Theorem 5. The algorithm H : C|G| → (IN,d ×C)s is Algo-
rithm 1 using Algorithm 2 for line 9. The set of grid points G ⊂ D is the union of the
evaluation points used to create the random sampling matrices ΦSID and ΦCE from Theo-
rem 5 so that f(G) = (ySID,yCE) ∈ CmSID+mCE . And, the error bound follows from (3.10)
and the triangle inequality since

‖f − a‖L2(D,µ) ≤
∥∥∥f − f̃∥∥∥

L2(D,µ)
+
∥∥∥f̃ − a∥∥∥

L2(D,µ)

=
∥∥∥f − f̃∥∥∥

L2(D,µ)
+ ‖c̃− a‖2

27

≤
∥∥∥f − f̃∥∥∥

L2(D,µ)
+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+

∥∥∥∥c̃Ωopt

f̃,s

− a
∥∥∥∥

2

≤ ‖f − f̃‖L2(D,µ) + (C + 1)

(√
s

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ γ
√
s

)
+ η

where the absolute constant C is from Theorem 5.

Next, in Section 4, we will focus on developing Algorithm 2 and demonstrating that it
performs as desired. We hasten to note before beginning, however, that the development of
another support identification method satisfying the SIP with lower runtime or sampling
complexity could be used to create a new and potentially superior version of Theorem 5
in the future. We leave the development of such improved methods in the hands of the
sufficiently interested and clever reader.

4 Sublinear-Time Support Identification

We assume herein that the function h : D → C of D variables,

h := h̃+ e′, (4.1)

where h̃ : D → C is as per (1.8) with coefficient vector r̃ ∈ CIN,d in the BOS B as
per (2.1),

h̃(ξ) :=
∑

n∈IN,d

r̃nTn(ξ), (4.2)

and where e′ : D → C is bounded so that supξ∈D|e′(ξ)| ≤ γ. In terms of our problem

setting about f , the function h̃ is each residual function f̃ − a where a is the function
constructed from the approximation ak that Algorithm 1 produces in each iteration. In
order to escape exponential sampling dependence on the dimension D we will further
assume below the BOPB of type I or II (see Section 1.1). In addition, motivated by

Section 3, we will be most interested in the case where
∥∥∥h− h̃opt

2s

∥∥∥
L2(D,µ)

.
∥∥∥h̃opt

2s

∥∥∥
L2(D,µ)

.

In particular, we will almost exclusively represent h as h = h̃opt
2s +

(
h̃− h̃opt

2s + e′
)

below

where we hope that eh := h̃− h̃opt
2s + e′ has a relatively small L2-norm compared to that

of h̃opt
2s .

In order to approximate h we seek to find a near-optimal set of basis functions from B
on which to approximately project h. In particular, we would be quite pleased to identify
all of Ωopt

h̃,2s
– that is, all the basis functions which compose h̃opt

2s – if possible given that

h ≈ h̃opt
2s . This appears a bit too ambitious goal in general, however. Instead, we will

28

focus on the easier goal of identifying all the entries of Ωopt

h̃,2s
which individually contribute

a nontrivial amount of energy to the total L2-norm of h̃opt
2s . We will represent (portions

of) these basis element indices via the following sets of (partial) energetic indices.

Let S ⊆ [D], s′ ∈ N, α ∈ (1,∞) be a fixed constant to be determined later. We define
the set of energetic partial index vectors of h̃opt

s′ in NS to be

Ωα,s′

S :=

nS
∣∣∣∣ n ∈ IN,d &

∥∥∥∥∥
(
r̃Ωopt

h̃,s′

)
S;n

∥∥∥∥∥
2

≥

∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

α
√
s′

 ⊆ NS , (4.3)

where NS :=

{
nS

∣∣∣∣ n ∈ IN,d} ⊆ IN,d ⊆ [N]D. Note in particular that N [D] = IN,d so

that Ωα,s′

[D] contains all n ∈ Ωopt

h̃,s′
whose associated entry has |r̃n| ≥

∥∥∥∥∥r̃Ω
opt

h̃,s′

∥∥∥∥∥
2

α
√
s′

. Furthermore,

it is also important to note that Ωα,s′

[D] ⊆ Ωopt

h̃,s′
holds for all s′ ∈ [|IN,d|] \ {0}. More

generally, Ωα,s′

S ⊂ Ωopt
s′,S :=

{
qS
∣∣ q ∈ Ωopt

h̃,s′

}
holds for all S ⊆ [D] and s′ ∈ [|IN,d|] \

{0}.

Our next lemma shows that identifying a superset of Ωα,2s
[D] is enough to ensure that

we will find a set of basis elements that can approximate h̃opt
2s (and therefore h) well. In

particular, we will find the support of the majority of the energy of h̃opt
2s ,

∥∥∥h̃opt
2s

∥∥∥
L2(D,µ)

=∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

. With respect to Section 3, the next lemma shows that any support set we

discover which contains Ωα,2s
[D] will be sufficiently informative to guarantee that CoSaMP

will make progress during its current iteration.

Lemma 5. Let α ≥
√

23. If Ωα,2s
[D] ⊆ Ω̃ ⊆ IN,d then∥∥∥∥r̃Ωopt

h̃,2s
∩Ω̃c

∥∥∥∥
2

≤ 0.2086

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

.

Proof. Setting r′ := r̃Ωopt

h̃,2s

, one can see that

∥∥r′
Ω̃c

∥∥2

2
=

∑
n∈Ωopt

h̃,2s
∩Ω̃c

|r′n|2 < 2s · ‖r
′‖22

α22s
≤ ‖r

′‖22
23

29

since Ω̃c ∩ Ωα,2s
[D] = ∅.

In light of Lemma 5 above we will now turn our attention to identifying Ωα,2s
[D] in a

computationally and sample efficient fashion. In particular, we seek to identify Ωα,2s
[D] as

quickly as possible while simultaneously using as few fixed and nonadaptive samples from
h = h̃opt

2s + eh as possible. This is accomplished via Algorithm 2 below. Theorem 6 then
proves that it works as intended.

Theorem 6. Let
{
wj
`

}
`∈[m1]

⊂ Dj be m1 points drawn independently at random according

to µj, and
{
zjk

}
k∈[m2]

⊂ D[D]\{j} be m2 points drawn independently at random according

to µ[D]\{j}, for all j ∈ [D]. Furthermore, let
{
wD−1+j
`

}
`∈[m1]

⊂ D[j+1] be m1 points

drawn independently at random according to µ[j+1], and
{
zD−1+j
k

}
k∈[m2]

⊂ D[D]\[j+1] be

m2 points drawn independently at random according to µ[D]\[j+1], for all j ∈ [D] \ {0}.
If m1 and m2 are chosen to be sufficiently large for all j ∈ [2D − 1] then the following
property will hold with probability ≥ 0.99:

Algorithm 2 will output a set Ω̃ ⊃ Ωα,2s
[D] for all h = h̃opt

2s + eh as per (4.1) with

coefficient vector r̃ ∈ CIN,d in the BOS B satisfying∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> 25
√

23s

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
1

+ 22γ
√

23s. (4.4)

In order to achieve this property with probability ≥ 0.99 it suffices for Algorithm 2 to
utilize a total number of function evaluations from h that is of size

mSID = m1m2(2D − 1) = O
(
DK4d̃

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if the BOS constants Kj are 1 for all but at most d̃ ∈ Z∩ [0, D] BOS basis sets Bj (BOPB
of type I), and that is of size

m′SID = m1m2(2D − 1) = O
(
DK4d

∞s
3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if K0 = 1 (BOPB of type II).

In the BOPB of type I, the runtime complexity of Algorithm 2 will be

O
((
s5 + s3N

)
DK4d̃

∞d
4 · log4

(
DN

d

)
log2(s) log2(D)

)
,

30

Algorithm 2 Implemented Support Identification (Special Case of Algorithm 3)

1: procedure SupportID
2: Parameters: N ∈ N, D ∈ N, α ≥

√
23, sparsity s ∈ N.

3: Input: vSID ∈ Cm1m2(2D−1) split into 2D − 1 blocks. The first D blocks vSID,j :={
h(%{j}(w

j
` , z

j
k))
}
`∈[m1],k∈[m2]

, j ∈ [D], belong to entry identification where wj
` ∈

D{j}, z
j
k ∈ D[D]\{j}, and %{j} as per (2.4). The last D − 1 blocks vSID,D−1+j :={

h(%[j+1](w
D−1+j
` , zD−1+j

k))
}
`∈[m1],k∈[m2]

, j ∈ [D] \ {0}, belong to the pairing where

wD−1+j
` ∈ D[j+1] and zD−1+j

k ∈ D[D]\[j+1].

4: Output: A set Ω̃ ⊃ Ωα,2s
[D] with

∣∣∣Ω̃∣∣∣ ≤ 2s.

5: for j = 0 up to D − 1 do

6: EEI
j,n ←

1

m2

∑
k∈[m2]

∣∣∣∣∣ 1

m1

∑
`∈[m1]

(vSID,j)`,k Tj;n

(
wj
`

)∣∣∣∣∣
2

for each n ∈ [N], see

also (4.16), with (vSID,j)`,k = h(%{j}(w
j
` , z

j
k)).

7: Nj ←
{
n ∈ [N]

∣∣∣∣ min(2s,N)-largest values EEI
j,n

}
.

8: end for
9: TD ← N0.

10: for j = 1 up to D − 1 do
11: T ′D+j ←

{
n+m

∣∣ n ∈ TD+j−1, m ∈ Nj
}
∩ IN,d ⊆ N [j+1].

12: EP
j,n ←

1

m2

∑
k∈[m2]

∣∣∣∣∣ 1

m1

∑
`∈[m1]

(vSID,D−1+j)`,k T[j+1];n

(
wD−1+j
`

)∣∣∣∣∣
2

for each n ∈

T ′D+j , see also (4.16).

13: TD+j ←
{
n ∈ T ′D+j

∣∣∣∣ min
(
2s, |T ′D+j |

)
-largest values EP

j,n

}
.

14: end for
15: Return Ω̃← T2D−1 (Note that it will always be true that

∣∣∣Ω̃∣∣∣ ≤ 2s.)

16: end procedure

and in the BOPB of type II, the runtime complexity will be

O
((
s5 + s3N

)
DK4d

∞d
4 · log4

(
DN

d

)
log2(s) log2(D)

)
.

Proof. See Section 4.1. The desired result follows from a simplified version of Theorem 9
with α =

√
23.

31

The index j in Theorem 6 belongs to three different sets, [D], [D] \ {0} and [2D − 1].
To explain, the set [2D − 1] comprehends all j’s belonging to the first two sets, [D] and
[D] \ {0}.

Theorem 6 combined with Lemma 5 is enough to guarantee that Algorithm 2 can iden-
tify a support set Ω̃ that contains the majority of the energy of the 2s-sparse vector r̃Ωopt

h̃,2s

.

However, Theorem 3 in Section 3 requires that
∥∥r

Ω̃c

∥∥
2

should be relatively small, where

r ∈ CIN,d is the 2s-sparse vector r := xs − ak = c̃Ωopt

f̃,s

− ak (r = rk in Section 3).9 As a

result we must now relate this r to the coefficients r̃ := c̃− ak = x− ak of the function
h̃ := f̃ −

∑
n∈IN,d

aknTn whose noisy samples we are passing into Algorithm 2 in line 9 of

Algorithm 1. The following lemma can be used to relate ‖r‖2 to

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

.

Lemma 6. Let s ∈ [|IN,d| /2], c̃,ak ∈ CIN,d where
∥∥ak∥∥

0
≤ s, and recall that r̃ := c̃−ak,

h̃(ξ) :=
∑
n∈IN,d

r̃nTn(ξ), and f̃(ξ) :=
∑
n∈IN,d

c̃nTn(ξ). One can see that

‖r‖2 =

∥∥∥∥c̃Ωopt

f̃,s

− ak
∥∥∥∥

2

≤
∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

.

Proof. LetQ :=
(

supp(ak) ∪ Ωopt

f̃,s

)
∩ supp(r̃), and note that

∣∣∣Ωopt

h̃,2s

∣∣∣ = min {2s, |supp(r̃)|} ≥
|Q|. As a result one can see that∥∥∥∥c̃Ωopt

f̃,s

− ak
∥∥∥∥

2

=

∥∥∥∥c̃Ωopt

f̃,s

− ak + c̃supp(ak)\Ωopt

f̃,s

− c̃supp(ak)\Ωopt

f̃,s

∥∥∥∥
2

=

∥∥∥∥∥(c̃− ak)Ωopt

f̃,s
∪supp(ak)

− c̃supp(ak)\Ωopt

f̃,s

∥∥∥∥∥
2

≤

∥∥∥∥∥(c̃− ak)Ωopt

f̃,s
∪supp(ak)

∥∥∥∥∥
2

+

∥∥∥∥c̃supp(ak)\Ωopt

f̃,s

∥∥∥∥
2

= ‖r̃Q‖2 +

∥∥∥∥c̃supp(ak)\Ωopt

f̃,s

∥∥∥∥
2

≤ ‖r̃Q‖2 +

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

≤
∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

.

9Recall that c̃ ∈ CIN,d is the coefficient vector of f̃ as per (3.1), and that ak ∈ CIN,d is CoSaMP’s
s-sparse approximation to x = c̃ ∈ CIN,d in its kth-iteration.

32

as we wished to show.

The next lemma upper bounds the best 2s-term approximation error of r̃ by the best
s-term approximation error of c̃. It will allow us to relate the condition (4.4) under which
Algorithm 2 succeeds to c̃.

Lemma 7. Let s ∈ [|IN,d| /2], c̃,ak ∈ CIN,d where
∥∥ak∥∥

0
≤ s, and recall that r̃ :=

c̃ − ak, h̃(ξ) :=
∑
n∈IN,d

r̃nTn(ξ), and f̃(ξ) :=
∑
n∈IN,d

c̃nTn(ξ). One can see that∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
p

≤
∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
p

holds for all p ≥ 1. As a consequence, it will always be the

case that

25
√

23s

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
1

+ 22γ
√

23s (4.5)

≤ 25
√

23s

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ 22γ
√

23s =: Γ.

Proof. A quick calculation reveals that∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥p
p

≤
∥∥∥∥r̃ − r̃Ωopt

f̃,s
∪supp(ak)

∥∥∥∥p
p

=
∑

n∈IN,d\
(

Ωopt

f̃,s
∪supp(ak)

)
∣∣∣c̃n − akn∣∣∣p

=
∑

n∈IN,d\
(

Ωopt

f̃,s
∪supp(ak)

) |c̃n|p

≤
∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥p
p

,

as we wished to show.

We are now able to assert that our support identification algorithm will work for all
2s-sparse vectors r̃Ωopt

h̃,2s

whose norms are sufficiently large with respect to the best s-term

approximation error Γ defined above in (4.5).

Lemma 8. Let the wj
` and zjk for j ∈ [2D−1] in Algorithm 2 be chosen independently at

random as per Theorem 6 above. Then, the following property will hold with probability
≥ 0.99:

33

Algorithm 2 will output a set Ω̃ ⊂ IN,d with
∣∣∣Ω̃∣∣∣ ≤ 2s that will also have∥∥∥∥r̃Ωopt

h̃,2s
∩Ω̃c

∥∥∥∥
2

≤ 0.2086

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

(4.6)

for all h = h̃opt
2s + eh as per (4.1) with coefficient vector r̃ ∈ CIN,d in the

BOS B satisfying

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> Γ, where Γ is defined in (4.5).

The runtime and sampling complexities of Algorithm 2 will remain as in Theorem 6 above.

Proof. By Lemma 7,

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> Γ implies that (4.4) holds. Thus, the result follows from

Theorem 6 combined with Lemma 5.

The following theorem is the main theorem of this section. It proves that the support
set Ω̃ found by Algorithm 2 will also contain the majority of the energy of the 2s-sparse
vector r := c̃Ωopt

f̃,s

− ak ∈ CIN,d , as needed in Section 3.

Theorem 7. (Support Identification). Let s ∈ [|IN,d| /2], c̃,ak ∈ CIN,d where
∥∥ak∥∥

0
≤ s,

and recall that r̃ := c̃ − ak, h̃(ξ) :=
∑
n∈IN,d

r̃nTn(ξ), and f̃(ξ) :=
∑
n∈IN,d

c̃nTn(ξ).

Suppose that the wj
` and zjk in Algorithm 2 are chosen independently at random as per

Theorem 6 above. Then the following property will hold with probability ≥ 0.99:

Algorithm 2 will output a set Ω̃ ⊂ IN,d with

∥∥rΩ̃c

∥∥
2
≤ 0.2086‖r‖2 + 2.4172

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

for any r = c̃Ωopt

f̃,s

− ak satisfying ‖r‖2 > Γ̄, where

Γ̄ :=
(

25
√

23s+ 1
)∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 18
√

23

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
1

+ 22γ
√

23s. (4.7)

The runtime and sampling complexities of Algorithm 2 will remain as in Theorem 6 above.

Proof. Let r′ := r̃Ωopt

h̃,2s

. Note that r̃ − r = c̃− c̃Ωopt

f̃,s

, and so

∥∥r′ − r∥∥
2

=
∥∥r′ − r̃ + r̃ − r

∥∥
2

34

≤
∥∥r′ − r̃∥∥

2
+ ‖r̃ − r‖2

=
∥∥r̃ − r′∥∥

2
+

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

≤ 2

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

, (4.8)

where the last inequality holds by Lemma 7. Thus, we have that the following holds
whenever (4.6) does:∥∥rΩ̃c

∥∥
2

=
∥∥rΩ̃c − r′Ω̃c + r′Ω̃c

∥∥
2

≤
∥∥(r − r′)Ω̃c

∥∥
2

+
∥∥r′Ω̃c

∥∥
2

≤
∥∥(r − r′)Ω̃c

∥∥
2

+ 0.2086
∥∥r′∥∥

2

≤ 2

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 0.2086
∥∥r′ − r + r

∥∥
2

≤ 2

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 0.2086
(∥∥r′ − r∥∥

2
+ ‖r‖2

)
≤ 2

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 0.2086

(
2

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ ‖r‖2
)

= 2.4172

∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

+ 0.2086 ‖r‖2 ,

where the second inequality holds if (4.6) does, and the third and fifth inequalities hold
by (4.8).

To finish we note that (4.6) will indeed hold by Lemma 8 as long as

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> Γ =

Γ̄ −
∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

. And,

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> Γ̄ −
∥∥∥∥c̃− c̃Ωopt

f̃,s

∥∥∥∥
2

will hold whenever ‖r‖2 > Γ̄ holds

by Lemma 6.

We will now focus on proving Theorem 6.

35

4.1 Proof of Theorem 6: Identifying Ωα,2s
[D] for h̃opt

2s Using Samples from

h = h̃opt
2s + eh

Our strategy for finding Ωα,2s
[D] will involve building it up from a sequence of energetic

partial index vectors of h̃opt
2s that correspond to, e.g., the disjoint subsets of indices

SEI
j = {j} for all j ∈ [D].10

Note that the energetic partial index vectors in this case will contain the entries of the
index vectors which have large associated values in r̃Ωopt

h̃,2s

. That is,

Ωα,2s

SEI
j

= Ωα,2s
{j} ⊇

nej
∣∣ ∃n ∈ Ωopt

h̃,2s
with |r̃n| ≥

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

α
√

2s
whose jth entry is n ∈ [N]

 ,

where ej ∈ IN,d is the jth standard basis vector. As a result, the set Ωα,2s

SEI
j

effectively

contains all the jth-entries of the largest-magnitude coefficient vector indices in Ωopt

h̃,2s
.

Furthermore, it is trivial to find a reasonably small superset of Ωα,2s

SEI
j

when, e.g., N is not

too large – one can simply use the set N{j} =
{
nej

∣∣ n ∈ [N]
}
⊃ Ωα,2s

SEI
j

.

Of course, the sets Ωα,2s

SEI
0
, . . . ,Ωα,2s

SEI
D−1

are of limited utility in their own right when

it comes to finding Ωα,2s
[D] . Our strategy will therefore be to use these sets to build

up a sequence of new energetic partial index sets Ωα,2s

SP
1
, . . . ,Ωα,2s

SP
D−1

each of which cor-

responds to an increasingly large subset of indices SP
j ⊆ [D]. In particular, if we define

SP
j := ∪j`=0S

EI
` = ∪j`=0{`} = [j + 1] for all j ∈ [D] \ {0} we will eventually obtain a super-

set of Ωα,2s

SP
D−1

= Ωα,2s
[D] (as desired) in a process that is analogous to the “Pairing” method

utilized in [12]. The following lemma is the basis for building up Ωα,2s
[D] by combining

energetic partial index vectors of h̃opt
2s that correspond to smaller index sets S1,S2 ⊂ [D]

in this fashion. Recall that P
(
NS
)

denotes the power set of NS for any given S ⊆ [D].

Lemma 9. Let s′ ∈ N, α ∈ (1,∞), and S1,S2 ⊂ [D] be disjoint. If T1 ∈ P
(
NS1

)
and

T2 ∈ P
(
NS2

)
are such that Ωα,s′

S1
⊆ T1 and Ωα,s′

S2
⊆ T2, then

Ωα,s′

S1∪S2
⊆ T1,2 :=

{
n+m

∣∣ n ∈ T1, m ∈ T2

}
∩ IN,d ⊆ NS1∪S2 .

10Here the “EI” in the superscript of SEI
j stands for “Entry Identification” in the terminology of [12].

In fact many other valid choices for these sets also exist – please see Algorithm 3 for the general criteria
they must satisfy.

36

Proof. Let r′ := r̃Ωopt

h̃,2s

, and note that for all n ∈ IN,d it is the case that

{
m ∈ IN,d

∣∣ mS1∪S2 = nS1∪S2

}
⊆
{
m ∈ IN,d

∣∣ mS1 = nS1

}
∩
{
m ∈ IN,d

∣∣ mS2 = nS2

}
holds. As a consequence, for any n ∈ IN,d it will be the case that both

‖r′S1;n‖22 =
∑

m∈IN,d s.t.
mS1

=nS1

∣∣r′m∣∣2 ≥ ∑
m∈IN,d s.t.

mS1∪S2
=nS1∪S2

∣∣r′m∣∣2 = ‖r′S1∪S2;n‖22

and
‖r′S2;n‖22 =

∑
m∈IN,d s.t.
mS2

=nS2

∣∣r′m∣∣2 ≥ ∑
m∈IN,d s.t.

mS1∪S2
=nS1∪S2

∣∣r′m∣∣2 = ‖r′S1∪S2;n‖22

hold. These inequalities in turn imply that Ω′1 :=
{
nS1

∣∣ n ∈ Ωα,s′

S1∪S2

}
⊆ Ωα,s′

S1
⊆ T1 and

Ω′2 :=
{
nS2

∣∣ n ∈ Ωα,s′

S1∪S2

}
⊆ Ωα,s′

S2
⊆ T2. Finally, the fact that S1 and S2 are disjoint now

implies that

Ωα,s′

S1∪S2
⊆
{
n+m

∣∣ n ∈ Ω′1, m ∈ Ω′2
}
⊆
{
n+m

∣∣ n ∈ T1, m ∈ T2

}
is true as desired.

Let SP
0 := SEI

0 . Note that applying Lemma 9 repeatedly with, e.g., S1 = SP
j , S2 = SEI

j+1,

T1 = T1,2 from the (j−1)st application of Lemma 9,11 and T2 = NS
EI
j+1 for j = 0, 1, . . . , D−2

will yield a superset of Ωα,2s
[D] on its (D− 1)st application. However, the cardinality of the

resulting superset T1,2 of Ωα,2s
S1∪S2

will also ballon to |T1| · |T2| at each step, eventually
becoming exponentially large in D on the (D − 1)st application of Lemma 9 in the worst
case. In order to prevent this worst case exponential growth in the size of the resulting
sets T1,2 we will interleave the applications of Lemma 9 with the use of an energetic-
index sieve function F2s

S1∪S2
: P

(
NS1∪S2

)
→ P

(
NS1∪S2

)
as in (4.19) which reduces the

cardinality of any T1,2 ⊇ Ωα,2s
S1∪S2

to 2s without loosing any of Ωα,2s
S1∪S2

These sieve functions
will allow Lemma 9 to be applied repeatedly as above while maintaining output sets of
small cardinality at all stages, which we can see how they work in lines 12 and 13 of
Algorithm 2.

The next theorem proves the existence of a set-valued function F2s
S : P

(
NS
)
→ P

(
NS
)

for any given S ⊆ [D] which, when given any subset T ⊂ NS containing Ωα,2s
S as per (4.3)

11with, e.g., T1 = NS
EI
0 when j = 0

37

as input, will output a smaller subset T ′ ⊂ T of cardinality at most 2s which still con-
tains Ωα,2s

S . Note that these set valued functions necessarily depend on the function h̃opt
2s

in question via the definition of Ωα,2s
S . However, it is crucial to note that all the F2s

S
considered herein only utilize a few point samples from h = h̃opt

2s + eh (i.e., noisy point
samples from h̃opt

2s) on a fixed and nonadaptive grid. More specifically, the grid on which
each F2s

S samples h depends only on 2s,S, and the BOPB B with respect to which h
is presumed to be approximately sparse, and not at all on the particular function h in
question.

Theorem 8 (Existence of Low-Complexity Energetic-Index Sieve Functions). Choose
t′ ∈ [2D] and any desired S0, . . . ,St′ ⊆ [D]. For all j ∈ [t′] there exists an associated
energetic-index sieve function F2s

Sj : P
(
NSj

)
→ P

(
NSj

)
for which both

1. Ωα,2s
Sj ∩ T ⊆ F

2s
Sj (T) holds for all T ∈ P

(
NSj

)
, and

2.
∣∣∣F2s
Sj (T)

∣∣∣ ≤ 2s holds for all T ∈ P
(
NSj

)
,

are true for all h : D → C as above (4.1) that satisfy∥∥∥h̃opt
2s

∥∥∥
L2(D,µ)

=

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> 25α
√
s

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
2

+ 18α

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
1

+ 22αγ
√
s.12

Furthermore, each F2s
Sj : P

(
NSj

)
→ P

(
NSj

)
is computed using evaluations of any given

h = h̃opt
2s + eh at mj

1m
j
2 fixed and nonadaptive grid points

{(
wj
` , z

j
k

)}
`∈[mj

1],k∈[mj
2]
⊂ D,

mj
1,m

j
2 ∈ N, where wj

` ∈ DSj and zjk ∈ DScj for all j ∈ [t′], ` ∈ [mj
1], and k ∈ [mj

2].

If the BOS constants Kj are 1 for all but at most d̃ ∈ Z ∩ [0, D] BOS basis sets Bj,
then each such F2s

Sj : P
(
NSj

)
→ P

(
NSj

)
above requires only

mj = mj
1m

j
2 = O

(
K4d̃
∞s

3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
evaluations of any given h = h̃opt

2s + eh at mj fixed and nonadaptive grid points ⊂ D.13 As
a result, F2s

Sj (T) can be computed in just O(mj |T |)-time for any given T ∈ P
(
NSj

)
and

h in this case.14 If, on the other hand, K0 = 1 then each such F2s
Sj : P

(
NSj

)
→ P

(
NSj

)
12The constants here have been rounded up to the nearest integer from those implied by Theorem 10

and Lemma 14 after substituting s′ = 2s.
13It is important to emphasize here that the grid on which we must evaluate each function f is a fixed

grid which does not change depending on h.
14Herein we assume that h has been evaluated in advance on our non-adaptive grid so that its values

38

requires only

m′j = mj
1m

j
2 = O

(
K4d
∞s

3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
evaluations of any given h at m′j fixed and nonadaptive grid points in D. As a result,

F2s
Sj (T) can be computed in just O(m′j |T |)-time for any given T ∈ P

(
NSj

)
and h in this

case.

Proof. See Section 4.2 below. The proof follows by applying Theorem 10 with eh = h̃ −
h̃opt

2s +(h−h̃) = h−h̃opt
2s for each set S0, . . . ,St′ . After recalling that supξ∈D

∣∣∣(h− h̃) (ξ)
∣∣∣ ≤

γ we can see that Lemma 14 will also apply in each case. Finally, the runtime and sampling
complexity bounds follow from Lemma 15 and Remark 3.

Remark 1. It is important to note that Section 4.2 proves more than mere existence of
the collection of low-complexity energetic-index sieve functions promised in Theorem 8.
In fact it proves their existence by proving that one can generate such a collection with
high probability ≥, e.g., 0.99 by letting {wj

`}`∈[mj
1]
⊂ DSj be mj

1 sampling points drawn

independently at random according to µSj , and by letting {zjk}k∈[mj
2]
⊂ DScj be mj

2 sampling

points drawn independently at random according to µScj , for all j ∈ [t′]. This is done by
showing that randomly selecting the nonadaptive grid points in this fashion ultimately
guarantees that their related random sampling matrices in (4.10) and (4.13) have well
behaved restricted isometry constants. See Remark 3 for additional details and related
discussion.

With Lemma 9 and Theorem 8 in hand one can now see that Algorithm 3 will be
guaranteed to return a superset Ω̃ of Ωα,2s

[D] whose cardinality is at most 2s.

Theorem 9. Let SEI
0 , . . . ,SEI

t ⊂ [D] form a partition of [D] for t ∈ [D] \ {0} and set

SP
j := ∪j`=0S

EI
` ⊆ [D] for all j ∈ [t+ 1] \ {0} as per Algorithm 3. Let F2s

SEI
j

: P
(
NS

EI
j

)
→

P
(
NS

EI
j

)
and F2s

SP
j

: P
(
NS

P
j

)
→ P

(
NS

P
j

)
be their associated energetic-index sieve

functions. When executed using these energetic-index sieve functions Algorithm 3 will

output a set Ω̃ with
∣∣∣Ω̃∣∣∣ ≤ 2s that will also have Ωα,2s

[D] ⊂ Ω̃ provided that h = h̃opt
2s + eh has

∥∥∥h̃opt
2s

∥∥∥
L2(D,µ)

=

∥∥∥∥r̃Ωopt

h̃,2s

∥∥∥∥
2

> 25α
√
s

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
2

+ 18α

∥∥∥∥r̃ − r̃Ωopt

h̃,2s

∥∥∥∥
1

+ 22αγ
√
s. (4.9)

at each grid point can be retrieved in O(1)-time. In addition, note that setting d = D above still leads to
sampling and runtime complexities for each sieve function that scale only polynomially in D. This is due
to d̃ being independent of d.

39

Algorithm 3 Support Identification

1: procedure Generalized SupportID
2: Parameters: s ∈ N, t ∈ [D] \ {0}, A Partition of [D] into SEI

0 , . . . ,SEI
t ⊂ [D], and

the Associated Pairing Index Sets SP
j := ∪j`=0S

EI
` ⊆ [D] for all j ∈ [t+ 1] \ {0}.

3: Input: vSID ∈ C

∑2t
j=0 m

j
1m

j
2 split into 2t + 1 blocks{

h
(
%SEI

j

(
wj
` , z

j
k

))}j∈[t+1]

`∈[mj
1],k∈[mj

2]

⋃ {
h
(
%SP

j−t

(
wj
` , z

j
k

))}j∈[2t+1]\[t+1]

`∈[mj
1],k∈[mj

2]
indexed by j

w/ wj
` ∈ DSEI

j
∀ j ∈ [t+ 1] & ` ∈ [mj

1], wj
` ∈ DSP

j−t
∀ j ∈ [2t+ 1] \ [t+ 1] & ` ∈

[
mj

1

]
,

zjk ∈ D(SEI
j)

c ∀ j ∈ [t+1] & k ∈ [mj
2], & zjk ∈ D(SP

j−t)
c ∀ j ∈ [2t+1]\[t+1] & k ∈

[
mj

2

]
.

4: Output: A set Ω̃ ⊃ Ωα,2s
[D]

5: Compute Nj ← F2s
SEI
j

(
NS

EI
j

)
using

{
h
(
%SEI

j

(
wj
` , z

j
k

))}
`∈[mj

1],k∈[mj
2]

for each j ∈

[t+ 1]
6: Tt ← N0

7: for j = t+ 1 up to 2t do

8: T ′j ←
{
n+m

∣∣ n ∈ Tj−1, m ∈ Nj−t
}
∩ IN,d ⊆ NS

P
j−t

9: Tj ← F2s
SP
j−t

(
T ′j
)

using
{
h
(
%SP

j−t

(
wj
` , z

j
k

))}
`∈[mj

1],k∈[mj
2]

10: end for
11: Return Ω̃← T2t

12: end procedure

The total number of function evaluations required 15 by Algorithm 3 is

mSID = O
(
tK4d̃
∞s

3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if the BOS constants Kj are 1 for all but at most d̃ ∈ Z∩ [0, D] BOS basis sets Bj, and is

m′SID = O
(
tK4d
∞s

3d4 · log4

(
DN

d

)
log2(s) log2(D)

)
if K0 = 1.

The runtime complexity of Algorithm 3 will be

O
((

s5 + s3 max
j∈[t+1]

∣∣∣NSEI
j

∣∣∣) tK4d̃
∞d

4 · log4

(
DN

d

)
log2(s) log2(D)

)
15In the bounds below t may be upper bounded by D.

40

if the BOS constants Kj are 1 for all but at most d̃ ∈ Z ∩ [0, D] BOS basis sets Bj, and

O
((

s5 + s3 max
j∈[t+1]

∣∣∣NSEI
j

∣∣∣) tK4d
∞d

4 · log4

(
DN

d

)
log2(s) log2(D)

)
if K0 = 1.

Proof. The proof follows directly from Lemma 9 and Theorem 8.

Remark 2. Note that Algorithm 2 is a special case of Algorithm 3 with t = D − 1,
SEI
j := {j} for all j ∈ [D], SP

j := ∪j`=0S
EI
` = ∪j`=0{`} ⊆ [D] for all j ∈ [D] \ {0},

and where the sieve functions F2s
SEI
j

, F2s
SP
j−t

have been written down explicitly using (4.16),

(4.18), and (4.19). Therein the F2s
SEI
j

(
NS

EI
j

)
are computed for all j ∈ [t + 1] by lines 5

– 8 of Algorithm 2, and each F2s
SP
j−t

(
T ′j
)

in Algorithm 3 is computed by lines 12 – 13 of

Algorithm 2.

Though dedicated to proving Theorem 8, this next subsection will be initially focussed

on learning Ωα,s′

S for arbitrary BOPB-sparse functions with h = h̃ = h̃opt

h̃,s′
for which

r′ = r̃Ωopt

h̃,s′
. It will then be generalized to cover more general functions h of the type

discussed above (4.1) toward its end as an extension of the noisy sparse case. A proof of
Theorem 8 may then be obtained by setting s′ = 2s.

4.2 Proof of Theorem 8: Generalized Entry Identification & Pairing

In the vast majority of this subsection we will be considering an arbitrary function
h̃ : D → C of D variables as per (4.2) whose coefficient vector r̃ ∈ CIN,d is only nonzero
for entries indexed by index vectors q ∈ IN,d. In particular, we will be focussing almost
exclusively on the development of efficient strategies for learning about the support of
the coefficient vector r̃ of such h̃ in the special case where r̃ is s′-sparse so that h̃ = h̃opt

s′

and r̃ = r̃Ωopt

h̃,s′
. Our first lemma does this by telling us how to estimate the `2-norm of

any r′′ =

(
r̃Ωopt

h̃,s′

)
S;n

= r̃{
q∈Ωopt

h̃,s′

∣∣ qS=nS
} ∈ CIN,d in that case (i.e., how to estimate

of the energy of all the coefficients of h̃opt
s′ whose index vectors q ∈ IN,d match another

fixed index vector n ∈ IN,d in all index positions S ⊂ [D]) by using just a few inner
products with “simpler” functions of only |S| < D variables. The idea is that these inner
products will be easy to approximate numerically for |S| small. As a result, one can hope
to learn about the index vectors of the nonzero entries of any such r′′ by approximately
computing just a few inner products involving functions of just a few variables in order

41

to, e.g., discover values of n for which ‖r′′‖2 is large.

Lemma 10. Let δ ∈ (0, 3/4], S ⊂ [D], and {zk}k∈[m2] ⊂ DSc be m2 sampling points
drawn independently at random according to µSc in order to form a zero-padded random
sampling matrix ΦSc;0 ∈ Cm2×|IN,d| for the BOS BSc as in (2.3) with entries

(ΦSc;0)k,q :=

{
TSc;q(zk) if qS = 0 & q ∈ IN,d
0 otherwise

(4.10)

indexed by k ∈ [m2] and q ∈ IN,d. Suppose the nonzero columns of 1√
m2

ΦSc;0 have the

restricted isometry property (RIP) of order (s, δ). Then, for all n ∈ IN,d ⊆ [N]D, vectors
of additive evaluation errors eh ∈ Cm2, and functions h̃ as per (4.2) one will have∣∣∣∣∣∣

√√√√ ∑
k∈[m2]

1

m2

∣∣∣∣〈(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

+ ehk

∣∣∣∣2 − ‖r′′‖2
∣∣∣∣∣∣ ≤ 2

3
δ‖r′′‖2 +

‖eh‖2√
m2

(4.11)

where r′′ := r̃{
q∈Ωopt

h̃,s′

∣∣ qS=nS
}.

Proof. Consider the zero-padded random sampling matrix ΦSc;n ∈ Cm2×|IN,d| for the BOS
BSc as in (2.3) with entries

(ΦSc;n)k,q :=

{
TSc;q(zk) if qS = nS & q ∈ IN,d
0 otherwise

(4.12)

indexed by k ∈ [m2] and q ∈ IN,d. Note that qS = nS & q ∈ IN,d =⇒ (q,0)Sc ∈ IN,d
for all d ∈ [D + 1] \ {0},Sc ⊂ [D], and n, q ∈ IN,d. As a result, the nonzero columns of
ΦSc;0 will contain the nonzero columns of ΦSc;n as a subset.16 This further implies that
the matrix consisting of the nonzero columns of 1√

m2
ΦSc;n will also have the restricted

isometry property (RIP) of order (s, δ).

Applying Lemma 3 together with the definition of h̃opt
s′ we now have that

∑
k∈[m2]

1

m2

∣∣∣∣〈(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

+ ehk

∣∣∣∣2 =
∑
k∈[m2]

∣∣∣∣∣ 1
√
m2

〈 (
r̃Ωopt

h̃,s′

)
S;n

,ΦSc;n;zk

〉
+

ehk√
m2

∣∣∣∣∣
2

.

16Note that the nonzero columns of ΦSc;n will be indexed by different q in ΦSc;0. However, this
reindexing will ultimately just represent a permutation of the nonzero columns of ΦSc;n as a submatrix
of ΦSc;0. And, permuting the columns of a matrix does not change its restricted isometry constants.

42

Noting now that each vector ΦSc;n;zk as per (2.6) can be replaced by an equivalent row
of ΦSc;n in (4.12) we can further see that√√√√ ∑

k∈[m2]

1

m2

∣∣∣∣〈(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

+ ehk

∣∣∣∣2 =

√√√√ ∑
k∈[m2]

∣∣∣∣ 1
√
m2

(
ΦSc;n(r̃Ωopt

h̃,s′
)S;n

)
k

+
ehk√
m2

∣∣∣∣2

=

∥∥∥∥ 1
√
m2

ΦSc;n(r̃Ωopt

h̃,s′
)S;n +

eh
√
m2

∥∥∥∥
2

=

∥∥∥∥ 1
√
m2

ΦSc;n r
′′ +

eh
√
m2

∥∥∥∥
2

.

Using that ΦSc;n has the restricted isometry property (RIP) of order (s, δ) together with
the (reverse) triangle inequality on this last line we now can see that

√
1− δ‖r′′‖2 −

‖eh‖2√
m2
≤

√√√√ ∑
k∈[m2]

1

m2

∣∣∣∣〈(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

+ ehk

∣∣∣∣2

≤
√

1 + δ‖r′′‖2 +
‖eh‖2√
m2

.

After subtracting ‖r′′‖2 from the quantities in the inequality above, we finally use the

bounds (
√

1 + δ − 1)
√

1+δ+1√
1+δ+1

= δ√
1+δ+1

< δ
2 and (

√
1− δ − 1)

√
1−δ+1√
1−δ+1

= −δ√
1−δ+1

≥ −2
3δ to

finish the proof.

Lemma 10 yields an alternate entry identification technique to that provided in Sec-
tion 4.1 of [12]. In particular, if Sc = [D] \ {j} for some j ∈ [D] the inner prod-

ucts
〈

(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

are just one-dimensional integrals that can be computed

to high accuracy for any desired n ∈ IN,d using only O(N) function evaluations of
(h̃opt
s′)Sc;zk : DS → C via, e.g., a quadrature rule whenever the the basis functions in

the jth-dimension, Bj = {TS;n | n ∈ IN,d}, are polynomials of degree at most N . If Bj
is either the Fourier or Chebyshev basis and N is very large then these one-dimensional
integrals can also be computed for all n ∈ IN,d in sublinear-in-N time since (h̃opt

s′)Sc;zk

will be Bj-sparse (see, e.g., [20, 21, 19, 24, 25, 3, 22, 26, 39, 31, 23, 5]).

When |Sc| � D − 1 the situation becomes more difficult. However, to efficiently

evaluate the higher-dimensional inner products
〈

(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

that arise in

these settings one can instead utilize non-adaptive random sampling techniques motivated
by compressive sensing theory. The following lemma does this by quantifying how well
the estimator

1

m1

∑
`∈[m1]

(h̃opt
s′)Sc;zk(w`) TS;n(w`)

43

based on the m1 randomly chosen grid points {w`}`∈[m1] ⊂ DS approximates all such〈
(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

.

Lemma 11. Let δ̃ ∈ (0, 1), S ⊂ [D], and {w`}`∈[m1] ⊂ DS be m1 sampling points drawn
independently at random according to µS in order to form a zero-padded random sampling
matrix ΦS;0 ∈ Cm1×|IN,d| for the BOS BS in (2.3) with entries

(ΦS;0)`,q :=

{
TS;q(w`) if qSc = 0 & q ∈ IN,d
0 otherwise

(4.13)

indexed by ` ∈ [m1] and q ∈ IN,d. Suppose the nonzero columns of 1√
m1

ΦS;0 have the

restricted isometry property (RIP) of order (2, δ̃), and let

ehk :=
1

m1

∑
`∈[m1]

(h̃opt
s′)Sc;zk(w`) TS;n(w`)−

〈
(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

for any desired n ∈ IN,d ⊆ [N]D, function h̃ as per (4.2), and point zk ∈ DSc. Then,∣∣∣ehk∣∣∣ ≤ ∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

δ̃

∥∥∥∥(ΦSc;0;zk)Ωopt

h̃,s′

∥∥∥∥
2

(4.14)

where ΦSc;0;zk is defined as in (2.6).

Proof. We begin by noting that

1

m1

∑
`∈[m1]

(h̃opt
s′)Sc;zk(w`) TS;n(w`) =

∑
q∈Ωopt

h̃,s′

r̃q TSc;q(zk) νS (q,n) (4.15)

where

νS (q,n) :=
∑
`∈[m1]

1
√
m1

TS;q(w`)
1
√
m1

TS;n(w`)

=

〈
1
√
m1

(ΦS;0)(q,0)S
,

1
√
m1

(ΦS;0)(n,0)S

〉
.

Appealing to standard results concerning coherence in, e.g., Chapter 6 of [17] one can see
that |νS (q,n)− 1| ≤ δ̃ holds if nS = qS , and that |νS (q,n)| ≤ δ̃ holds if nS 6= qS .

Let Ω′ :=
{
q ∈ Ωopt

h̃,s′
| qS = nS

}
⊂ Ωopt

h̃,s′
, and Ω′′ := Ωopt

h̃,s′
\ Ω′. Using (4.15) one has

that∣∣∣∣∣ 1

m1

∑
`∈[m1]

(h̃opt
s′)Sc;zk(w`) TS;n(w`)−

∑
q∈Ω′

r̃qTSc;q(zk)

∣∣∣∣∣
44

=

∣∣∣∣∣∣
∑
q∈Ω′

r̃qTSc;q(zk) (νS (q,n)− 1) +
∑
q∈Ω′′

r̃qTSc;q(zk)νS (q,n)

∣∣∣∣∣∣
≤
∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

√∑
q∈Ω′

|TSc;q(zk) (νS (q,n)− 1)|2 +
∑
q∈Ω′′

|TSc;q(zk) νS (q,n)|2

where the last inequality follows from Cauchy-Schwarz. Continuing from this the last line
we can further see that∣∣∣∣∣ 1

m1

∑
`∈[m1]

(h̃opt
s′)Sc;zk(w`) TS;n(w`)−

∑
q∈Ω′

r̃qTSc;q(zk)

∣∣∣∣∣
≤
∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

δ̃

√∑
q∈Ω′

|TSc;q(zk)|2 +
∑
q∈Ω′′

|TSc;q(zk)|2

=

∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

δ̃

∥∥∥∥(ΦSc;0;zk)Ωopt

h̃,s′

∥∥∥∥
2

.

To finish we note that

∑
q∈Ω′

r̃qTSc;q(zk) =

〈 (
r̃Ωopt

h̃,s′

)
S;n

,ΦSc;n;zk

〉
=

〈(
h̃opt
s′

)
Sc;zk

, TS;n

〉
(DS ,µS)

by Lemma 3. The desired result follows.

Choose any n ∈ IN,d and S ⊂ [D] you like. Using Lemma 11 to approximate the inner
product appearing in Lemma 10’s (4.11) then yields the following estimator for accurately
approximating the `2-norm of r′′ := r̃{

q∈Ωopt

h̃,s′

∣∣ qS=nS
} ∈ CIN,d for the coefficient vector

r̃ of any function h̃ as in (4.2). The estimator is defined for any function u : D → C,
S ⊂ [D], and n ∈ IN,d to be

EuS;n :=
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

uSc;zk(w`) TS;n(w`)

∣∣∣∣∣∣
2

(4.16)

for fixed nodes {w`}`∈[m1] ⊂ DS , and {zk}k∈[m2] ⊂ DSc . Note that (4.16) is essentially
identical to the pairing energy estimator defined in Section 4.2 of [12]. The following
lemma provides an error guarantee for this estimator that matches the quality of those in
[12] despite having a simpler proof (see Lemma 7 in [12]).

45

Lemma 12. Let S ⊂ [D], δ ∈ (0, 3/4], δ̃ ∈ (0, 1/s′], and m1,m2 ∈ N. Furthermore, sup-
pose that {w`}`∈[m1] ⊂ DS , and {zk}k∈[m2] ⊂ DSc satisfy the RIP assumptions concerning

(4.13) and (4.10) in Lemmas 11 and 10, respectively. Then, for all n ∈ IN,d ⊆ [N]D and
functions h̃ as per (4.2) one will have∣∣∣∣∣

√
E
h̃opt

s′
S;n − ‖r

′′‖2

∣∣∣∣∣ ≤ 2

3
δ‖r′′‖2 +

√
7

4

√
δ̃ ·
∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

,

where r′′ := r̃{
q∈Ωopt

h̃,s′

∣∣ qS=nS
}.

Proof. Applying Lemma 10 we can immediately see that∣∣∣∣∣
√
E
h̃opt

s′
S;n − ‖r

′′‖2

∣∣∣∣∣ ≤ 2

3
δ‖r′′‖2 +

‖eh‖2√
m2

(4.17)

where eh ∈ Cm2 has its entries given by

ehk :=
1

m1

∑
`∈[m1]

(h̃opt
s′)Sc;zk(w`) TS;n(w`)−

〈
(h̃opt
s′)Sc;zk , TS;n

〉
(DS ,µS)

.

Thus, it suffices to bound ‖eh‖2 in order to obtain our final result.

Applying Lemma 11 we can see that

‖eh‖22 ≤
∑
k∈[m2]

∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥2

2

δ̃2

∥∥∥∥(ΦSc;0;zk)Ωopt

h̃,s′

∥∥∥∥2

2

=

∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥2

2

δ̃2

∥∥∥∥(ΦSc;0)Ωopt

h̃,s′

∥∥∥∥2

F

,

where we have used that (ΦSc;0;zk)Ωopt

h̃,s′
are the rows of the submatrix (ΦSc;0)Ωopt

h̃,s′
∈ Cm2×s′

of ΦSc;0 in (4.10). Using the RIP property of the nonzero columns of 1√
m2

ΦSc;0 we can

now finish bounding ‖eh‖22 by noting that

‖eh‖22 ≤
∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥2

2

δ̃2 · s′ ·m2(1 + δ) ≤ 7

4
m2

∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥2

2

δ̃

where we have used that δ ∈ (0, 3/4] and that δ̃ ∈ (0, 1/s′]. Substituting this last bound
into (4.17) now finishes the proof.

46

Though useful, Lemma 12 presupposes that one has access to noiseless samples from
h̃opt
s′ . This will rarely be the case in practice. The next lemma bounds the error of the

estimator (4.16) in the setting where one instead has noisy samples from h̃opt
s′ . Such noisy

samples will be represented with the help of an arbitrary additive noise/error function,
eh : D → C, below.

Lemma 13. Let S ⊂ [D], δ ∈ (0, 3/4], δ̃ ∈ (0, 1/s′], and m1,m2 ∈ N. Furthermore, sup-
pose that {w`}`∈[m1] ⊂ DS , and {zk}k∈[m2] ⊂ DSc satisfy the RIP assumptions concerning

(4.13) and (4.10) in Lemmas 11 and 10, respectively. Then, for all n ∈ IN,d ⊆ [N]D, h̃
as per (4.2), and additive error functions eh : D → C one will have∣∣∣∣∣

√
E
h̃opt

s′ +eh
S;n − ‖r′′‖2

∣∣∣∣∣ ≤ 2

3
δ‖r′′‖2 +

√
7

4
δ̃ ·
∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

+

√
2‖EhS‖F√
m1m2

,

where r′′ := r̃{
q∈Ωopt

h̃,s′

∣∣ qS=nS
} and EhS ∈ Cm1×m2 has entries (EhS)`,k = eh(%S(w`, zk))

with the permutation function %S : DS ×DSc → D defined in (2.4).

Proof. Note that √
E
h̃opt

s′
S;n −

√
EehS;n ≤

√
E
h̃opt

s′ +eh
S;n ≤

√
E
h̃opt

s′
S;n +

√
EehS;n

by the (reverse) triangle inequality. As a result one can immediately see that∣∣∣∣∣
√
E
h̃opt

s′ +eh
S;n − ‖r′′‖2

∣∣∣∣∣ ≤
∣∣∣∣∣
√
E
h̃opt

s′ +eh
S;n −

√
E
h̃opt

s′
S;n

∣∣∣∣∣+

∣∣∣∣∣
√
E
h̃opt

s′
S;n − ‖r

′′‖2

∣∣∣∣∣
≤
√
EehS;n +

2

3
δ‖r′′‖2 +

√
7

4
δ̃ ·
∥∥∥∥r̃Ωopt

h̃,s′

∥∥∥∥
2

where the bound on the second term above follows from Lemma 12. It remains to show
that

√
EehS;n ≤

√
2‖EhS‖F√
m1m2

.

Define v ∈ Cm2 by vk := 1√
m1

〈
(EhS)k,

1√
m1

(ΦS;0)(n,0)S

〉
where ΦS;0 is defined in

(4.13), and note that |vk| ≤ 1√
m1

∥∥(EhS)k
∥∥

2

∥∥∥ 1√
m1

(ΦS;0)(n,0)S

∥∥∥
2
. Furthermore,∥∥∥∥ 1

√
m1

(ΦS;0)(n,0)S

∥∥∥∥
2

=

∥∥∥∥ 1
√
m1

(ΦS;0){(n,0)S ,(ñ,0)S}

[
1
0

]∥∥∥∥
2

≤
√

1 + δ̃ ≤
√

1 +
1

s′
≤
√

2

for any ñ 6= n. Thus, |vk| ≤
√

2
m1

∥∥(EhS)k
∥∥

2
. As a result,

√
EehS;n = 1√

m2
‖v‖2 ≤

√
2‖EhS‖F√
m1m2

.

47

For any given S ⊆ [D] we denote the power set of NS by P
(
NS
)
. In the final theorem

of this subsection we will prove that the energy estimator in (4.16) can be used for an
arbitrary s′-sparse function h̃opt

s′ to define a new set-valued function Fs′S : P
(
NS
)
→

P
(
NS
)

for each S which, when given any subset T ⊂ NS containing the heavy set

Ωα,s′

S as per (4.3) as input, will output a smaller subset T ′ ⊂ T which still contains Ωα,s′

S .
These set-valued functions were also called “energetic-index sieve function” in Section 4.1
and will then be used to iteratively build up subsets T of controlled cardinality for larger
and larger sets of indices S until we eventually have a set of full index vectors T ′′ ⊂ IN,d
which contains all of Ωα,s′

[D] . This set of full index vectors T ′′ will then be able to be used

as an accurate estimate of Ωopt

h̃,s′
, the support of h̃opt

s′ .

Before we can state our final theorem we must define the set-valued functions Fs′S :
P
(
NS
)
→ P

(
NS
)

in question. For a given S ⊆ [D], T ⊆ NS , h̃ as per (4.2), and additive
error function eh : D → C, let an ordering of the elements of T , n1,n2, · · · ,n|T | ∈ T , be
defined by

E
h̃opt

s′ +eh
S;n1

≥ E
h̃opt

s′ +eh
S;n2

≥ E
h̃opt

s′ +eh
S;n3

≥ . . . ≥ E
h̃opt

s′ +eh
S;n|T |

(4.18)

with ties broken lexicographically. We define Fs′S based on this ordering by

Fs′S (T) :=
{
n1,n2, · · · ,nmin(s′,|T |)

}
⊆ T . (4.19)

The following theorem proves that Ωα,s′

S ∩T ⊆ Fs′S (T) provided that the additive error eh
is sufficiently mild.

Theorem 10 (Entry Identification and Pairing). Let S ⊆ [D] with |S| > 0, δ ∈ (0, 1/2],
δ̃ ∈

(
0, 1

256α2s′

]
, and m1,m2 ∈ N. Furthermore, suppose that {w`}`∈[m1] ⊂ DS , and

{zk}k∈[m2] ⊂ DSc satisfy the RIP assumptions concerning (4.13) and (4.10) in Lemmas 11

and 10, respectively. Then, Ωα,s′

S ∩ T ⊆ Fs′S (T) for all s′-sparse h̃ = h̃opt
s′ , T ⊆ NS , and

additive error functions eh : D → C provided that

‖r̃‖2 = ‖r̃Ωopt

h̃,s′
‖2 >

6α
√
s′

√
m1m2

· ‖EhS‖F (4.20)

holds, where EhS ∈ Cm1×m2 has entries (EhS)`,k = eh(%S(w`, zk)) with the permutation
function %S : DS ×DSc → D defined in (2.4).

Proof. We will focus on the case where |T | > s′ since the result holds trivially when

|T | ≤ s′. Suppose for the sake of contradiction that m ∈ Ωα,s′

S ∩T , but that m /∈ Fs′S (T).

It must then be the case that E
h̃opt

s′ +eh
S;k ≥ E

h̃opt

s′ +eh
S;m for some k ∈ T with kS /∈ Ωopt

s′,S :=

48

{
qS
∣∣ q ∈ Ωopt

h̃,s′

}
since Ωα,s′

S ⊂ Ωopt
s′,S and |Fs′S (T)| = s′ ≥ |Ωopt

s′,S |. Thus, ‖r̃S;k‖2 = 0. As a

result, Lemma 13 implies that√
E
h̃opt

s′ +eh
S;k ≤

√
7

4
δ̃ · ‖r̃‖2 +

√
2‖EhS‖F√
m1m2

≤
√

7

32

‖r̃‖2
α
√
s′

+

√
2‖EhS‖F√
m1m2

=: ε. (4.21)

On the other hand, Lemma 13 also implies that

√
E
h̃opt

s′ +eh
S;m ≥ ‖r̃S;m‖2(1 − 2

3δ) − ε.

Combining this with (4.21), we have 2ε
1− 2

3
δ
≥ ‖r̃S;m‖2. Since δ ≤ 1

2 , it must also be the

case that

3ε ≥ 2ε

1− 2
3δ
≥ ‖r̃S;m‖2 ≥

‖r̃‖2
α
√
s′
.

However, it is impossible that 4α
√
s′ε ≥ ‖r̃‖2 since by assumption

3α
√
s′ε = 3α

√
s′

(√
7

32

‖r̃‖2
α
√
s′

+

√
2‖EhS‖F√
m1m2

)
< 3α

√
s′

(√
7

32

‖r̃‖2
α
√
s′

+

√
2 ‖r̃‖2

6α
√
s′

)
< ‖r̃‖2 .

Hence, m ∈ Ωα,s′

S ∩ T =⇒ m ∈ Fs′S (T).

Theorem 10 forms the basis of our support identification strategy. As such, it behooves
us to investigate its associate resource demands and error performance more closely. We
do this in the next subsection.

4.2.1 Associated Runtime, Sampling, and Error Bounds

The following lemmas provide evaluation complexity, sampling, and error bounds for the
set valued functions Fs′S : P

(
NS
)
→ P

(
NS
)

defined in (4.18) – (4.19). We will begin by

providing more meaningful error bounds for the case where the function h̃ in question is
not exactly BOPB-sparse.

Lemma 14. Let S ⊆ [D] with |S| > 0, δ ∈ (0, 1/2], δ̃ ∈
(
0, 1

256α2s′

]
, γ ∈ R+, and

m1,m2 ∈ N. Furthermore, suppose that {w`}`∈[m1] ⊂ DS , and {zk}k∈[m2] ⊂ DSc satisfy
the RIP assumptions concerning (4.13) and (4.10) in Lemmas 11 and 10, respectively.
Finally, suppose also that eh = h̃ − h̃opt

s′ + e′ for an arbitrary function e′ : D → C with
supξ∈D|e′(ξ)| ≤ γ. Then, the additive sampling error EhS ∈ Cm1×m2 satisfies

‖EhS‖F√
m1m2

≤
√

771

512

∥∥∥∥r̃ − r̃Ωopt

h̃,s′

∥∥∥∥
2

+

√
771

512 s′

∥∥∥∥r̃ − r̃Ωopt

h̃,s′

∥∥∥∥
1

+ γ

where EhS has entries (EhS)`,k = eh (%S(w`, zk)) as in Theorem 10.

49

Proof. Note that

‖EhS‖F√
m1m2

≤ γ +
1

√
m1m2

√∑
`,k

∣∣∣(h̃− h̃opt
s′

)
(%S(w`, zk))

∣∣∣2

= γ +
1

√
m1m2

√√√√∑
`,k

∣∣∣∣〈r̃ − r̃Ωopt

h̃,s′
,Φ∗(`,k)

〉∣∣∣∣2
=

∥∥∥∥ 1
√
m1m2

Φ

(
r̃ − r̃Ωopt

h̃,s′

)∥∥∥∥
2

+ γ, (4.22)

where Φ ∈ Cm1m2×|IN,d| has entries given by Φ(`,k),n = Tn(%S(w`, zk)). Note also that
1√

m1m2
Φ consists of a subset of the columns of the Kronecker product

(
1√
m1

ΦS;0

)
⊗(

1√
m2

ΦSc;0

)
where ΦS;0 ∈ Cm1×|IN,d| is defined in (4.13), and ΦSc;0 ∈ Cm2×|IN,d| is

defined in (4.10). Furthermore, Proposition 6.6 of [17] implies that the nonzero columns
of 1√

m1
ΦS;0 also has the RIP of order (s′, 1

256α2) since it has the RIP of order (2, 1
256α2s′).

Hence, 1√
m1m2

Φ has the RIP of order
(
s′,
(
1 + 1

256α2

) (
1 + 1

2

)
− 1
)

by Lemma 2 of [15], and

consequently of order
(
s′, 259

512

)
for α ≥ 1. Returning to (4.22), we can now use Lemma 4

to see that

‖EhS‖F√
m1m2

≤
√

771

512

∥∥∥∥r̃ − r̃Ωopt

h̃,s′

∥∥∥∥
2

+

√
771

512s′

∥∥∥∥r̃ − r̃Ωopt

h̃,s′

∥∥∥∥
1

+ γ

as desired.

The next lemma tells us how many evaluation points we need to randomly generate
in Lemmas 11 and 10 before we can be sure to have the RIP properties required by both
Theorem 10 and Lemma 14 above hold with high probability.

Lemma 15. Let S ⊆ [D], δ ∈ (0, 1/2], and δ̃ =
(
0, 1

256α2s′

]
. Furthermore, suppose that

m1,m2, s
′, N,D ∈ Z+ \ {1}, d ∈ Z ∩ [1, D], and p ∈ (0, 1) satisfy

m1 ≥ a1α
4K2
S(s′)2 ·max

{
d ln

(
DN

d

)
ln(m1), ln

(
p−1
)}

,

and

m2 ≥ a2K
2
Scδ
−2s′ ·max

{
d ln2(s′) ln

(
DN

d

)
ln(m2), ln

(
p−1
)}

,

where a1, a2 ∈ R+ are universal constants. Then, the samples {w`}`∈[m1] ⊂ DS and
{zk}k∈[m2] ⊂ DSc will both simultaneously satisfy their respective RIP assumptions con-
cerning (4.13) and (4.10) in Lemmas 11 and 10 above with probability at least 1 − p.

50

Proof. The bounds on both m1 and m2 follow from applications of Theorem 2. To bound
m1 we note that the normalized nonzero columns of (4.13) need to have the RIP of order
(2, δ̃), and have an associated BOS constant of KS . Furthermore, there will never be more
than

|IN,d| =
(
D

d

)
Nd ≤

(
eD

d

)d
Nd =

(
eDN

d

)d
(4.23)

nonzero columns of (4.13) for any choice of S ⊆ [D]. As a consequence we can see that it
suffices to have

m1 ≥ a′1K
2
S δ̃
−2 ·max

{
d ln

(
DN

d

)
ln(m1), ln

(
p−1
)}

≥ a1α
4K2
S(s′)2 ·max

{
d ln

(
DN

d

)
ln(m1), ln

(
p−1
)}

in order to satisfy the required RIP conditions for (4.13) with probability at least 1−p/2.

To bound m2 we note that the normalized nonzero columns of (4.10) need to have the
RIP of order (s′, δ), and have an associated BOS constant of KSc . As a result, (4.23)
together with Theorem 2 implies that it suffices to have

m2 ≥ a2K
2
Scδ
−2s′ ·max

{
d ln2(s′) ln

(
DN

d

)
ln(m2), ln

(
p−1
)}

in order to satisfy the required RIP conditions for (4.10) with probability at least 1−p/2.
The final desired probability of success now results from the union bound.

Remark 3. To simplify the appearance of our bounds from Lemma 15 we will make use
of the following additional facts and mild assumptions. First, we will assume hereafter
that both m1 and m2 are less than |IN,d|. We consider this a reasonable assumption given
that the techniques presented herein should only be used in situations where this is the
case. Furthermore, we will use δ = 1/2 above as this is its largest valid parameter setting,
and will also consider α to be a universal constant given that it is ultimately set to a fixed
value. Finally, we will also replace our probability of failure parameter p by c/2D for some
small constant c < 0.01 (for example) in anticipation of wanting to survive a union bound
involving 2D − 1 applications of Lemma 15 for 2D − 1 different sets of random samples.
This will allow us to assert that any at most 2D − 1 different set valued functions Fs′S
will all simultaneously satisfy both Theorem 10 and Lemma 14 with a “high probability”
of at least 0.99. Utilizing these simplifications we obtain the simplified sufficient sampling
conditions

m1 ≥ c′1K
2
S(s′)2 · d2 ln2

(
DN

d

)
ln (D) ,

51

m2 ≥ c′2K
2
Scs
′ · d2 ln2(s′) ln2

(
DN

d

)
ln (D)

for new absolute constants c′1, c
′
2 ∈ R+.

Finally, and perhaps most controversially, we will make the additional assumption
above that either (i) the BOS constants Kj are 1 for all but at most d̃ ∈ Z ∩ [0, D] BOS
basis sets Bj (note that d̃ can be independent of d), or else that (ii) K0 = 1. In either
case we will have that both KS and KSc will be bounded above by a constant that depends
on only d̃ or d, respectively, for all S ⊆ [D]. In particular, in case (i) we will have that

KS and KSc are both at most K d̃
∞, and in case (ii) that KS and KSc are both at most

Kd
∞. Utilizing this final assumption now allows us to bound the total number of samples

we need in order to compute any 2D − 1 informative Fs′S sets for any given 2D − 1 sets
S with high probability (w.h.p.) by either

m1m2 ≥ c1K
4d̃
∞ (s′)3d4 · ln4

(
DN

d

)
ln2(s′) ln2(D)

in case (i) (note here that letting d = D still avoids exponential dependence on D in this
setting), and by

m1m2 ≥ c2K
4d
∞ (s′)3d4 · ln4

(
DN

d

)
ln2(s′) ln2(D)

in case (ii), where c1, c2 ∈ R+ are absolute constants.

We are now ready to demonstrate the numerical performance of our proposed method.

5 Empirical Evaluation

In this section, Algorithm 1 in combination with Algorithm 2 is evaluated numerically
for the exactly sparse case with noisy measurements as well as the approximately sparse
case. The algorithms were implemented in MATLAB and are publicly available.17 For
the entry identification, we use the pairing approach. In addition to the stopping criterion
“‖vCE‖22 > ‖vCEold‖22 or k ≥ κ” in line 16 in Algorithm 1, we also stop Algorithm 1 if
supp(ak) = supp(ak−1) = supp(ak−2), i.e., the identified index vectors are the same for
three consecutive iterations. All time measurements were performed on a computer with
2 x 6-core Intel Xeon CPU E5-2620 v3 (2.40GHz), 64 GB RAM, using 12 threads.

17See “SHT II: Best s-Term Approximation Guarantees for Bounded Orthonormal Product Bases in
Sublinear-Time” on Mark Iwen’s code page https://www.math.msu.edu/~markiwen/Code.html.

52

5.1 Exactly sparse case and noisy measurements

We start with the exactly sparse case, and we consider tensor product basis functions with
different bases in d = D spatial dimensions, where we choose d up to 100. We set N = 200
and use IN,d = I200,d as search space of possible basis indices, where e.g. |I200,50| ≈ 10115

and |I200,100| ≈ 10230. We set the maximum number of iterations κ := 20, and we always
use mCE := 50 s samples for the coefficient estimation where s = |S|. For every data point
in every plot below, we use 100 different randomly generated trial signals

f(ξ) =
∑
n∈S

cn Tn(ξ), (5.1)

where we draw the function’s support set S ⊂ IN,d uniformly at random without repetition
and the coefficients cn ∈ {−1, 1} uniformly at random.

Below, a trial will always refer to the execution of Algorithm 1 on a particular randomly
generated trial function f as defined in (5.1). A failed trial will refer to any trial where
Algorithm 1 failed to recover the correct support set S for f .

We assume that the function evaluations of f are contaminated with (white) Gaussian
noise, i.e., we provide Algorithm 1 with noisy samples

y′ = y + g′ = y + σ
‖y‖2
‖g‖2

g,

where y contains noiseless samples from f , g ∼ N (0, I), and σ ∈ R+ is used to control
the Signal to Noise Ratio (SNR) defined herein by

SNRdb := 10 log10

(
‖y‖22
‖g′‖22

)
= −10 log10(σ2).

In the following subsections, we consider different types of basis functions. First,
in Section 5.1.1, we use mixed bases in up to 100 spatial dimensions, which consist of
Fourier, Chebyshev, and Legendre bases. Afterwards, we use bases which only consist
of Fourier type in Section 5.1.2, Chebyshev type in Section 5.1.3, and Legendre type in
Section 5.1.4.

5.1.1 Mixed bases

First, we consider basis functions Tnj of mixed type: Tn0 , Tnbd/2c , and Tnd−2
are of Cheby-

shev type; Tn1 , Tnbd/2c−1
, and Tnd−1

are of (preconditioned) Legendre type; and the re-
maining d − 6 basis functions Tnj , j ∈ [d] \ {0, 1, bd/2c − 1, bd/2c, d − 2, d − 1} are of

53

Fourier type. Preconditioned Legendre type means that instead of using standard Leg-
endre polynomials Ln(x) = (2n − 1)/nxLn−1(x) − (n − 1)/nLn−2(x), L1 := x, L0 := 1,
with BOS constant K =

√
2n+ 1, we apply the preconditioning method from [37], i.e., we

use the preconditioned Legendre polynomials Qn(x) :=
√
π/2 (1−x2)1/4 Ln(x) with BOS

constant K =
√

3 and choose the sampling nodes randomly with respect to the Chebyshev
measure for the basis functions Tn1 , Tnbd/2c−1

, and Tnd−1
. Consequently, the overall BOS

constant is
√

2
3 ·
√

3
3 · 1d−6 =

√
6

3
independent of the spatial dimension d = D. For the

entry identification and pairing steps, we set the parameter m2 = #zj,k := 4 s for different
sparsities s = |S|. The parameter m1 = #wj,` is chosen as c s, where the constant c ≥ 1
does not depend on the sparsity s, which is distinctly smaller than the theoretical results
of m1 ∼ s2 in Theorem 6 and Lemma 15.

6 10 25 50 100

104

105

106

d

#
sa

m
p
le

s

s = 10 6100 d

s = 25 4 · 104d

(a) number of samples vs. spatial dimension d

6 10 25 50 100
0.1

10

1,000

d

av
g
.

ru
n
ti

m
e

in
se

co
n
d
s

s = 10 0.008d2+5

s = 25 0.045d2+26

(b) average runtime vs. spatial dimension d

6 10 25 50 100

1
2
3
4
5
6

d

av
g
.

it
er

a
ti

o
n

s = 10 s = 25

(c) average iteration vs. spatial dimension d

6 10 25 50 100

0

0.5

0.8
1

d

su
cc

es
s

ra
te

s = 10 s = 25

(d) success rate vs. spatial dimension d

Figure 1: Number of samples, runtime, number of iterations, success rates vs. spatial
dimension d = D ∈ {6, 10, 25, 50, 100} for mixed bases (3 Chebyshev, 3 Legendre, d − 6
Fourier), N = 200, sparsity s ∈ {10, 25}, SNRdb = 10, m1 = 8s, m2 = 4s.

In Figure 1, we visualize the obtained results in dependence of the spatial dimensions
d = D ∈ {6, 10, 25, 50, 100} for sparsity s ∈ {10, 25} and signal to noise ratio SNRdb = 10.
In Figure 1a, we plot the number of samples with respect to the spatial dimension d.
We observe that the number of samples grows nearly linearly in d. Additionally, we plot

54

the average runtime of the 100 test runs with respect to d in Figure 1b, and we observe
that it grows approximately like ∼ d2. When having a look at the average number of
iterations in Figure 1c, we observe that 4.1 to 5.4 iterations were required for sparsity
s = 10 and around 4 iterations for sparsity s = 25. For the considered test setting, the
observed success rate was 100% for sparsity s = 25 and at least 99% for sparsity s = 10,
cf. Figure 1d.

3 4 5 6 8 10

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(a) SNRdb = 0

3 4 5 6 8 10

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(b) SNRdb = 3

3 4 5 6 8 10

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(c) SNRdb = 6

3 4 5 6 8 10

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(d) SNRdb = 10

Figure 2: Success rate vs. m1/s for mixed bases, d = D = 50, N = 200, sparsity s ∈
{10, 25, 50}, m2 = #zj,k = 4 s, and SNRdb ∈ {0, 3, 6, 10}.

For different choices of the parameter m1 = #wj,` ∈ {2.5s, 3s, 3.5s, . . . , 10s}, we inves-
tigate the success rate for spatial dimension d = D = 50 and sparsities s ∈ {10, 25, 50} in
Figure 2, where we set the signal to noise ratio SNRdb to 0, 3, 6, and 10 in Figure 2a, 2b,
2c, and 2d, respectively. We observe that the success rates increase for growing param-
eter m1. Moreover, the transition between 0% success rate and 99%–100% success rate
occurs relatively fast. Additionally, the value m1/s where the success rate reaches 99%
seems to decrease for increasing sparsity s and for increasing signal to noise ratio.

In Figure 3, we plot the used number of samples and average runtime as a function of
the sparsity s ∈ {10, 25, 50} for spatial dimensoin d = D = 50 and for each signal to noise
ratio SNRdb ∈ {0, 3, 6, 10}. We observe that the plots only differ slightly for the different
signal to noise ratios SNRdb ∈ {3, 6, 10}, i.e. the numbers of samples and runtimes seem

55

10 25 50

105

106

s

#
sa

m
p
le

s

SNRdb = 0 SNRdb = 3

SNRdb = 6 SNRdb = 10

10 25 50

101

102

103

s

av
g
.

ru
n
ti

m
e

in
se

co
n
d
s

SNRdb = 0 SNRdb = 3

SNRdb = 6 SNRdb = 10

Figure 3: Number of samples and average runtime vs. sparsity s for mixed bases, ≥ 99%
success rate, d = D = 50, N = 200.

to depend only mildly on the signal to noise ratios for ≥ 99% success rate. In the case
SNRdb = 0, i.e., when the energy of the signal and of the noise match, the runtimes for
sparsities s ∈ {10, 25} are similar to the ones of SNRdb ∈ {3, 6, 10} and approximately
double for s = 50.

Additionally, we repeat the tests of Figure 2 for spatial dimension d = D = 100 and
sparsities s ∈ {10, 25}, and we visualize the corresponding results in Figure 4. We obtain
results analogously to the previous ones.

56

4 5 6 7 8 11

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

(a) SNRdb = 0

3 4 5 6 9 10

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

(b) SNRdb = 3

3 4 5 6 8 9

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

(c) SNRdb = 6

3 4 5 6 8 9

0

0.5

0.8
1

m1/s = (#wj,`)/s
su

cc
es

s
ra

te

s = 10

s = 25

(d) SNRdb = 10

Figure 4: Success rate vs. m1/s for mixed bases, d = D = 100, N = 200, sparsity
s ∈ {10, 25}, m2 = #zj,k = 4 s, and SNRdb ∈ {0, 3, 6, 10}.

5.1.2 Fourier bases

As for the case of mixed bases in Section 5.1.1, we now perform the numerical tests for
tensor products of Fourier bases and show the results in Figure 5. Here, the overall BOS
constant K is 1 independent of the spatial dimension d. Due to the smaller BOS constant,
we can reduce the parameters m1 to 5s and m2 to s while still obtaining a success rate of
100%, cf. Figure 5d. As in Section 5.1.1, the numbers of samples in Figure 5a grow nearly
linearly in d and the average runtimes in Figure 5b approximately like ∼ d2. The average
number of iterations in Figure 5c is between 3 and 4.

In Figure 6, we depict the success rate as a function of m1/s ∈ {1, 1.5, 2, 2.5, 3} for
sparsities s ∈ {10, 25, 50, 100} and signal to noise ratio SNRdb = 10 in spatial dimensions
d ∈ {6, 8, 10, 12}. We observe a very small dependence on the spatial dimension d. For
m1 = 3s, the success rate is 100% in each considered case. Furthermore, there is a rapid
transition between full and zero success rate, i.e., the success rate is 0% for m1 = s each
time.

57

6 10 25 50 100

104

105

106

d

#
sa

m
p
le

s

s = 10 ∼ d s = 25

(a) number of samples vs. spatial dimension d

6 10 25 50 100

0.01

1

100

d

av
g
.

ru
n
ti

m
e

in
se

co
n
d
s

s = 10 ∼ d2 s = 25

(b) average runtime vs. spatial dimension d

6 10 25 50 100

1

2

3

4

d

av
g
.

it
er

a
ti

o
n

s = 10 s = 25

(c) average iteration vs. spatial dimension d

6 10 25 50 100

0

0.5

0.8
1

d

su
cc

es
s

ra
te

s = 10 s = 25

(d) success rate vs. spatial dimension d

Figure 5: Number of samples, runtime, number of iterations, success rate vs. spatial
dimension d = D ∈ {6, 10, 25, 50, 100} for Fourier bases, N = 200, sparsity s ∈ {10, 25},
SNRdb = 10, m1 = 5s, m2 = s.

58

1 1.5 2 2.5 3

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

s = 100

(a) d = 6

1 1.5 2 2.5 3

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

s = 100

(b) d = 8

1 1.5 2 2.5 3

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

s = 100

(c) d = 10

1 1.5 2 2.5 3

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

s = 100

(d) d = 12

Figure 6: Success rate vs. m1/s for Fourier bases, spatial dimension d = D ∈ {6, 8, 10, 12},
N = 200, sparsity s ∈ {10, 25, 50, 100}, SNRdb = 10, m2 = s.

59

5.1.3 Chebyshev bases

Next, we consider the tensor products of Chebyshev basis functions. Here we expect larger
numbers of samples and runtimes compared to the Fourier case in Section 5.1.2 due to

the BOS constant K =
√

2
d

for Chebyshev and K = 1 for Fourier. In particular, for fixed
sparsity s and fixed success rate, the numbers of samples and runtimes might grow for
increasing spatial dimension d.

2 3 4 5 6 7

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(a) d = 6

3 4 5 6 7 8 10 12 14

0

0.5

0.8
1

m1/s = (#wj,`)/s
su

cc
es

s
ra

te

s = 10

s = 25

s = 50

(b) d = 8

6 8 10 14 18 26 30

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(c) d = 10

12 20 28 36 44 52 62

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(d) d = 12

Figure 7: Success rate vs. m1/s for Chebyshev bases, spatial dimension d = D ∈
{6, 8, 10, 12}, N = 200, sparsity s ∈ {10, 25, 50}, SNRdb = 10, m2 = 4s.

In Figure 7, we depict the success rate as a function of m1/s for sparsities s ∈
{10, 25, 50} and signal to noise ratio SNRdb = 10 in spatial dimensions d ∈ {6, 8, 10, 12}.
As predicted, we observe that we have to increase m1 = #wj,` distinctly for growing spa-
tial dimension d and fixed sparsity s. For instance, for s = 25, we observe a 98% success
rate for m1 = 4s and d = 6, but obtain a success rate of only 4% for d = 8. For d = 12,
we had to choose m1 = 42s to achieve a success rate of 98%.

In Figure 8, we investigate the dependence of the spatial dimension d on the number
of samples and average runtime for the case of ≥ 99% success rate in more detail. For
our test cases, we observe that the numbers of samples grow approximately like between
∼ 20.69d and ∼ 20.75d as well as the runtimes approximately like between ∼ 20.58d and

60

6 8 10 12

104

105

106

107

d

#
sa

m
p
le

s

s = 10 s = 25 s = 50

∼ 20.69d ∼ 20.75d ∼ 20.72d

6 8 10 12

0.1

1

10

100

d

av
g
.

ru
n
ti

m
e

in
se

co
n
d
s s = 10 s = 25 s = 50

∼ 20.58d ∼ 20.69d ∼ 20.80d

Figure 8: Number of samples and average runtime vs. spatial dimension d ∈ {6, 8, 10, 12}
for Chebyshev bases, N = 200, sparsity s ∈ {10, 25, 50}, SNRdb = 10, m2 = 4s, success
rate ≥ 99%.

∼ 20.80d. In each case, this is distinctly less than the worst case upper bounds in Theorem 5
suggest.

5.1.4 Preconditioned Legendre bases

Here, we consider the tensor products of preconditioned Legendre basis functions Qn with

BOS constant K =
√

3
d
, cf. Section 5.1.1. In Figure 9, we show the success rates as a

function of m1/s for sparsities s ∈ {10, 25, 50} and signal to noise ratio SNRdb = 10 in
spatial dimensions d ∈ {6, 8, 10, 12}. As in the case of Chebyshev bases, we observe that
we have to increase m1 distinctly for growing spatial dimension d and fixed sparsity s.
For instance, for s = 25, we observe a 97% success rate for m1 = 4s and d = 6 as well as
100% for m1 = 4.5s and d = 6, but obtained a success rate of only 2% for m1 = 4s and
d = 8. Moreover, we had to choose m1 = 18s to have a success rate of 100% for d = 10
and m1 = 56s for d = 12.

When comparing the obtained results with the ones for the Chebyshev bases, we do

not numerically observe the higher BOS constant K =
√

3
d

here for d = 6, 8, 10. The plots
in Figure 9 look very similar to the ones in Figure 7. For d = 12, the values of m1 where
a success rate of ≥ 99% is reached are slightly larger than the ones in the Chebyshev
case.

61

2 3 4 5 6 7

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(a) d = 6

3 4 5 6 7 8 10 12

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(b) d = 8

6 8 10 15 18 30 34

0

0.5

0.8
1

m1/s = (#wj,`)/s

su
cc

es
s

ra
te

s = 10

s = 25

s = 50

(c) d = 10

12 28 36 48 56 64 72 80

0

0.5

0.8
1

m1/s = (#wj,`)/s
su

cc
es

s
ra

te

s = 10

s = 25

s = 50

(d) d = 12

Figure 9: Success rate vs. m1/s for preconditioned Legendre bases, spatial dimension
d = D ∈ {6, 8, 10, 12}, N = 200, sparsity s ∈ {10, 25, 50}, SNRdb = 10, m2 = 4s.

5.2 Approximately sparse case

After considering exactly sparse test functions f in Section 5.1, we continue with examples
for the approximately sparse case, i.e., our test functions under consideration will have
infinitely many non-zero basis coefficients cn.

5.2.1 Fourier type with D = 10

We use the 10-variate periodic test function f : T10 → R,

f(ξ) :=
∏

t∈{0,2,7}

N2(ξt) +
∏

t∈{1,4,5,9}

N4(ξt) +
∏

t∈{3,6,8}

N6(ξt), (5.2)

from [34, Section 3.3] and [27, Section 5.3] with infinitely many non-zero Fourier coef-
ficients cn, where T ' [0, 1) is the torus and Nm : T → R is the B-Spline of order
m ∈ N,

Nm(x) := Cm
∑
n∈Z

sinc
(π
m
n
)m

(−1)n e2πinx,

62

with a constant Cm > 0 such that ‖Nm‖L2(T) = 1. We remark that each B-Spline Nm

of order m ∈ N is a piece-wise polynomial of degree m − 1. We approximate the func-
tion f by multivariate trigonometric polynomials a using Algorithm 1. The obtained
basis index sets Ω̃ should “consist of” the union of three lower dimensional manifolds, a
three-dimensional hyperbolic cross in the dimensions 1, 3, 8; a four-dimensional hyperbolic
cross in the dimensions 2, 5, 6, 10; and a three-dimensional hyperbolic cross in the dimen-
sions 4, 7, 9. All tests are performed 10 times and the relative L2(T10) approximation
error

‖f − a‖L2(T10)

‖f‖L2(T10)
=

√
‖f‖2

L2(T10)
−
∑
n∈Ω̃ |f̂n|2 +

∑
n∈Ω̃ |an − f̂n|2

‖f‖L2(T10)

is computed each time, where the approximant a :=
∑
n∈Ω̃ an e2πin·◦.

We set the parameters N = 64, d = D = 10, m2 = s, and we always use mCE := 50 s
samples for the coefficient estimation where s = |S|. For our tests, we consider two differ-
ent parameter combinations: m1 = 3s and κ = 20, as well as m1 = 8s and κ = 10. The
obtained results, i.e., the numbers of samples, average runtimes, average iterations, and
relative L2(T10) errors are plotted as a function of the sparsity s ∈ {100, 200, 500, 1000}
in Figure 10. Due to the parameter choices for m1 and m2, we observe that the numbers
of samples grow quadratically for increasing sparsity s. The average runtimes grow ap-
proximately like ∼ s3 min{s,N} and this means ∼ s3 for fixed N . Moreover, the average
numbers of iterations are much smaller than its imposed maximum κ in most cases. The
relative L2(T10) errors decrease for increasing sparsity s having a value of approximately
10−2 for sparsity s = 1000. Again, we emphasize the extremely high power of Algorithm 1,
which is able to determine the s = 1000 approximately largest bases coefficients and the
corresponding indices for our test function out of |IN,d| = Nd = 6410 ≈ 1018 allowed
indices.

63

100 200 500 1,000

106

107

108

s

#
sa

m
p
le

s

m1 = 3s

m1 = 8s

(a) numbers of samples vs. sparsity s

100 200 500 1,000

85

430

5,400

42,000

s

av
g
.

ru
n
ti

m
e

in
se

co
n
d
s

m1 = 3s, κ = 20 3 · 10−5s3 + 29

m1 = 8s, κ = 10 5 · 10−5s3

(b) average runtimes vs. sparsity s

100 200 500 1,000

3
5

8
10

18

s

av
g
.

it
er

a
ti

o
n

m1 = 3s, κ = 20

m1 = 8s, κ = 10

(c) average iteration vs. sparsity s

100 200 500 1,000

10−2

10−1

100

s

re
la

ti
v
e

er
ro

r

m1 = 3s, κ = 20

m1 = 8s, κ = 10

(d) L2(T10) error vs. sparsity s

Figure 10: Number of samples, runtime, number of iterations, L2(T10) error vs. sparsity
s ∈ {100, 200, 500, 1000} for Fourier basis and test function (5.2).

5.2.2 Chebyshev and Legendre type with D = 7

−1 0 1

0

0.2

0.4

0.6

0.8
B3

−1 0 1

0

0.2

0.4

0.6

0.8
B5

Figure 11: B-splines B3 and B5 considered in interval [−1, 1].

Next, we apply Algorithm 1 on the 7-variate test function f : [−1, 1]7 → R,

f(ξ) :=
∏

t∈{0,2,5}

B3(ξt) +
∏

t∈{1,3,4,6}

B5(ξt) (5.3)

similar as in [35], where B3 : R → R is a shifted, scaled and dilated B-spline of order 3
and B5 : R → R is a shifted, scaled and dilated B-spline of order 5, see Figure 11 for

64

illustration. We remark that the absolute values of the Chebyshev coefficients cn, n ∈ N0,
of B3 and B5 decay like ∼ n−3 and ∼ n−5, respectively. The obtained basis index sets
Ω̃ should “consist of” the union of two lower dimensional manifolds, a three-dimensional
hyperbolic cross in the dimensions 0, 2, 5; and a four-dimensional hyperbolic cross in the
dimensions 1, 3, 4, 6. All tests are performed 10 times and the relative L2([−1, 1]7, µC)
approximation error ‖f − a‖L2([−1,1]7,µC)/‖f‖L2([−1,1]7,µC) is computed each time, where
the approximant a :=

∑
n∈Ω̃ an Tn, Tn is the Chebyshev product basis, and µC(ξ) :=

π−D
∏
j∈[D](1− ξ2

j)−1/2 is the Chebyshev product measure.

We set the parameters N = 64, d = D = 7, m2 = 4s, and we always use mCE := 50 s
samples for the coefficient estimation where s = |S|. We consider two different parameter
combinations: m1 = 4s and κ = 20, as well as m1 = 8s and κ = 10. The obtained
results, i.e., the numbers of samples, average runtimes, average iterations, and relative
L2([−1, 1]7, µC) errors are plotted as a function of the sparsity s ∈ {25, 50, 100, 200, 500}
in Figure 12. Due to the parameter choices for m1 and m2, we observe that the numbers
of samples grow quadratically for increasing sparsity s. The average runtimes grow ap-
proximately like ∼ s3 min{s,N} and this means ∼ s3 for fixed N . Moreover, the average
numbers of iterations are well below its imposed maximum κ for m1 = 4s and κ = 20 as
well as close to κ for m1 = 8s and κ = 10. The relative L2([−1, 1]7, µC) errors decrease
for increasing sparsity s having a value of approximately 2.3 · 10−4 for sparsity s = 500.
We emphasize that Algorithm 1 is able to easily determine the s = 500 approximately
largest basis coefficients and the corresponding basis indices for our test function out of
|IN,d| = Nd = 647 ≈ 4.4 · 1012 allowed indices.

In addition, we use the preconditioned Legendre polynomials Qn from Section 5.1.1
as basis functions, i.e. Tn is now the Legendre product basis in the approximant a :=∑
n∈Ω̃ an Tn. Besides that, we keep all parameters identical but determine the relative

L2([−1, 1]7, µL) approximation error ‖f − a‖L2([−1,1]7,µL)/‖f‖L2([−1,1]7,µL), which corre-

sponds to the Legendre basis and uses the probability measure µL ≡ 2−D. The results are
shown in Figure 13. Here, we observe that the numbers of iterations are higher by up to
≈ 50% compared to the Chebyshev case in Figure 12, and that they reach the imposed
maximum of κ := 20 for m1 = 4s and κ := 10 for m2 = 8s in several cases. Correspond-
ingly, the runtimes are also higher by up to ≈ 50%. The obtained relative L2([−1, 1]7, µL)
errors are similar, but we also remark that we cannot compare these errors directly to
the relative L2([−1, 1]7, µC) errors of the Chebyshev basis since they are measured with
respect to different probability measures, µC(ξ) := π−D

∏
j∈[D](1− ξ2

j)−1/2 for Chebyshev

and µL ≡ 2−D for Legendre.

65

25 50 100 200 500
105

106

107

108

s

#
sa

m
p
le

s

m1 = 4s

m1 = 8s

(a) number of samples vs. sparsity s

25 50 100 200 500

1
10

190
1,000

15,000

s

av
g
.

ru
n
ti

m
e

in
se

c. m1 = 4s, κ = 20 ∼ s3 m1 = 8s, κ = 10

(b) average runtime vs. sparsity s

25 50 100 200 500

5
7

10

13

s

av
g
.

it
er

a
ti

o
n

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(c) average iteration vs. sparsity s

25 50 100 200 500

10−4

10−2

100

s

re
la

ti
v
e

er
ro

r

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(d) relative L2([−1, 1]7, µC) error vs. sparsity s

Figure 12: Number of samples, runtime, number of iterations, relative L2([−1, 1]7, µC)
error vs. sparsity s ∈ {25, 50, 100, 200, 500} for Chebyshev basis and test function (5.3).

66

25 50 100 200 500
105

106

107

108

s

#
sa

m
p
le

s

m1 = 4s

m1 = 8s

(a) number of samples vs. sparsity s

25 50 100 200 500

10

1,000

30,000

s

av
g
.

ru
n
ti

m
e

in
se

c. m1 = 4s, κ = 20

m1 = 8s, κ = 10

(b) average runtime vs. sparsity s

25 50 100 200 500

5

10

15

20

s

av
g
.

it
er

a
ti

o
n

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(c) average iteration vs. sparsity s

25 50 100 200 500

100

10−2

10−4

s

re
la

ti
v
e

er
ro

r

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(d) relative L2([−1, 1]7, µL) error vs. sparsity s

Figure 13: Number of samples, runtime, number of iterations, relative L2([−1, 1]7, µL)
error vs. sparsity s ∈ {25, 50, 100, 200, 500} for Legendre basis and test function (5.3).

67

5.2.3 Mixed type with D = 10

Finally, we combine parts of the test functions from the previous two subsections. We
consider the 10-variate test function f : D̃ → R, D̃ := [−1, 1]×T× [−1, 1]3×T2× [−1, 1]×
T2,

f(ξ) := B3(ξ0)B3(ξ2)N4(ξ8) +B5(ξ3)B5(ξ4)N2(ξ1)N2(ξ6) +B3(ξ7)N2(ξ5)N2(ξ9) (5.4)

In spatial dimensions j = 0, 2, 3, 4, 7, we use Chebyshev basis functions as well as Fourier
basis functions in the remaining spatial dimensions j = 1, 5, 6, 8, 9. All tests are performed
10 times and the relative L2(D̃, µF,C) approximation error ‖f −a‖L2(D̃,µF,C)/‖f‖L2(D̃,µF,C)

is computed each time, where the approximant a :=
∑
n∈Ω̃ an Tn,

Tn(ξ) :=

 ∏
j∈{0,2,3,4,7}

cos(nj arccos ξj)

 ∏
j∈{1,5,6,8,9}

e2πinjξj

is the mixed product basis, and µF,C(ξ) :=

(
2
π

)5∏
j∈{0,2,3,4,7}(1 − ξ2

j)−1/2 is the corre-
sponding probability measure.

Here we set the parameters N = 64, d = D = 10, m2 = 4s, and we always use
mCE := 50 s samples for the coefficient estimation where s = |S|. We consider two
different parameter combinations from the previous subsection: m1 = 4s and κ = 20, as
well as m1 = 8s and κ = 10. The obtained results, i.e., the numbers of samples, average
runtimes, average iterations, and relative L2(D̃, µF,C) errors are plotted as a function
of the sparsity s ∈ {25, 50, 100, 200} in Figure 14. As before, the numbers of samples
grow quadratically for increasing sparsity s. The average runtimes grow approximately
like ∼ s3 min{s,N} and this means ∼ s3 for fixed N . Moreover, the average numbers of
iterations are well below its imposed maximum κ. The relative L2(D̃, µF,C) errors decrease
for increasing sparsity s having a value of approximately 4.9 · 10−3 for sparsity s = 500.
We emphasize that Algorithm 1 is able to easily determine the s = 500 approximately
largest basis coefficients and the corresponding indices for our test function out of |IN,d| =
Nd = 6410 ≈ 1018 possible indices.

Additionally, we use the preconditioned Legendre polynomials Qn from Section 5.1.1
as basis functions in the spatial dimensions j = 0, 2, 3, 4, 7 instead of the Chebyshev
polynomials. Besides that, we keep all parameters identical but determine now the relative
L2(D̃, µF,L) approximation error with respect to the probability measure µF,L(ξ) ≡ 2−5

which corresponds to the current choice of bases. The results are presented in Figure 15.
As before, we observe that the numbers of iterations are higher, now by up to ≈ 100%
compared to using Chebyshev polynomials in Figure 15. Correspondingly, the runtimes
also double in some cases. The obtained relative errors are similar, but we again remark

68

25 50 100 200 500
105

106

107

108

s

#
sa

m
p
le

s

m1 = 4s

m1 = 8s

(a) number of samples vs. sparsity s

25 50 100 200 500

2
25

400
2,000

25,000

s

av
g
.

ru
n
ti

m
e

in
se

c. m1 = 4s, κ = 20

m1 = 8s, κ = 10

(b) average runtime vs. sparsity s

25 50 100 200 500

3

5

7

9

s

av
g
.

it
er

a
ti

o
n

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(c) average iteration vs. sparsity s

25 50 100 200 500

10−3

10−2

10−1

100

s
re

la
ti

v
e

er
ro

r

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(d) relative L2(D̃, µF,C) error vs. sparsity s

Figure 14: Number of samples, runtime, number of iterations, relative L2(D̃, µF,C) er-
ror vs. sparsity s ∈ {25, 50, 100, 200} for mixed Fourier+Chebyshev basis and test func-
tion (5.4).

that we cannot compare these errors directly since they are measured with respect to
different probability measures.

69

25 50 100 200 500
105

106

107

108

s

#
sa

m
p
le

s

m1 = 4s

m1 = 8s

(a) number of samples vs. sparsity s

25 50 100 200 500

4
40

500
2,500

40,000

s

av
g
.

ru
n
ti

m
e

in
se

c. m1 = 4s, κ = 20

m1 = 8s, κ = 10

(b) average runtime vs. sparsity s

25 50 100 200 500

5

10

15

s

av
g
.

it
er

a
ti

o
n

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(c) average iteration vs. sparsity s

25 50 100 200 500

10−3

10−2

10−1

100

s
re

la
ti

v
e

er
ro

r

m1 = 4s, κ = 20

m1 = 8s, κ = 10

(d) relative L2(D̃, µF,L) error vs. sparsity s

Figure 15: Number of samples, runtime, number of iterations, relative L2(D̃, µF,L) error vs.
sparsity s ∈ {25, 50, 100, 200} for mixed Fourier+Legendre basis and test function (5.4).

Acknowledgements

Mark Iwen was supported in part by NSF DMS-1912706, and would like to dedicate this
paper to his ever bright, hard working, and spirited wife Tsveta, and to the prosperity of
their newborn daughter Evgenia. Evgenia – I am anxious to know you are healthy, eager
to see you are happy, and already sad at the distant prospect your moving out. May you
be more like your mother than like me for your own sake!

References

[1] B. Adcock. Infinite-dimensional `1 minimization and function approximation from
pointwise data. Constructive Approximation, 45(3):345–390, 2017.

[2] B. Adcock, S. Brugiapaglia, and C. G. Webster. Compressed sensing approaches for
polynomial approximation of high-dimensional functions. In Compressed Sensing and
its Applications, pages 93–124. Springer International Publishing, 2017.

[3] J. Bailey, M. A. Iwen, and C. V. Spencer. On the design of deterministic matrices for

70

fast recovery of Fourier compressible functions. SIAM Journal on Matrix Analysis
and Applications, 33(1):263–289, 2012.

[4] S. Bittens and G. Plonka. Sparse fast DCT for vectors with one-block support.
Numerical Algorithms, pages 1–35, 2018.

[5] S. Bittens, R. Zhang, and M. A. Iwen. A deterministic sparse FFT for functions with
structured Fourier sparsity. Advances in Computational Mathematics, 45:519–561,
2019.

[6] A. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics (SIAM), 1996.

[7] J.-L. Bouchot, H. Rauhut, and C. Schwab. Multi-level Compressed Sensing Petrov-
Galerkin discretization of high-dimensional parametric PDEs. ArXiv e-prints, 2017.

[8] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[9] A. Chkifa, N. Dexter, H. Tran, and C. Webster. Polynomial approximation via
compressed sensing of high-dimensional functions on lower sets. Mathematics of
Computation, 87(311):1415–1450, 2018.

[10] B. Choi, A. Christlieb, and Y. Wang. Multi-dimensional sublinear sparse Fourier
algorithm. arXiv preprint arXiv:1606.07407, 2016.

[11] B. Choi, A. Christlieb, and Y. Wang. Multiscale High-Dimensional Sparse Fourier
Algorithms for Noisy Data. arXiv e-prints, page arXiv:1907.03692, 2019.

[12] B. Choi, M. Iwen, and F. Krahmer. Sparse harmonic transforms: A new class of
sublinear-time algorithms for learning functions of many variables. arXiv preprint
arXiv:1808.04932, 2018.

[13] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term ap-
proximation. Journal of the American Mathematical Society, 22(1):211–231, 2009.

[14] G. Dahlquist and A. Björck. Numerical Methods in Scientific Computing, Volume
I. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA,
2008.

[15] M. F. Duarte and R. G. Baraniuk. Kronecker compressive sensing. IEEE Transactions
on Image Processing, 21(2):494–504, 2012.

[16] D. Dũng, V. N. Temlyakov, and T. Ullrich. Hyperbolic cross approximation. arXiv
preprint arXiv:1601.03978, 2016.

[17] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Springer New York, 2013.

71

[18] A. Gilbert, A. Gu, C. Re, A. Rudra, and M. Wootters. Sparse Recovery for Orthog-
onal Polynomial Transforms. arXiv preprint arXiv:1907.08362, 2019.

[19] A. Gilbert, M. Iwen, and M. Strauss. Empirical evaluation of a sub-linear time sparse
DFT algorithm. Communications in Mathematical Sciences, 5(4):981–998, 2007.

[20] A. C. Gilbert, P. Indyk, M. A. Iwen, and L. Schmidt. Recent developments in the
sparse Fourier transform: A compressed Fourier transform for big data. IEEE Signal
Processing Magazine, 31(5):91–100, 2014.

[21] A. C. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-
optimal sparse Fourier representations. In Proceedings of SPIE, volume 5914, page
59141A, 2005.

[22] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm
for sparse Fourier transform. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1183–1194. Society for Industrial
and Applied Mathematics (SIAM), 2012.

[23] X. Hu, M. Iwen, and H. Kim. Rapidly computing sparse Legendre expansions via
sparse Fourier transforms. Numerical Algorithms, 74(4):1029–1059, 2017.

[24] M. A. Iwen. A deterministic sub-linear time sparse Fourier algorithm via non-adaptive
compressed sensing methods. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 20–29. Society for Industrial and Applied
Mathematics (SIAM), 2008.

[25] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of Com-
putational Mathematics, 10(3):303–338, 2010.

[26] M. A. Iwen. Improved approximation guarantees for sublinear-time Fourier algo-
rithms. Applied and Computational Harmonic Analysis, 34(1):57–82, 2013.

[27] L. Kämmerer, D. Potts, and T. Volkmer. High-dimensional sparse FFT based on
sampling along multiple rank-1 lattices. arXiv preprint arXiv:1711.05152, 2017.

[28] M. Kapralov. Sparse Fourier transform in any constant dimension with nearly-
optimal sample complexity in sublinear time. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 264–277. ACM Press, 2016.

[29] M. Kapralov, A. Velingker, and A. Zandieh. Dimension-independent Sparse Fourier
Transform. arXiv e-prints, page arXiv:1902.10633, 2019.

[30] Y. Mansour. Randomized interpolation and approximation of sparse polynomials.
In Proceedings of the 19th International Colloquium on Automata, Languages and
Programming, ICALP ’92, pages 261–272, London, UK, 1992. Springer-Verlag.

72

[31] S. Merhi, R. Zhang, M. A. Iwen, and A. Christlieb. A new class of fully discrete
sparse Fourier transforms: Faster stable implementations with guarantees. Journal
of Fourier Analysis and Applications, 25(3):751–784, 2019.

[32] L. Morotti. Explicit universal sampling sets in finite vector spaces. Applied and
Computational Harmonic Analysis, 43(2):354–369, 2017.

[33] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321,
2009.

[34] D. Potts and T. Volkmer. Sparse high-dimensional FFT based on rank-1 lattice
sampling. Applied and Computational Harmonic Analysis, 41(3):713–748, 2016.

[35] D. Potts and T. Volkmer. Multivariate sparse FFT based on rank-1 Chebyshev lattice
sampling. In 2017 International Conference on Sampling Theory and Applications
(SampTA), pages 504–508. IEEE, 2017.

[36] H. Rauhut. Random sampling of sparse trigonometric polynomials. Applied and
Computational Harmonic Analysis, 22(1):16–42, 2007.

[37] H. Rauhut and R. Ward. Sparse Legendre expansions via `1-minimization. Journal
of Approximation Theory, 164(5):517–533, 2012.

[38] C. Schwab and R. A. Todor. Karhunen–Loève approximation of random fields by
generalized fast multipole methods. Journal of Computational Physics, 217(1):100–
122, 2006.

[39] B. Segal and M. A. Iwen. Improved sparse Fourier approximation results: Faster im-
plementations and stronger guarantees. Numerical Algorithms, 63(2):239–263, 2013.

[40] J. Shen and L.-L. Wang. Sparse spectral approximations of high-dimensional prob-
lems based on hyperbolic cross. SIAM Journal on Numerical Analysis, 48(3):1087–
1109, 2010.

73

