TECHNICAL NOTE: A MINOR CORRECTION OF
THEOREM 1.3 FROM [1]

MARK IWEN, FELIX KRAHMER, AND ADITYA VISWANATHAN

ABSTRACT. In this short note we correct and simplify the proof of equa-
tion (1.8) in Theorem 1.3 of [1]. In the new version (see Theorem 1
below) the noise-to-signal ratio need not be smaller than an absolute
constant in order for the stated error guarantee to hold. In the process
of proving Theorem 1 we also correct a small (re)normalization issue
with Corollary 4 of [2].

We wish to reconstruct a given vector xg € C™, up to a global phase
factor, from magnitude measurements of the form

(1) b’L = ‘<pi>X0>|2 + ng,
where p; € C" and n; € R for i = 1,...,m. Vectorizing (1) yields
(2) b= |73x0|2 + n,

where b,n € R™, P € C™*", and |-|? : €™ — R™ computes the component-
wise squared magnitude of each vector entry. We aim to prove the following
corrected version of equation (1.8) in Theorem 1.3 from [1] concerning this
problem.

Theorem 1. Let P € C™*™ have its m rows be independently drawn either
uniformly at random from the sphere of radius \/n in C™, or else as complex
normal random vectors from N(0,Z,/2) + iN(0,Z,/2). Then, 3 universal
constants B,C,D € R™ such that the PhaseLift procedure ®p : R™ — C"
satisfies

[l

3 min
) mlxoll

0€[0,27]

(I)p (b) - (BMX() H < é
2

for all x € C" with probability 1 — O(e~5™), provided that m > Dn. Here
b,n € R™ are as in (2).

Our proof relies on a modified version of Corollary 4 from [2]. It reads:
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Corollary 1. Let xg € C", set Xg = xox3, and let X = 0 be such that
I1X — Xollr <9l Xollr = nlxoll3 for some n > 0, where || - ||F denotes
the Frobenius norm. Furthermore, let A\; be the i-th largest eigenvalue of
X and v; an associated eigenvector, such that the v; form an orthonormal
etgenbasis. Then

min ||®ﬂ9X0 - \61V1||2 <1+ 2\@)77”)(0”2-
0€[0,27]

See Section 1 for the proof of Corollary 1.

We can now use Corollary 1 to prove Theorem 1:

Proof. Beginning with Equation (1.7) in Theorem 1.3 of [1], we have that
* Hn”1 2
X~ xaxjle <o ( ol
mlxol3

where X > 0 is the solution to (1.6) in [1], and Cy € R™ is a universal
constant. Returning the leading eigenvector of X reweighed by the square

root of its associated eigenvalue now establishes the desired error bound by
Corollary 1. O

Please note that no assumptions need to be made concerning the magni-
tude of the noise vector, n, in Thoerem 1.

1. PROOF OoF COROLLARY 1

Proof. Note that by construction, the rank one matrix Xy has one eigenvalue
v := ||x0||3 and all other eigenvalues 0. By Weyl’s inequality,

(4) max{|v — A1], A2y ..., An} < .

By orthonormality of the v;, the spectral norm of the matrix X — vvyv]
satisfies

n
|IX —vvivi| = ||{(A —v)viv] + Z Ajvivi| < v,

j=2
where the last inequality uses (4). Consequently, by the triangle inequality,
1Xo — rvivi| < [Xo — X]| + X — vvivi| < 20w

Thus, we can see that
1
(5) v —vl{xo,vi)[* = 3 1Xo — vvivi||E < [Xo —vvivi|? < 4nv?,

where the second to last inequality follows from the fact that Xo —vv;v] is
at most rank 2.
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We next choose ¢ € [0,2n] such that (e!®xq,vi) = |(x0,Vv1)|, and then
note that

(6) Hemxo — fv1||2 =2V — Q\f( xo,v1> =2v — 23/v - |{xg,V1)]

< (20— 27 - |(x0, 1)) (V+W-IJ|<X0,V1>’)

2
= - (1/2 — I/|<X0,V1>|2) < 87721/,

where the last inequality follows from (5). Finally, by the triangle inequality,
(4), and (6), we have

letxo — VAvilz < [le'x0 — Vivillz + [[VIve — VAivif
< 2V + \f— fh(
— M|
<V + —— L
f—l— oy
<2V —
er fl

< 2V2U 4+ v = (14 2V2)n/v.

The desired result now follows.
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