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Abstract. In this short note we correct and simplify the proof of equa-
tion (1.8) in Theorem 1.3 of [1]. In the new version (see Theorem 1
below) the noise-to-signal ratio need not be smaller than an absolute
constant in order for the stated error guarantee to hold. In the process
of proving Theorem 1 we also correct a small (re)normalization issue
with Corollary 4 of [2].

We wish to reconstruct a given vector x0 ∈ Cn, up to a global phase
factor, from magnitude measurements of the form

(1) bi := |〈pi,x0〉|2 + ni,

where pi ∈ Cn and ni ∈ R for i = 1, . . . ,m. Vectorizing (1) yields

(2) b := |Px0|2 + n,

where b,n ∈ Rm, P ∈ Cm×n, and |·|2 : Cm → Rm computes the component-
wise squared magnitude of each vector entry. We aim to prove the following
corrected version of equation (1.8) in Theorem 1.3 from [1] concerning this
problem.

Theorem 1. Let P ∈ Cm×n have its m rows be independently drawn either
uniformly at random from the sphere of radius

√
n in Cn, or else as complex

normal random vectors from N (0, In/2) + iN (0, In/2). Then, ∃ universal

constants B̃, C̃, D̃ ∈ R+ such that the PhaseLift procedure ΦP : Rm → Cn

satisfies

(3) min
θ∈[0,2π]

∥∥∥ ΦP (b)− eiθx0

∥∥∥
2
≤ C̃ · ‖n‖1

m‖x0‖2

for all x ∈ Cn with probability 1 −O(e−B̃m), provided that m ≥ D̃n. Here
b,n ∈ Rm are as in (2).

Our proof relies on a modified version of Corollary 4 from [2]. It reads:
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Corollary 1. Let x0 ∈ Cn, set X0 = x0x
∗
0, and let X � 0 be such that

‖X − X0‖F ≤ η‖X0‖F = η‖x0‖22 for some η > 0, where ‖ · ‖F denotes
the Frobenius norm. Furthermore, let λi be the i-th largest eigenvalue of
X and vi an associated eigenvector, such that the vi form an orthonormal
eigenbasis. Then

min
θ∈[0,2π]

‖eiθx0 −
√
λ1v1‖2 ≤ (1 + 2

√
2)η‖x0‖2.

See Section 1 for the proof of Corollary 1.

We can now use Corollary 1 to prove Theorem 1:

Proof. Beginning with Equation (1.7) in Theorem 1.3 of [1], we have that

‖X − x0x
∗
0‖F ≤ C0 ·

(
‖n‖1
m‖x0‖22

)
‖x0‖22,

where X � 0 is the solution to (1.6) in [1], and C0 ∈ R+ is a universal
constant. Returning the leading eigenvector of X reweighed by the square
root of its associated eigenvalue now establishes the desired error bound by
Corollary 1. �

Please note that no assumptions need to be made concerning the magni-
tude of the noise vector, n, in Thoerem 1.

1. Proof of Corollary 1

Proof. Note that by construction, the rank one matrix X0 has one eigenvalue
ν := ‖x0‖22 and all other eigenvalues 0. By Weyl’s inequality,

(4) max{|ν − λ1|, λ2, . . . , λn} ≤ ην.

By orthonormality of the vi, the spectral norm of the matrix X − νv1v
∗
1

satisfies

‖X− νv1v
∗
1‖ =

∥∥∥∥∥∥(λ1 − ν)v1v
∗
1 +

n∑
j=2

λjvjv
∗
j

∥∥∥∥∥∥ ≤ ην,
where the last inequality uses (4). Consequently, by the triangle inequality,

‖X0 − νv1v
∗
1‖ ≤ ‖X0 −X‖+ ‖X− νv1v

∗
1‖ ≤ 2ην.

Thus, we can see that

(5) ν2 − ν|〈x0,v1〉|2 =
1

2
‖X0 − νv1v

∗
1‖2F ≤ ‖X0 − νv1v

∗
1‖2 ≤ 4η2ν2,

where the second to last inequality follows from the fact that X0− νv1v
∗
1 is

at most rank 2.
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We next choose φ ∈ [0, 2π] such that 〈eiφx0,v1〉 = |〈x0,v1〉|, and then
note that

‖eiφx0 −
√
νv1‖22 = 2ν − 2

√
ν〈eiφx0,v1〉 = 2ν − 2

√
ν · |〈x0,v1〉|(6)

≤
(
2ν − 2

√
ν · |〈x0,v1〉|

)(ν +
√
ν · |〈x0,v1〉|
ν

)
=

2

ν

(
ν2 − ν|〈x0,v1〉|2

)
≤ 8η2ν,

where the last inequality follows from (5). Finally, by the triangle inequality,
(4), and (6), we have

‖eiφx0 −
√
λ1v1‖2 ≤ ‖eiφx0 −

√
νv1‖2 + ‖

√
νv1 −

√
λ1v1‖2

≤ 2
√

2η
√
ν +

∣∣∣√ν −√λ1∣∣∣
≤ 2
√

2η
√
ν +

|ν − λ1|√
ν +
√
λ1

≤ 2
√

2η
√
ν +

ην
√
ν +
√
λ1

≤ 2
√

2η
√
ν + η

√
ν = (1 + 2

√
2)η
√
ν.

The desired result now follows.
�
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