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Abstract This paper studies the problem of recovering a signal from one-bit compressed sensing measure-
ments under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic
dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and
prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method
is the first tractable algorithm with such guarantees for this setting. The results are complemented by
numerical experiments confirming the validity of our approach.
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1 Introduction

Linear inverse problems are ubiquitous in many applications in science and engineering. Starting with the
seminal works of Candès, Romberg and Tao [10] as well as Donoho [14], a new paradigm in their analysis
became an active area of research in the last decades. Namely, rather than considering the linear model as
entirely given by the application, one seeks to actively choose remaining degrees of freedom, often using a
randomized strategy, to make the problem less ill-posed. This approach gave rise to a number of recovery
guarantees for random linear measurement models under structural data assumptions. The first works
considered the recovery of sparse signals; subsequent works analyzed more general union-of-subspaces
models [17] and the recovery of low rank matrices [37], a model that can also be employed when studying
phaseless reconstruction problems [11] or bilinear inverse problems [1].

Another line of works following this approach studies manifold models. That is, one assumes that the
structural constraints are given by (unions of finitely many) manifolds. While this model is considerably
richer than say sparsity, its rather general formulation makes a unified study, at least in some cases,
somewhat more involved. The first work to study random linear projections of smooth manifold was [5],
the authors show that Gaussian linear dimension reductions typically preserve the geometric structure.
In [25], these results are refined and complemented by a recovery algorithm, which is based on the
concept of the Geometric Multi-Resolution Analysis as introduced in [3] (cf. Section 2.1 below). These
results were again substantially improved in [16]; these latest results no longer explicitly depend on the
ambient dimension.

Arguably, working with manifold models is better adapted to real world data than sparsity and hence
may allow one to work with smaller embedding dimensions. For that, however, other practical issues need
to be considered as well. In particular, to our knowledge there are almost no works to date that study
the effects of quantization, i.e., representing the measurements using only a finite number of bits (the
only remotely connected work that we are aware of is [32], but this paper does not consider dimension
reduction and exclusively focuses on the special case of Grassmann manifolds).
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For sparse signal models, in contrast, quantization of subsampled random measurements is an active
area of research. On the one hand, a number of works considered the scenario of memoryless scalar
quantization, that is, each of the measurement is quantized independently. In particular, the special case
of representing each measurement only by a single bit, its sign, – often referred to as one-bit compressed
sensing – has received considerable attention. In [27], it was shown that one-bit compressed sensing
with Gaussian measurements approximately preserves the geometry, and a heuristic recovery scheme
was presented. In [34], recovery guarantees for a linear method, again with Gaussian measurements,
were derived. Subsequently, these results were generalized to subgaussian measurements [2], and partial
random circulant measurements [13]. In [35], the authors provided a recovery procedure for noisy one-bit
Gaussian measurements which provably works on more general signal sets (essentially arbitrary subsets
of the euclidean ball). This procedure, however, becomes NP-hard as soon as the signal set is non-convex,
a common property of manifolds.

Another line of works studied so-called feedback quantizers, that is, the bit sequence encoding the
measurements is computed using a recursive procedure. These works adapt the Sigma-Delta modulation
approach originally introduced in the context of bandlimited signals [21, 33] and later generalized to
frame expansions [6, 7] to the sparse recovery framework. A first such approach was introduced and
analyzed for Gaussian measurements in [22]; subsequent works generalize the results to subgaussian
random measurements [19, 28]. Recovery guarantees for a more stable reconstruction scheme based on
convex optimization were proved for subgaussian measurements in [38] and extended to partial random
circulant matrices in [20]. For more details on the mathematical analysis available for different scenarios,
we refer the reader to the overview chapter [9].
In this paper we focus on the MSQ approach and leave the study of Sigma-Delta quantizers under manifold
model assumptions for future work.

1.1 Contribution

We provide the first tractable one-bit compressed sensing algorithm for signals which are well approxi-
mated by manifold models. It is simple to implement and comes with error bounds that basically match
the state-of-the-art recovery guarantees in [35]. In contrast to the minimization problem introduced in [35]
which does not come with a minimization algorithm, our approach always admits a convex formulation
and hence allows for tractable recovery. Our approach is based on the Geometric Multi-Resolution Anal-
ysis (GMRA) introduced in [3], and hence combines the approaches of [25] with the general results for
one-bit quantized linear measurements provided in [35], [36].

1.2 Outline

We begin by a detailed description of our problem in Section 2 and fix notation for the rest of the paper.
The section also includes a complete axiomatic definition of GMRA. Section 3 states our main results.
The proofs can be found in Section 4. In Section 5 we present some numerical experiments testing the
recovery in practice and conclude with Section 6. Technical parts of the proofs as well as adaption of the
results to GMRAs from random samples are deferred to the Appendix.

2 Problem Formulation, Notation, and Setup

The problem we address is the following. We consider a given union of low-dimensional manifolds (i.e.,
signal class)M of intrinsic dimension d that is a subset of the unit sphere SD−1 of a higher dimensional
space RD, d � D. Furthermore, we image that we do not know M perfectly, and so instead we only
have approximate information aboutM represented in terms of a structured dictionary model D for the
manifold. Our goal is now to recover an unknown signal x ∈M from m one-bit measurements

y = sign(Ax), (1)

where A ∈ Rm×D has Gaussian i.i.d. entries of variance 1/
√
m, using as few measurements,m, as possible.

Each single measurement sign(〈ai,x〉) can be interpreted as the random hyperplane {z ∈ RD : 〈ai, z〉 = 0}
tessellating the sphere (cf. Figure 1a). In order to succeed using only m� D such one-bit measurements
we will use the fact that our (highly coherent, but structured) dictionary D for M provides structural
constraints for the signal x to be recovered. Thus the setup connects to recent generalizations of the
quantized compressed sensing problem [35] which we will exploit in our proof.
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SD−1

(a) Tessellation of the sphere by ran-
dom hyperplanes.

M

(b) Submanifold M of SD−1 and one
level of GMRA.

Fig. 1: One-bit measurements and GMRA.

2.1 GMRA Approximations toM⊂ RD, and Two Notions of Complexity

Clearly, the solution to this problem depends on what kind of representation, D, of the manifoldM we
have access to. In this paper we consider the scenario where the dictionary for the manifold is provided
by a Geometric Multi Resolution Analysis (GMRA) approximation to M [3] (cf. Figure 1b). We will
mainly work with GMRA approximations ofM characterized by the axiomatic Definition 1 below, but
we also consider the case of a GMRA approximation based on random samples from M (see Section 3
and Appendices D and E for more details).

As one might expect, the complexity and structure of the GMRA-based dictionary forM will depend
on the complexity ofM itself. In this paper we will work with two different measures of a set’s complexity:
(i) the set’s Gaussian width, and (ii) the notion of the reach of the set [18]. The Gaussian width of a set
M⊂ RD is defined by

w(M) := E
[

sup
z∈M
〈g, z〉

]
where g ∼ N (0, ID). Properties of this quantity are discussed in Section 4.1. The notion of reach is,
in contrast, more obviously linked to the geometry ofM and requires a couple of additional definitions
before it can be defined formally.

The first of these definitions is the tube of radius r around a given subset M ⊂ RD, which is the
D-dimensional superset ofM consisting of all the points in RD that are within Euclidean distance r ≥ 0
ofM⊂ RD,

tuber(M) :=

{
x ∈ RD : inf

y∈M
‖x− y‖2 ≤ r

}
.

The domain of the nearest neighbor projection onto the closure ofM is also needed, and is denoted by

D(M) :=

{
x ∈ RD : ∃!y ∈M such that ‖x− y‖2 = inf

z∈M
‖z− y‖2

}
.

Finally, the reach of the setM⊂ RD is simply defined to be the smallest distance r aroundM for which
the nearest neighbor projection onto the closure ofM is no longer well defined. Equivalently,

reach(M) := sup{r ≥ 0 : tuber(M) ⊆ D(M)}.

Given this definition one can see, e.g., that the reach of any d < D dimensional sphere of radius r in RD

is always r, and that the reach of any d ≤ D dimensional convex subset of RD is always ∞.

Definition 1 (GMRA Approximation to M, [25]) Let J ∈ N and K0,K1, ...,KJ ∈ N. Then a
Geometric Multi Resolution Analysis (GMRA) Approximation ofM is a collection {(Cj ,Pj)}, j ∈ [J ] :=

{0, ..., J}, of sets Cj = {cj,k}
Kj

k=1 ⊂ RD of centers and

Pj =
{
Pj,k : RD → RD

∣∣ k ∈ [Kj ]
}

of affine projectors which approximateM at scale j, such that the following assumptions (1)-(3) hold.

(1) Affine Projections: Every Pj,k ∈ Pj has both an associated center cj,k ∈ Cj and an orthogonal
matrix Φj,k ∈ Rd×D, such that

Pj,k(z) = ΦT
j,kΦj,k(z− cj,k) + cj,k,

i.e., Pj,k is the projector onto some affine d-dimensional linear subspace Pj,k containing cj,k.
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(2) Dyadic Structure: The number of centers at each level is bounded by |Cj | = Kj ≤ CC2
dj for an

absolute constant CC ≥ 1. There exist C1 > 0 and C2 ∈ (0, 1], such that following conditions are
satisfied:
(a) Kj ≤ Kj+1, for all j ∈ [J − 1].
(b) ‖cj,k1 − cj,k2‖2 > C1 · 2−j , for all j ∈ [J ] and k1 6= k2 ∈ [Kj ].
(c) For each j ∈ [J ]\{0} there exists a parent function pj : [Kj ]→ [Kj−1] with

‖cj,k − cj−1,pj(k)‖2 ≤ C2 · min
k′∈[Kj−1]\{pj(k)}

‖cj,k − cj−1,k′‖2.

(3) Multiscale Approximation: The projectors in Pj approximate M at scale j, i.e., when M is
sufficiently smooth the affine spaces Pj,k locally approximateM pointwise with error O

(
2−2j

)
. More

precisely:
(a) There exists j0 ∈ [J − 1], such that cj,k ∈ tubeC1·2−j−2(M), for all j > j0 ≥ 1 and k ∈ [Kj ].
(b) For each j ∈ [J ] and z ∈ RD let cj,kj(z) be one of the centers closest to z, i.e.,

kj(z) ∈ arg min
k∈[Kj ]

‖z− cj,k‖2. (2)

Then, for each z ∈M there exists a constant Cz > 0 such that

‖z− Pj,kj(z)(z)‖2 ≤ Cz · 2−2j ,

for all j ∈ [J ]. Moreover, for each z ∈M there exists C̃z > 0 such that

‖z− Pj,k′(z)‖2 ≤ C̃z · 2−j ,

for all j ∈ [J ] and k′ ∈ [Kj ] satisfying

‖z− cj,k′‖2 ≤ 16 ·max
{
‖z− cj,kj(z)‖2, C1 · 2−j−1

}
.

Remark 1 By property (1) GMRA approximation representsM as a combination of several anchor points
(the centers cj,k) and corresponding low dimensional affine spaces Pj,k. The levels j control the accuracy
of the approximation. The centers are organized in a tree-like structure as stated in property (2). Property
(3) then characterizes approximation criteria to be fulfilled on different refinement levels. Note that centers
do not have to lie onM (compare Figure 1b) but their distance toM is controlled by property (3a).

cj,kj(x)

cj,k′

x

Pj,kj(x)

Pj,k′

M

Pj,k′ (x)

Fig. 2: The closest center cj,kj(x) is not identified by measure-
ments. Dotted lines represent one-bit hyperplanes.
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2.2 Additional Notation

Let us now fix some additional notation. Throughout the remainder of this paper we will work with
several different metrics. Perhaps most importantly, we will quantify the distance between two points
z, z′ ∈ RD with respect to their one-bit measurements by

dA(z, z′) :=
dH(sign(Az), sign(Az′))

m
,

where dH counts the number of differing entries between the two sign patterns (i.e., dA(z, z′) is the
normalized Hamming distance between the signs of Az and Az′). Furthermore, let PS denote orthogonal
projection onto the unit sphere SD−1, and more generally let PK denote orthogonal (i.e., nearest neighbor)
projection onto the closure of an arbitrary set K ⊂ RD wherever it is defined. Then, for all z, z′ ∈ RD

we will denote by dG(z, z′) = dG(PS(z),PS(z′)) the geodesic distance between PS(z) and PS(z′) on SD−1
normalized to fulfill dG(z′′,−z′′) = 1 for all z′′ ∈ RD.

Herein the Euclidian ball with center z and radius r is denoted by B(z, r). In addition, the scale-j
GMRA approximation toM,

Mj := {Pj,kj(z)(z) : z ∈ B(0, 2)} ∩ B(0, 2),

will refer to the portions of the affine subspaces introduced in Definition 1 for each fixed j which are
potentially relevant as approximations to some portion of M ⊂ SD−1. To prevent the Mj above from
being empty we will further assume in our results that we only use scales j > j0 large enough to guarantee
that tubeC12−j−2(M) ⊂ B(0, 2). Hence we will have cj,k ∈ B(0, 2) for all k ∈ Kj , and so Cj ⊂ Mj . This
further guarantees that no sets Pj,k ∩ B(0, 2) are empty, and that Pj,k ∩ B(0, 2) ⊂Mj for all k ∈ Kj .

Finally, we write a & b if a ≥ Cb for some constant C > 0. The diameter of a set K ⊂ RD will be
denoted by diam(K) := supz,z′∈K ‖z − z′‖2, where ‖ · ‖2 is the Euclidian norm. We use dist(A,B) =

infa∈A,b∈B ‖a − b‖2 for the distance of two sets A,B ⊂ RD and by abuse of notation dist(0, A) =
infa∈A ‖a‖2. The operator norm of a matrix A ∈ Rn1×n2 is denoted by ‖A‖ = supx∈Rn2 ,‖x‖2≤1 ‖Ax‖2. We
will write N (K, ε) to denote the Euclidian covering number of a set K ⊂ RD by Euclidean balls of radius
ε (i.e., N (K, ε) is the minimum number of ε-balls that are required to cover K). And, the operators brc
(resp. dre) return the closest integer smaller (resp. larger) than r ∈ R.

2.3 The Proposed Computational Approach

Combining prior GMRA-based compressed sensing results [25] with the one-bit results of Plan and
Vershynin in [35] suggests the following strategy for recovering an unknown x ∈ M from the measure-
ments given in (1): First, choose a center cj,k′ whose one-bit measurements agree with as many one-bit
measurements of x as possible. Due to the varying shape of the tessellation cells this is not an optimal
choice in general (see Figure 2). Nevertheless, one can expect Pj,k′ to be a good approximation toM near
x. Thus, in the second step a modified version of Plan and Vershynin’s noisy one-bit recovery method
using Pj,k′ should yield an approximation of Pj,k′(x) which is close to x.1 See OMS-simple for pseudocode.

Algorithm OMS-simple: OnebitManifoldSensing - Simple Version
I. Identify a center cj,k′ close to x via

cj,k′ ∈ arg min
cj,k∈Cj

dH(sign(Acj,k),y), (3)

where dH is the Hamming distance, i.e., dH(z, z′) := |{l : zl 6= z′l}|. If dH(sign(Acj,k′),y) = 0, directly
choose x∗ = cj,k′ and omit II.

II. If there is no center in the same cell as x (as in Figure 2), solve a noisy one-bit recovery problem as
in [35], i.e.,

x∗ = arg min
z∈RD

m∑
l=1

(−yl)〈al, z〉, subject to z = Pj,k′(z) and ‖z‖2 ≤ R (4)

where R is a suitable parameter.

1 Note that in this second step the given measurements y of x are interpreted as being noisy measurements of Pj,k′ (x).
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Remark 2 The minimization in (3) can be efficiently calculated by exploiting tree structures in Cj . Nu-
merical experiments (see Section 5) suggest this strategy to yield adequate approximation for the center
cj,kj(x) in (2), while being considerably faster (we observed differences in runtime up to a factor of 10).

Though simple to understand, the constraints in (4) have two issues that we need to address: First,
in some cases the minimization problem (4) empirically exhibits suboptimal recovery performance (see
Section 5.1 for details). Second, the parameter R in (4) is unknown a priori (i.e., OMS-simple requires
parameter tuning, making it less practical than one might like). Indeed, our analysis shows that making
an optimal choice for R in OMS-simple requires a priori knowledge about ‖Pj,k′(x)‖2 which is only
approximately known in advance.

To address this issue, we will modify the constraints in (4) and instead minimize over the convex hull
of the nearest neighbor projection of Pj,k′ ∩ B(0, 2) onto SD−1,

conv (PS(Pj,k′ ∩ B(0, 2))) ,

to remove the R dependence. If 0 ∈ Pj,k′ one has conv (PS(Pj,k′ ∩ B(0, 2))) = Pj,k′ ∩ B(0, 1). If 0 /∈
Pj,k′ the set conv (PS(Pj,k′ ∩ B(0, 2))) is described by the following set of convex constraints which are
straightforward to implement in practice. Denote by Pc the projection onto the vector c = Pj,k′(0). Then,

z ∈ conv (PS(Pj,k′ ∩ B(0, 2)))⇔


‖z‖2 ≤ 1,

ΦT
j,k′Φj,k′z + Pc(z) = z,

〈z, c〉 ≥ 1
2‖c‖

2
2,

. (5)

The first two conditions above restrict z to B(0, 1) and span(Pj,k′), respectively. The third condition
then removes all points that are too close to the origin (see Figure 3). A rigorous proof of equivalence can
be found in Appendix A. Our analysis uses that the noisy one-bit recovery results of Plan and Vershynin

0
0

Pj,k′ (0)

1
2

(
Pj,k′ ∩ B(0, 2)

)

Pj,k′ ∩ B(0, 2) Pj,k′ (0)

Fig. 3: Two views of an admissible set conv(PS(Pj,k′ ∩B(0, 2)))
from (5) for a case with ‖c‖2 = ‖Pj,k′(0)‖2 < 1.

apply to arbitrary subsets of the unit ball B(0, 1) ⊂ RD which will allow us to adapt our recovery
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approach. Replacing the constraints in (4) with those in (5) we obtain the following modified recovery
approach, OMS.

Algorithm OMS: OnebitManifoldSensing
I. Identify a center cj,k′ close to x via

cj,k′ ∈ arg min
cj,k∈Cj

dH(sign(Acj,k),y). (6)

where dH is the Hamming distance, i.e., dH(z, z′) := |{l : zl 6= z′l}|. If dH(sign(Acj,k′),y) = 0, directly
choose x∗ = cj,k′ and omit II.

II. If there is no center lying in the same cell as x (see Figure 2), recover the projection of x onto Pj,k′ ,
i.e., Pj,k′(x). To do so solve the convex optimization

x∗ = arg min
z∈RD

m∑
l=1

(−yl)〈al, z〉, subject to z ∈ conv (PS(Pj,k′ ∩ B(0, 2))) . (7)

As we shall see, theoretical error bounds for both OMS-simple and OMS can be obtained by nearly
the same analysis despite their differences.

3 Main Results

In this section we present the main results of our work, namely that both OMS-simple and OMS
approximate a signal on M to arbitrary precision with a near-optimal number of measurements. More
precisely, we obtain the following theorem.

Theorem 1 ((Uniform) Recovery) There exist absolute constants E,E′, c > 0 such that the following
holds. Let ε ∈ (0, 1/16] and assume the GMRA’s maximum refinement level J ≥ j := dc′ log(1/

√
ε)e for

c′ > 0 as below. Further suppose that one has dist(0,Mj) ≥ 1/2, 0 < C1 < 2j, and supx∈M C̃x < 2j−2.
If

m ≥ EC−61 ε−7 max

{
w(M),

√
d log(1/

√
ε)

}2

, (8)

then with probability at least 1−12 exp(−cC2
1ε

2m) for all x ∈M ⊂ SD−1 the approximations x∗ obtained
by OMS satisfy

‖x− x∗‖22 ≤ E′
(

1 + C̃x + C1 max
{

1, log(C−11 )
})2

ε. (9)

Proof : See the proofs of Corollary 1 and Theorem 5 in Section 4.

Remark 3 The restrictions on C1 and C̃x are easily satisfied, e.g., if the centers form a maximal 2−j

packing ofM at each scale j or if the GMRA is constructed from manifold samples as discussed in [31]
(cf. Appendix E). In both these cases C1 and C̃x are in fact bounded by absolute constants. Numerical
simulations (see Section 5) suggest that a slightly modified version of OMS performs better in some sce-
narios even though we cannot provide a rigorous theoretical justification for the modification’s improved
performance at present.

Note that Theorem 1 depends on the Gaussian width of M. For general sets this quantity provides a
useful measure of the set’s complexity. In the case of compact of Riemannian submanifolds of RD it might
be more convenient to have a dependence on the geometric properties ofM instead (e.g., its volume and
reach). Indeed, one can show by means of [16] that w(M) can be upper bounded in terms of the manifold’s
intrinsic dimension d, its d-dimensional volume Vol(M), and the inverse of its reach. Intuitively, these
dependencies are to be expected as a manifold with fixed intrinsic dimension d can become more complex
as either its volume or curvature (which can be bounded by the inverse of its reach) grows. The following
theorem, which is a combination of different results in [16], formalizes this intuition by bounding the
Gaussian width of a manifold in terms of its geometric properties.
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Theorem 2 Assume M ⊂ RD is a compact d-dimensional Riemannian manifold with d-dimensional
volume Vol(M) where d ≥ 1. Then one can replace w(M) in above theorem by

w(M) ≤ C · diam(M) ·

√√√√d ·max

{
log

(
c

√
d

min{1, reach(M)}

)
, 1

}
+ log(max{1,Vol(M)}).

where C, c > 0 are absolute constants.

Proof : See Appendix B.

Remark 4 Note that in our setting M ⊂ SD−1 implies that diam(M) ≤ 2 and reach(M) ≤ 1. As we
will see the Gaussian width of the GMRA approximation toM is also bounded in terms of w(M). This
additional width bound is crucial to the proof of Theorem 1 as the complexity of the GMRA approximation
to M also matters whenever one attempts to approximate an x ∈ M using only the available GMRA
approximation to M. See, e.g., Lemmas 1, 2 and 3 below for upper bounds on the Gaussian widths of
GMRA approximations to manifoldsM⊂ SD−1 in various settings.

Finally, we point out that Theorem 1 assumes access to a GMRA approximation toM ⊂ SD−1 which
satisfies all of the axioms listed in Definition 1. Following the work of Maggioni, Minsker, and Strawn [31],
however, one can also ask whether a similar result will still hold if the GMRA approximation one has
access to has been learned by randomly sampling points fromM without the assumptions of Definition
1 being guaranteed a priori. Indeed, such a setting is generally more realistic. In fact it turns out that
a version of Theorem 1 still holds for such empirical GMRA approximations under suitable conditions;
see Theorem 7. We refer the interested reader to Appendix D and Appendix E for additional details and
discussion regarding the use of such empirically learned GMRA approximations.

4 Proofs

This section provides proofs of the main result in both settings described above and establishes several
technical lemmas. First, properties of the Gaussian width and the geodesic distance are collected and
shown. Then, the main results are proven for a given GMRA approximation fulfilling the axioms.

4.1 Toolbox

We start by connecting slightly different definitions of dimensionality measures similar to the Gaussian
width and clarify how they relate to each other. This is necessary as the tools we make use of appear in
their original versions referring to different definitions of Gaussian width.

Definition 2 (Gaussian (mean) width) Let g ∼ N (0, IdD). For a subset K ⊂ RD define

(i) the Gaussian width: w(K) := E[supx∈K〈g,x〉]
(ii) the Gaussian mean width to be the Gaussian width of K −K and
(iii) the Gaussian complexity : γ(K) = E[supx∈K |〈g,x〉|].

By combining Properties 5. and 6. of Proposition 2.1 in [35] on has

w(K −K) ≤ 2w(K) ≤ 2γ(K) ≤ 2

(
w(K −K) +

√
2

π
dist(0,K)

)
. (10)

Remark 5 One can easily verify that w(K) ≥ 0 for all K ⊂ RD since w(K) := E[supx∈K〈g,x〉] ≥
supx∈K E[〈g,x〉] = 0. The square of the Gaussian width w(K∩B(0, 1))2 ofK ⊂ RD is also a good measure
of intrinsic dimension. For example, if K is a linear subspace with dim(K) = d then w(K∩B(0, 1)) ≤

√
d.

In this sense, the Gaussian width extends the concept of dimension to general sets K. Furthermore, for a
finite set K the Gaussian width is bounded by w(K) ≤ Cf diam(K ∪{0})

√
log |K|. This can be deduced

directly from the definition (see, e.g., §2 of [35]).
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Now that we have introduced the notion of Gaussian width, we can use it to characterize the union of
the given manifold and a single level of its GMRA approximationM∪Mj (recall the definition ofMj

in Section 2).

Lemma 1 (A Bound of the Gaussian Width for Coarse Scales) For Mj, the subspace approx-
imation in the GMRA of level j > j0 (cf. end of Section 2) for M of dimension d ≥ 1, the Gaussian
width ofM∪Mj can be bounded from above and below by

max{w(M), w(Mj)} ≤ w(M∪Mj) ≤ 2w(M) + 2w(Mj) + 3 ≤ 2w(M) + C
√
dj.

Remark 6 Note that the first inequality holds for general sets, not onlyM andMj . Moreover, one only
usesMj ⊂ B(0, 2) to prove the second inequality. It thus holds forMj replaced with arbitrary subsets
of B(0, 2). We might use both variations referring to Lemma 1.

Proof : The first inequality follows by noting that

max{w(M), w(Mj)} = max

{
E
[

sup
v∈M

〈v,g〉
]
, E

[
sup

v∈Mj

〈v,g〉
]}
≤ E

[
sup

v∈M∪Mj

〈v,g〉
]

= w(M∪Mj).

To obtain the second inequality observe that

w(M∪Mj) ≤ γ(M∪Mj) ≤ E

[
sup
v∈M

|〈v,g〉|+ sup
v∈Mj

|〈v,g〉|
]

= γ(M) + γ(Mj)

≤ 2w(M) + 2w(Mj) +

√
2

π
dist(0,M) +

√
2

π
dist(0,Mj)

≤ 2

(
w(M) + w(Mj) + 1.5

√
2

π

) (11)

where we used (10), the fact thatM⊂ SD−1, and thatMj ⊂ B(0, 2).
For the last inequality we bound w(Mj). First, note that

w(Mj) = E

[
sup

v∈Mj

〈v,g〉
]

= E

 sup
v∈{Pj,kj(x)(x) : x∈B(0,2)}∩B(0,2)

〈v,g〉


≤ E

 sup
x∈⋃k∈[Kj ] Pj,k∩B(0,2)〈x,g〉

 .
For all k ∈ [Kj ] there exist d-dimensional Euclidean balls Lj,k ⊂ Pj,k of radius 2 such that Pj,k ∩ B(0, 2) ⊂ Lj,k.
Hence,

⋃
k∈[Kj ](Pj,k ∩ B(0, 2)) ⊂ Lj :=

⋃
k∈[Kj ] Lj,k. By definition the ε-covering number of Lj (a union of Kj d-

dimensional balls) can be bounded by N (Lj , ε) ≤ Kj(6/ε)d which implies logN (Lj , ε) ≤ dj log(12CC/ε) by GMRA
property (2). By Dudley’s inequality (see, e.g., [15] ) we conclude via Jensen’s inequality that

w(Mj) ≤ w(Lj) ≤ CDudley

∫ 2

0

√
logN (Lj , ε) dε ≤ CDudley

√
dj

∫ 2

0

√
log(12CC)− log(ε) dε

≤ CDudley
√
dj

√
2 log(12CC)−

∫ 2

0
log(ε) dε

≤ C′
√
dj

where C′ is a constant depending on CDudley and CC . Choosing C = 2C′ + 3 yields the claim as 3
√

2/π ≤ 3
√
dj.

The following two lemmas concerning width bounds for fine scales will also be useful. Their proofs
(see Appendix C), though more technical, use similar ideas to the proof of Lemma 1. The first lemma
improves on Lemma 1 for large values of j by considering a more geometrically precise approximation to
M,Mrel

j ⊂Mj .

Lemma 2 (A Bound of the GaussianWidth for Fine Scales) If j ≥ log2(D), max{1, supz∈M Cz} =:
CM <∞, andMrel

j := {Pj,kj(z)(z) : z ∈M} ∩B(0, 2) we obtain

max{w(M), w(Mrel
j )} ≤ w(M∪Mrel

j ) ≤ 2w(M) + 2w(Mrel
j ) + 3 ≤ C(w(M) + 1) log(D).
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It is not surprising that for generalM∈ SD−1 the width bound for w(Mj) (resp. w(Mrel
j )) depends

on either j or log(D). When using the proximity ofMrel
j toM in Lemma 2 we only use the information

that Mrel
j ⊂ tubeCM2−2j and a large ambient dimension D will lead to a higher complexity of the

tube. In the case of Lemma 1 we omit the proximity argument by using the maximal number of affine
d-dimensional spaces inMj and hence do not depend on D but on the refinement level j.

The next lemma just below utilizes even more geometric structure by assuming thatM is a Rieman-
nian Manifold. It improves on both Lemma 1 and 2 for such M by yielding a width bound which is
independent of both j and D for all j sufficiently large.

Lemma 3 (A Bound of the Gaussian Width for Approximations to Riemannian Manifolds)
Let M ⊂ SD−1 be a compact d-dimensional Riemannian manifold with d-dimensional volume Vol(M)
where d ≥ 1. Furthermore, suppose that for max{1, supz∈M Cz} =: CM, j > max{j0, log2(8CM/C1)},
and setMrel

j := {Pj,kj(z)(z) : z ∈M} ∩B(0, 2). Then, there exist absolute constants C, c > 0 such that

max{w(M), w(Mrel
j )} ≤ w(M∪Mrel

j ) ≤ C

√√√√d

(
1 + log

(
c

√
d

reach(M)

))
+ log(max{1,Vol(M)}).

Here the constants Cz and C1 are from properties (3b) and (3a), respectively.

Finally, the following lemma quantifies the equivalence between Euclidean and normalized geodesic
distance on the sphere.

Lemma 4 For z, z′ ∈ SD−1 one has

dG(z, z′) ≤ ‖z− z′‖2 ≤ πdG(z, z′).

Proof : First observe that 〈z, z′〉 = cos](z, z′) = cos(πdG(z, z′)). This yields

‖z− z′‖2 − dG(z, z′) =
√

2− 2 cos(πdG(z, z′))− dG(z, z′) ≥ 0

as the function f(x) =
√

2− 2 cos(πx)− x is non-negative on [0, 1].
For the upper bound note the relation between the geodesic distance d̃G and the normalized geodesic distance dG

d̃G(z, z′) = πdG(z, z′)

which yields
‖z− z′‖2 ≤ d̃G(z, z′) = πdG(z, z′).

We now have the preliminary results necessary in order to prove Theorem 1.

4.2 Proof of Theorem 1 with Axiomatic GMRA

Recall that our theoretical result concerns OMS-simple with recovery performed using (3) and (4). The
proof is based on following idea. We first control the error ‖cj,k′ − x‖2 made by (3) in approximating a
GMRA center closest to x. To do so we make use of Plan and Vershynin’s result on δ-uniform tessellations
in [36]. Recall the equivalence between one-bit measurements and random hyperplanes.

Definition 3 (Uniform tessellation, [36, Definition 1.1]) Let K ⊂ SD−1 and an arrangement of m
hyperplanes in RD be given via a matrix A (i.e., the j-th row of A is the normal to the j-th hyperplane).
Let dA(x,y) ∈ [0, 1] denote the fraction of hyperplanes separating x and y in K and let dG be the
normalized geodesic distance on the sphere, i.e. opposite poles have distance one. Given δ > 0, the
hyperplanes provide a δ-uniform tessellation of K if

|dA(x,y)− dG(x,y)| ≤ δ

holds for all x,y ∈ K.

Theorem 3 (Random Uniform Tessellation, [36, Theorem 3.1]) Consider a subset K ⊆ SD−1
and let δ > 0. Let

m ≥ C̄δ−6 max{w(K)2, 2/π}
and consider an arrangement of m independent random hyperplanes in RD uniformly distributed according
to the Haar measure. Then with probability at least 1 − 2 exp(−cδ2m), these hyperplanes provide a δ-
uniform tessellation of K. Here and later C̄, c denote positive absolute constants.
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Remark 7 In words Theorem 3 states that if the number of one-bit measurements scale at least linearly in
intrinsic dimension of a setK ⊂ SD−1 then with high probability the percentage of different measurements
of two points x, y ∈ K is closely related to their distance on the sphere. Implicitly the diameter of all
tessellation cells is bounded by δ.

The original version of Theorem 3 uses γ(K) instead of w(K). However, note that by (10) we get for
K ⊆ SD−1 that γ(K) ≤ w(K −K) +

√
2/π ≤ 3w(K) as long as the w(K) ≥

√
2/π which is reasonable

to assume. Hence, if C̄ is changed by a factor of 9, Theorem 3 can be stated as above.

Using these results we will show in Lemma 5 that the center cj,k′ identified in step I. of the algorithm
OMS-simple satisfies ‖x−cj,k′‖2 ≤ 16 max{‖x−cj,kj(x)‖2, C12−j−1} in Lemma 5. Therefore, the GMRA
property (3b) provides an upper bound on ‖x − Pj,k′(x)‖2. What remains is to then bound the gap
between Pj,k′(x) and the approximation x∗. This happens in two steps. First, Plan and Vershynin’s
result on noisy one-bit sensing (see Theorem 4) is applied to a scaled version of (4) bounding the distance
between Pj,k′(x) and x̄ (the minimizer of the scaled version). This argument works by interpreting the true
measurements y as a noisy version of the non-accessible one-bit measurements of Pj,k′(x). The rescaling
becomes necessary as Theorem 4 is restricted to the unit ball in Euclidean norm. Lastly, a geometric
argument is used to bound the distance between the minimum points x̄ and x∗ in order to conclude the
proof.

Theorem 4 (Noisy One-Bit, [35, Theorem 1.3]) Let a1, ...,am be i.i.d standard Gaussian random
vectors in RD and let K be a subset of the Euclidean unit ball in RD. Let δ > 0 and suppose that

m ≥ C ′δ−6w(K)2.

Then with probability at least 1 − 8 exp(−cδ2m), the following event occurs. Consider a signal x̃ ∈ K
satisfying ‖x̃‖2 = 1 and its (unknown) uncorrupted one-bit measurements ỹ = (ỹ1, . . . , ỹm) given as

ỹi = sign(〈ai, x̃〉), i = 1, 2, ...,m.

Let y = (y1, ..., ym) ∈ {−1, 1}m be any (corrupted) measurements satisfying dH(ỹ,y) ≤ τm. Then the
solution x̄ to the optimization problem

x̄ = arg max
z

m∑
i=1

yi〈ai, z〉 subject to z ∈ K

with input y satisfies

‖x̄− x̃‖22 ≤ δ
√

log
(e
δ

)
+ 11τ

√
log
( e
τ

)
.

Remark 8 Theorem 4 yields guaranteed recovery of unknown signals x ∈ K ⊂ B(0, 1) up to a certain
error by the formulation we use in (4) from one-bit measurements if the number of measurements scales
linearly with the intrinsic dimension of K. The recovery is robust to noise on the measurements. Note
that the original version of Theorem 4 uses w(K −K) instead of w(K). As w(K −K) ≤ 2w(K) by (10)
the result stated above also holds for a slightly modified constant C ′.

We begin by proving Lemma 5.

Lemma 5 If m ≥ C̄C−61 26(j+1) max{w(M∪PS(Cj))2, 2/π} the center cj,k′ chosen in step I. of Algorithm
OMS-simple fulfills

‖x− cj,k′‖2 ≤ 16 max{‖x− cj,kj(x)‖2, C12−j−1}.

for all x ∈M ⊂ SD−1 with probability at least 1− 2 exp(−c(C12−j−1)2m).

Proof : By definition of cj,k′ in (3) we have that

dH(sign(Acj,k′ ),y) ≤ dH(sign(Acj,kj(x)),y).

As, for all z, z′ ∈ RD, dH(sign(Az), sign(Az′)) = m · dA(z, z′) = m · dA(PS(z),PS(z′)), this is equivalent to

dA(PS(cj,k′ ),x) ≤ dA(PS(cj,kj(x)),x).
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Noting that Gaussian random vectors and Haar random vectors yield identically distributed hyperplanes, Theorem
3 now transfers this bound to the normalized geodesic distance, namely

dG(PS(cj,k′ ),x) ≤ dG(PS(cj,kj(x)),x) + 2δ

with probability at least 1− 2 exp(−cδ2m) where δ = C12−j−1. Observe dG(z, z′) ≤ ‖z− z′‖2 ≤ πdG(z, z′) for all
z, z′ ∈ SD−1 (recall Lemma 4) which leads to

‖PS(cj,k′ )− x‖2 ≤ πdG(PS(cj,kj(x)),x) + 2πδ

≤ π‖PS(cj,kj(x))− x‖2 + 2πδ.

As by property (3a) the centers are close to the manifold, they are also close to the sphere and we have ‖PS(cj,k)−
cj,k‖2 < C12−j−2, for all cj,k ∈ Cj . Hence, we conclude

‖cj,k′ − x‖2 ≤ ‖cj,k′ − PS(cj,k′ )‖2 + ‖PS(cj,k′ )− x‖2
≤ π(‖cj,kj(x) − x‖2 + C12−j−2) + 2πδ + C12−j−2

≤
(
π +

π

2
+ 2π +

1

2

)
max{‖cj,kj(x) − x‖2, C12−j−1}

≤ 16 max{‖cj,kj(x) − x‖2, C12−j−1}.

We can now prove a detailed version of Theorem 1 for the given axiomatic GMRA and deduce Theorem
1 as a corollary.

Theorem 5 (Uniform Recovery - Axiomatic Case)
Let M ⊂ SD−1 be given by its GMRA for some levels j0 < j ≤ J , such that C1 < 2j0+1 where C1 is

the constant from GMRA properties (2b) and (3a). Fix j and assume that dist(0,Mj) ≥ 1/2. Further,
let d ≥ 1 and

m ≥ 16 max{C ′, C̄}C−61 26(j+1)(w(M) + C
√
dj)2, (12)

where C ′ is the constant from Theorem 4, C̄ from Theorem 3, and C > 3 from Lemma 1. Then, with prob-
ability at least 1− 12 exp(−c(C12−j−1)2m) the following holds for all x ∈M with one-bit measurements
y = sign(Ax) and GMRA constants C̃x from property (3b) satisfying C̃x < 2j−1: The approximations x∗
obtained by OMS fulfill

‖x− x∗‖2 ≤

(
2C̃x2−

j
2 +

√
C1

2
4

√
log

(
4e

min{C1, 1}

)
+
√

11C ′x
4

√
log

(
2e

min{C ′x, 1}

))
4
√
j2−

j
2 .

Here C ′x := 2C̃x + C1.

Remark 9 For obtaining the lower bounds on m in (12) and (8) we made use of Lemma 1 leading to
the influence of j which is suboptimal for fine scales (i.e., j large). To improve on this for large j one
can exploit the alternative versions of the lemma, namely, Lemma 2 and Lemma 3. Then, however, some
minor modifications become necessary in the proof of Theorem 5 as the lemmas only apply toMrel

j :
In (I), e.g., one has to guarantee that Cj ⊂ Mrel

j , i.e., that each center cj,k is a best approximation for
some part of the manifold. This is a reasonable assumption especially if the centers are constructed as
means of small manifold patches which is a common approach in empirical applications (cf. Appendix
D).
Also, when working withMrel

j it is essential in (II) to have a near-best approximation subspace of x, i.e.,
the k′ obtained in (I) has to fulfill k′ ≈ kj(x) as Mrel

j does not include many near-optimal centers for
each point onM. Here, one can exploit the minimal distance of centers cj,k to each other as described in
GMRA property (2b) and choose δ slightly smaller (in combination with a correspondingly strengthened
upper bound in Lemma 5) to obtain the necessary guarantees for (I). As we are principally concerned
with the case where j = O(log(D)) in this paper, however, we will leave such variants to future work.

Corollary 1 There exist absolute constants E,E′, c, c′ > 0 such that the following holds. Let ε ∈ (0, 1/16]
and assume the GMRA’s maximum refinement level J ≥ j := dc′ log(1/

√
ε)e. Further suppose that one

has dist(0,Mj) ≥ 1/2, 0 < C1 < 2j and supx∈M C̃x < 2j−2. If

m ≥ EC−61 ε−7 max{w(M),
√
dj}2,

then with probability at least 1−12 exp(−cC2
1ε

2m) for all x ∈M ⊂ SD−1 the approximations x∗ obtained
by OMS with scale j satisfy

‖x− x∗‖22 ≤ E′
(

1 + C̃x + C1 max
{

1, log(C−11 )
})2

ε.
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Proof : For ε̄ := 4
√
j2−j/2 and c′ := (log(2)/2− 1/4)−1 we obtain

dc′ log(1/
√
ε)e = j = c′j

(
log(2)

2
−

1

4

)
≤ c′

(
j

2
log(2)−

1

4
log(j)

)
= c′ log

(
1

ε̄

)
, (13)

which implies that √
ε ≤ ε̄e1/c

′
. (14)

Now use (14), the observation that 1/ε̄2 ≥ log4(1/ε̄) when ε̄ ≤ 1/4, (13), and the fact that w(M) ≥
√
d to obtain

that for E′′ = E exp(−14/c′) ≈ E/4

m ≥ E′′C−6
1 ε̄−14 max{w(M),

√
dj}2 ≥ E′′C−6

1 ε̄−12 log4

(
1

ε̄

)
max{w(M),

√
dj}2

≥
E′′

c′4
C−6

1 j26j max{w(M),
√
dj}2 ≥ 16 max{C′, C̄}C−6

1 26(j+1)(w(M) + C
√
dj)2

for E > 0 chosen appropriately. The result follows by applying Theorem 5.

Proof of Theorem 5 : Recall that k′ is the index chosen by OMS in (6). The proof consists of three steps. First, we
apply Lemma 5 in (I). By the GMRA axioms this supplies an estimate for ‖x − Pj,k′ (x)‖2 with high probability.
In (II) we use Theorem 4 to bound the distance between Pj,k′ (x)/‖Pj,k′ (x)‖2 and the minimizer x∗ given by

x∗ = arg min
z

m∑
l=1

(−yl)〈al, z〉, subject to z ∈ K := conv(PS(Pj,k′ ∩ B(0, 2))) (15)

with high probability. By a union bound over all events Part (III) then concludes with an estimate of the distance
‖x− x∗‖2 combining (I) and (II).

(I) Set δ := C12−j−1. Observing that C12−j−2 < 1/2 by assumption, GMRA property (3a) yields that all centers
in Cj are closer to SD−1 than 1/2, i.e., 1/2 ≤ ‖cj,k‖2 ≤ 3/2. Hence, by (10)

0 ≤ w(PS(Cj)) ≤ γ(PS(Cj)) ≤ 2γ(Cj) ≤ 4w(Cj) + 2

√
2

π
dist(0, Cj) ≤ 4w(Cj) + 4. (16)

As Cj ⊂Mj we know by Lemma 1, (16), and Remark 6 that

m ≥ 4C̄δ−6(2w(M) + 2C
√
dj)2 ≥ 4C̄δ−6(2w(M) + 4w(Cj) + 6)2

≥ 4C̄δ−6(2w(M) + w(PS(Cj)) + 2)2 = C̄δ−6(4w(M) + 2w(PS(Cj)) + 4)2

≥ C̄δ−6(w(M∪ PS(Cj)) + 1)2 ≥ C̄δ−6 max{w(M∪ PS(Cj))2, 2/π}.

(17)

Hence, Lemma 5 implies that

‖x− cj,k′‖2 ≤ 16 max{‖x− cj,kj(x)‖2, C12−j−1}.

with probability at least 1− 2 exp(−cδ2m). By GMRA property (3b) we now get that

‖x− Pj,k′ (x)‖2 ≤ C̃x2−j (18)

for some constant C̃x.

(II) Define α := ‖Pj,k′ (x)‖2 and note that one has 1/2 ≤ α ≤ 3/2 as x ∈ SD−1 and ‖x−Pj,k′ (x)‖2 ≤ C̃x2−j ≤ 1/2

by (18) and assumption. We now create the setting of Theorem 4. Define x̃ := Pj,k′ (x)/α ∈ SD−1, ỹ := sign(Ax̃) =

sign(APj,k′ (x)), K = conv(PS(Pj,k′∩B(0, 2))), and τ := (2C̃x+C1)2−j . If successfully applied with these quantities
Theorem 4 will bound ‖x̃− x∗‖2 by

‖x̃− x∗‖2 ≤

√
δ

√
log
( e
δ

)
+ 11τ

√
log
( e
τ

)
(19)

≤
(√

C1

2
4

√
log

(
4e

min{C1, 1}

)
+

√
11(2C̃x + C1) 4

√
log

(
2e

min{(2C̃x + C1), 1}

))
4
√
j2−

j
2 .

All that remains is to verify that the conditions of Theorem 4 are met so that (19) is guaranteed with high probability.
We first have to check dH(ỹ,y) ≤ τm. Recall that 1

α
≤ 2 and for α > 0 one has αw(K) = w(αK). Applying

Lemma 1 and (10) we have, in analogy to (17), that

m ≥ C̄δ−6(4w(M) + 4w(Mj) + 12)2 ≥ C̄δ−6

(
2w(M) + 2w

(
Mj

α

)
+ 12

)2

≥ C̄δ−6

(
w

(
M∪

Mj

α

)
+ 7

)2

≥ C̄δ−6

(
w

((
M∪

Mj

α

)
∩ B(0, 1)

)
+ 7

)2

.
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Note that in the third inequality a slight modification of the second inequality in Lemma 1 is used. As Mj/α ⊂
B(0, 4) one has w(M∪Mj/α) ≤ 2w(M) + 2w(Mj/α) + 5 by adapting (11). We can now use Theorem 3, Lemma
4, and the fact that |1− α| = |‖x‖2 − ‖Pj,k′ (x)‖2| ≤ ‖x− Pj,k′ (x)‖2 to obtain

dH(ỹ,y)

m
= dA(x̃,x) ≤ dG(x̃,x) + δ ≤ ‖x̃− x‖2 + δ ≤ ‖x̃− Pj,k′ (x)‖2 + ‖Pj,k′ (x)− x‖2 + δ

= |1− α|+ ‖Pj,k′ (x)− x‖2 + δ ≤ 2‖Pj,k′ (x)− x‖2 + δ

≤ (2C̃x + C1)2−j = τ

with probability at least 1− 2 exp(−cδ2m). Furthermore, by a similar argumentation as in (16) one gets

w(K) = w(PS(Pj,k′ ∩ B(0, 2))) ≤ 4w(Mj) + 4 (20)

where one uses invariance of the Gaussian width under taking the convex hull (see [35, Proposition 2.1]), the fact
that Pj,k′ ∩B(0, 2) ⊂Mj , and the assumption that 1/2 ≤ dist(Mj ,0) ≤ 2. In combination with Lemma 1 we have,
in analogy to (17), that

m ≥ 4C′δ−6(2w(M) + 4w(Mj) + 6)2 ≥ 4C′δ−6(w(K) + 2)2 ≥ C′δ−6w(K)2.

Hence, we can apply Theorem 4 to obtain with probability at least 1− 8 exp(−cδ2m) that

‖x̄− x̃‖22 ≤ δ
√

log
( e
δ

)
+ 11τ

√
log
( e
τ

)
,

the estimate (19) now follows.

(III) To conclude the proof we apply a union bound and obtain with probability at least 1− 12 exp(−cδ2m) that

‖x− x∗‖2 ≤ ‖x− Pj,k′ (x)‖2 + ‖Pj,k′ (x)− x̃‖2 + ‖x̃− x∗‖2
= ‖x− Pj,k′ (x)‖2 + |1− α|+ ‖x̃− x∗‖2
≤ 2‖x− Pj,k′ (x)‖2 + ‖x̃− x∗‖2.

GMRA property (3b) combined with (19) now yields the final desired error bound.

We are now prepared to explore the numerical performance of the proposed methods.

5 Numerical Simulation

In this section we present various numerical experiments to benchmark OMS. The GMRAs we work
with are constructed using the GMRA code provided by Maggioni2. We compared the performance of
OMS for two exemplary choices of M, namely, a simple 2-dim sphere embedded in R20 (20000 data
points sampled from the 2-dimensional sphere M embedded in S20−1) and the MNIST data set [29] of
handwritten digits "1" (3000 data points in R784). In each of the experiments 5.1-5.4 we first computed
a GMRA up to refinement level jmax = 10 and then recovered 100 randomly chosen x ∈ M from
their one-bit measurements by applying OMS. Depicted is the averaged relative error between x and its
approximation x∗, i.e., ‖x − x∗‖2/‖x‖2 which is equal to the absolute error ‖x − x∗‖2 for M ⊂ SD−1.
Note the different approximation error ranges of the sphere and the MNIST experiments when comparing
both settings.

5.1 OMS-simple vs. OMS

The first test compares recovery performance of the two algorithms presented above, namely OMS-simple
for R ∈ {0.5, 1, 1.5} and OMS. The results are depicted in Figure 4. Note that only R = 1.5 and, in the
case of the 2-sphere, R = 1 are depicted as in the respective other cases for each number of measurements
most of the trials did not yield a feasible solution in (4) so the average was not well-defined. One can
observe that for both data sets OMS outperforms OMS-simple which is not surprising as OMS does not
rely on a suitable parameter choice. This observation is also the reason for us to restrict the theoretical
analysis to OMS. The more detailed approximation of the toy example (2-dimensional sphere) is due to
its simpler structure and lower dimensional setting and can also be observed in 5.2-5.4.

2 The code is available at http://www.math.jhu.edu/~mauro/#tab_code.

http://www.math.jhu.edu/~mauro/#tab_code
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Fig. 4: Comparison of OMS-Simple for R = 1 (dotted-dashed,
yellow), R = 1.5 (dashed, blue) and OMS (solid, red).

5.2 Modifying OMS

In a second experiment we compared OMS to a slightly different version in which (7) is replaced by

x∗ = arg min
z∈RD

m∑
l=1

[(−yl)〈al, z〉]+ , subject to z ∈ conv (PS(Pj,k′ ∩ B(0, 2)))

where [t]+ = max{0, t} denotes the positive part of t ∈ R. This is motivated by following observation: As
stated in Theorem 4, Plan and Vershynin showed that

arg min
z∈RD

m∑
l=1

(−yl)〈al, z〉, subject to z ∈ K, (21)

can recover unknown signals from noisy one-bit measurements if K ⊂ B(0, 1) is a subset of the D-
dimensional Euclidean ball. The minimization in (21) can be re-stated equivalently as

arg min
z∈K

 ∑
l : yl 6=sign(〈al,z〉)

‖al‖2
∥∥∥z− PHal

z
∥∥∥
2
−

∑
l : yl=sign(〈al,z〉)

‖al‖2
∥∥∥z− PHal

z
∥∥∥
2

 , (22)

where PHal
denotes the orthogonal projection onto the D − 1 dimensional subspace Hal perpendicular

to al. To see this note that 〈al, z〉/‖al‖2 = sign(〈al, z〉)‖z − PHal
‖2. Hence, (21) punishes incorrect

measurements of a feasible point z ∈ K by its distance to the ‘measurements border’ Hal while rewarding
correct ones. The second part which rewards might cause problems as it pushes minimizers away from
the hyperplanes Hal of correct measurements. If the true x, however, lies close to one of them, this may
be suboptimal. Hence, we dropped the rewarding term in (22) leading to

arg min
z∈RD

m∑
l=1

[(−yl)〈al, z〉]+ , subject to z ∈ K, (23)

which is still convex but performs better numerically in some cases. As depicted in Figure 5, the version
with [·]+ clearly outperforms the one without ifM is the 2-dimensional sphere. In contrast, ifM is more
complex (MNIST data), the [·]+ formulation clearly fails. We have no satisfactory explanation for this
difference in behavior so far.
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Fig. 5: Comparison of OMS (dashed, blue) and a modified
version (solid, red) as described in (23).

5.3 Are Two Steps Necessary?

One might wonder if the two steps in OMS-simple and OMS are necessary at all. Wouldn’t it be sufficient
to use the center cj,k′ determined in step I. as an approximation for x? If the GMRA is fine enough, this
indeed is the case. If one only has access to a rather rough GMRA, the simulations in Figure 6 show
that the second step makes a notable difference in approximation quality. This behavior suits Lemma
5. The lemma guarantees a good approximation of x by cj,k′ as long as x is well approximated by an
optimal center. In the MNIST case one can observe that the second step only improves performance if
the number of one-bit measurements is sufficiently high. For a small set of measurements the centers
might yield better approximation as they lie close to M by GMRA property (3a). On the other hand,
only parts of the affine spaces are practical for approximation and a certain number of measurements is
necessary to restrict II. to the relevant parts.
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Fig. 6: Comparison of the following: Approximation by step
I. of OMS when using tree structure (dashed, blue) and when
comparing all centers (solid, red); approximation by step I.+II.
of OMS when using tree structure (dashed with points, yellow)
and when comparing all centers (solid with points, purple).
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5.4 Tree vs. No Tree

In the fourth test we checked if approximation still works when not all possible centers are compared in
step I. of OMS but their tree structure is used. This means to find an optimal center one compares on
the first refinement level all centers, and then continues in each subsequent level solely with the children
of the k best centers (in the presented experiments we chose k = 10). Of course, the chosen center will
not be optimal as not all centers are compared (see Figure 6). In the simple 2-dimensional sphere setting,
step II., however, can compensate the worse approximation quality of I. with tree search. Figure 6 hardly
shows a difference in final approximation quality in both cases. In the MNIST setting one can observe a
considerable difference even when performing two steps.

5.5 A Change of Refinement Level

The last experiment (see Figure 7) examines the influence of the refinement level j on the approximation
error. For small j (corresponding to a rough GMRA) a high number of measurements can hardly improve
the approximation quality while for large j (corresponding to a fine GMRA) the approximation error
decreases with increasing measurement rates. This behavior is as expected. A rough GMRA cannot profit
much from many measurements as the GMRA approximation itself yields a lower bound on obtainable
approximation error. For fine GMRAs the behavior along the measurement axis is similar to above
experiments. Note that further increase of j for the same range of measurements did not improve accuracy.
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Fig. 7: Approximation error of OMS for different refinement
levels j and numbers of measurements.

6 Discussion

In this paper we proposed OMS, a tractable algorithm to approximate data lying on low-dimensional
manifolds from compressive one-bit measurements, thereby complementing the theoretical results of Plan
and Vershynin on one-bit sensing for general sets in [35] in this important setting. We then proved (uni-
form) worst-case error bounds for approximations computed by OMS under slightly stronger assumptions
than [35], and also performed numerical experiments on both toy-examples and real-world data. As a
byproduct of our theoretical analysis (see, e.g., §4) we have further linked the theoretical understanding
of one-bit measurements as tessellations of the sphere [36] to the GMRA techniques introduced in [3] by
analyzing the interplay between a given manifold and its GMRA approximation’s complexity measured
in terms of the Gaussian mean width. Finally, to indicate applicability of our results we show that they
hold even if there are just random samples from the manifold at hand as opposed to the entire manifold
(see, e.g., Appendix D and E). Several interesting questions remain for future research however:

First, the experiments in Section 5.4 suggest a possible benefit from using the tree structure within
Cj . Indeed approximation of OMS does still yield comparable results if I. is restricted to a tree based
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search which has the advantage of being computable much faster than the minimization over all possible
centers. It would be desirable to obtain theoretical error bounds even in this case, as well as to consider
the use of other related fast nearest neighbor methods from computer science [23].

Second, the attentive reader might have noticed in the empirical setting of Appendix D and E that
(A2) in combination with Lemma 10 seems to imply that II. of OMS may be unnecessary. As can
be seen from Section 5.3 though, the second step of OMS yields a notable improvement even with an
empirically constructed GMRA which hints that even with (A2) not strictly fulfilled the empirical GMRA
techniques remain valid, and II. of OMS of value. Understanding this phenomenon might lead to more
relaxed assumptions than (A1)-(A4).

Third, it could be rewarding to also consider versions of OMS for additional empirical GMRA variants
including, e.g., those which rely on adaptive constructions [30], GMRA constructions in which subspaces
that minimize different criteria are used to approximate the data in each partition element (see, e.g., [24]),
and distributed GMRA constructions which are built up across networks using distributed clustering
[4] and SVD [26] algorithms. Such variants could prove valuable with respect to reducing the overall
computational storage and/or runtime requirements of OMS in different practical situations.

Finally, as already pointed out in Section 5.2 we do not yet understand how inserting the positive
part [·]+ in II. affects recovery. There seem to be cases in which a massive improvement can be observed
and others in which the performance completely deteriorates. The explanation might be decoupled from
this work and OMS.
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A Characterization of Convex Hull

Lemma 6 Let Pj,k′ be the affine subspace chosen in step I. of OMS-simple and define c = Pj,k′ (0). If 0 /∈ Pj,k′ , the
following equivalence holds:

z ∈ conv
(
PS(Pj,k′ ∩ B(0, 2))

)
⇔


‖z‖2 ≤ 1,

ΦT
j,k′Φj,k′z + Pc(z) = z,

〈z, c〉 ≥ 1
2
‖c‖22.

(24)

Proof : First, assume z ∈ conv
(
PS(Pj,k′ ∩ B(0, 2))

)
. Obviously, ‖z‖2 ≤ 1. As projecting onto the sphere is a simple

rescaling, conv
(
PS(Pj,k′ ∩ B(0, 2))

)
⊂ span(Pj,k′ ) implying that ΦT

j,k′Φj,k′z + Pc(z) = z. For showing the third
constraint note that any z′ ∈ Pj,k′ can be written as z′ = c + (z′ − c) where z′ − c is perpendicular to c. If in
addition ‖z′‖2 ≤ 2, we get

〈PS(z′), c〉 =

〈
z′

‖z′‖2
, c

〉
=
〈c, c〉
‖z′‖2

≥
1

2
‖c‖22.

As z is a convex combination of different PS(z′) the constraint also holds for z.
Let z fulfill the three constraints. Then z′ = (‖c‖22/〈z, c〉) · z satisfies z′ ∈ Pj,k′ because of the second con-
straint and 〈z′, c〉 = ‖c‖22. Furthermore, by the first and third constraint ‖z′‖2 ≤ (‖c‖22/〈z, c〉) ≤ 2 and hence
z′ ∈ Pj,k′ ∩ B(0, ‖c‖22/〈z, c〉) ⊂ Pj,k′ ∩ B(0, 2). As Pj,k′ ∩ B(0, ‖c‖22/〈z, c〉) is the convex hull of Pj,k′ ∩
(‖c‖22/〈z, c〉) · SD−1 , there are z1, ..., zn ∈ Pj,k′ and λ1, ..., λn ≥ 0 with ‖zk‖2 = ‖c‖22/〈z, c〉 and

∑
λk = 1 such

that (‖c‖22/〈z, c〉) · z =
∑
λkzk. Hence, z =

∑
λk(〈z, c〉/‖c‖22) · zk. As (〈z, c〉/‖c‖22) · zk ∈ PS(Pj,k′ ∩B(0, 2)) we get

z ∈ conv
(
PS(Pj,k′ ∩ B(0, 2))

)
.

B Proof of Theorem 2

Denote by τ the reach ofM and by ρ the diameter diam(M). First, note that for a set K ⊂ RD by Dudley’s inequality [15]

w(K) ≤ C′
∫ diam(K)/2

0

√
log(N (K, ε)) dε
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where C′ is an absolute constant. Second, [16, Lemma 14] states that the covering number N (M, ε) of a d-dimensional
Riemannian manifoldM can be bounded by

N (M, ε) ≤

 2

ε
√

1−
(
ε
4τ

)2

d

Vol(M)

Vol(Bd)
.

for ε ≤ τ
2
. After noting that Vol(Bd) ≥ β−1

(
2π
d

) d
2 for all d ≥ 1 for an absolute constant β > 1, this expression may be

simplified to

N (M, ε) ≤ β

 √
2d

√
πε
√

1−
(
ε
4τ

)2

d

Vol(M) ≤ β

 √
d

ε
√

1−
(
ε
4τ

)2

d

Vol(M).

We can combine these facts to obtain

w(M) ≤ C′
∫ ρ

2

0

√
log(N (M, ε)) dε

≤ C′
(
ρ

2

∫ ρ
2

0
log(N (M, ε)) dε

) 1
2

= C′
√
ρ

2

(∫ τ
2

0
log(N (M, ε)) dε+

∫ ρ
2

τ
2

log(N (M, ε)) dε

) 1
2

,

by using Cauchy-Schwarz inequality for the second inequality. We now bound the first integral by

∫ τ
2

0
log(N (M, ε)) dε ≤

∫ τ
2

0
−d log

 ε

β
√
d

√
1−

( ε

4τ

)2
︸ ︷︷ ︸
≥ 1

2
, as ε≤ τ

2

+ log(Vol(M)) dε

≤
∫ τ

2

0
−d log

(
ε

2β
√
d

)
dε+

τ

2
log(Vol(M))

= −d
[
ε log

(
ε

2β
√
d

)
− ε
] τ

2

0

+
τ

2
log(Vol(M))

=
dτ

2

(
log

(
4
β
√
d

τ

)
+ 1

)
+
τ

2
log(Vol(M)).

As the covering number is decreasing with increasing ε, the second integral can be bounded as follows.∫ ρ
2

τ
2

log(N (M, ε))dε ≤
∫ ρ

2

τ
2

log
(
N
(
M,

τ

2

))
dε

=
(ρ

2
−
τ

2

)[
−d log

(
τ

c
√
d

)
+ log(Vol(M))

]
= d

(ρ
2
−
τ

2

)
log

(
c

√
d

τ

)
+
(ρ

2
−
τ

2

)
log(Vol(M)).

Both together yield

w(M) ≤ C
√
ρ

2

(
dτ

2

(
log

(
c′
√
d

τ

)
+ 1

)
+ d

(ρ
2
−
τ

2

)
log

(
c′
√
d

τ

)
+
ρ

2
log(Vol(M))

) 1
2

≤ C
√
ρ

2

(
dτ ·max

{
log

(
c′
√
d

τ

)
, 1

}
+ d (ρ− τ) ·max

{
log

(
c′
√
d

τ

)
, 1

}
+ ρ log(Vol(M))

) 1
2

= C

√
ρ

2

(
dρ ·max

{
log

(
c′
√
d

τ

)
, 1

}
+ ρ log(Vol(M))

) 1
2

≤
C
√

2
ρ

√√√√d ·max

{
log

(
c′
√
d

τ

)
, 1

}
+ log(Vol(M)).

C Proof of Lemmas 2 and 3

Recall thatMrel
j := {Pj,kj(z)(z) : z ∈M} ∩B(0, 2). We will begin by establishing some additional technical lemmas.

Lemma 7 Set CM := supz∈M Cz (cf. Property (3b)). Then, Mrel
j ⊆ tubeCM2−2j (M).
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Proof : If x ∈ Mrel
j there exists zx ∈ M such that x = Pj,kj(zx)(zx). The Euclidean distance d(x,M) therefore

satisfies
d(x,M) = inf

z∈M
‖x− z‖2 ≤ ‖Pj,kj(zx)(zx)− zx‖2 ≤ CM2−2j

by property (3b).

Given a subset S ⊂ RD we will let N (S, ε) denote the cardinality of a minimal ε-cover of S by D-dimensional Euclidean
balls of radius ε > 0 each centered in S. Similarly, we will let P(S, ε) denote the maximal packing number of S (i.e., the
maximum cardinality of a subset of S that contains points all of which are at least Euclidean distance ε > 0 from one
another.) The following lemmas bound N (Mrel

j , ε) for various ranges of j and ε.

Lemma 8 Set CM := supz∈M Cz. Then N (Mrel
j , ε) ≤ N (M, ε/2) for all ε ≥ 2CM2−2j .

Proof : First note that for all η ≥ ρ := CM2−2j Lemma 7 implies that

Mrel
j ⊆ tubeρ(M) ⊂

⋃
p∈Cη

B(p, 2η),

where Cη is an η-cover ofM. Thus, for all ε ≥ 2η ≥ 2ρ

N (Mrel
j , ε) ≤ N

 ⋃
p∈Cη

B(p, 2η), ε

 ≤ N (M, η) = N
(
M,

ε

2

)
.

Lemma 9 N (Mrel
j , ε) ≤ (6/ε)dN (M, ε) for all ε ≤ 1

4
C12−j as long as j > j0 (see properties (3a) and (2b)).

Proof : By properties (3a) and (2b) every center cj,k has an associated pj,k ∈M such that both B
(
pj,k, C12−j−2

)
⊂

B
(
cj,k, C12−j−1

)
and B

(
pj,k, C12−j−2

)⋂
B
(
cj,k′ , C12−j−1

)
= ∅ for all k 6= k′. Let P̃j :=

{
pj,k | k ∈ [Kj ]

}
.

Consequently, we have that Kj = |P̃j | and ‖pj,k−pj,k′‖2 ≥ C12−j−1 for all k 6= k′. Since P̃j is a C12−j−1-packing
ofM we can further see that

Kj ≤ P
(
M, C12−j−1

)
≤ N

(
M, C12−j−2

)
≤ N (M, ε)

for all ε ≤ C12−j−2. Now,Mrel
j ⊆ Lj , where Lj is defined as in the proof of Lemma 1 (this proof also discusses its

covering numbers). As a result we have that

N (Mrel
j , ε) ≤ N (Lj , ε) ≤ Kj(6/ε)d ≤ N (M, ε) · (6/ε)d

holds for all ε ≤ C12−j−2.

C.1 Proof of Lemma 2

We aim to bound w(Mrel
j ) in terms of w(M). By the two-sided Sudakov inequality [39] and Lemma 7 we get that

w(Mrel
j ) ≤ C log(D) sup

ε≥0
ε
√

logN (Mrel
j , ε))

≤ C log(D)

(
sup

0≤ε≤2CM2−2j
ε
√

logN (tubeCM2−2j (M), ε) + sup
ε≥2CM2−2j

ε
√

logN (Mrel
j , ε)

)

≤ C log(D)

(
sup

0≤ε≤2CM2−2j
ε
√

logN (B(0, 1 + CM), ε)) + sup
ε≥2CM2−2j

ε
√

logN (M, ε/2)

)
,

where the last inequality follows from tubeCM2−2j (M) ⊆ B(0, 1+CM) and Lemma 8. Appealing to the Sudakov inequality
once more to bound the second term above we learn that

w(Mrel
j ) ≤ C log(D)

(
sup

0≤ε≤2CM2−2j
ε
√

logN (B(0, 1 + CM), ε)) + 2 sup
ε≥0

ε

2

√
logN (M, ε/2)

)

≤ C log(D)

(
sup

0≤ε≤2CM2−2j
ε
√

logN (B(0, 1 + CM), ε)) + 2c w(M)

)
.

To bound the first term above we note that using the covering number of B(0, 1 + CM) can be bounded as follows

N (B(0, 1 + CM), ε) = N
(
B(0, 1),

ε

1 + CM

)
≤
(

1 +
2 + 2CM

ε

)D
≤
(

4CM + 4

ε

)D
.
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As ε 7→ ε
√

log( 4CM+4
ε

) is non decreasing for ε ∈ (0, 2CM2−2j), we obtain by assuming that log2(D) ≤ j

sup
0≤ε≤2CM2−2j

ε
√

logN (B(0, 1 + CM), ε)) ≤ sup
0≤ε≤2CM2−2j

ε

√
D log

(
4CM + 4

ε

)

≤ 2CM2−2j

√
D log

((
4 +

4

CM

)
· 22j−1

)

≤ CA
(√

2j − 1

2j

)(√
D

2j

)
≤ C′

where C′ is an absolute constant. Appealing to (11) now finishes the proof.

C.2 Proof of Lemma 3

Let 2CM2−2j ≤ ε̃ ≤ 1
4
C12−j . We aim to bound w(Mrel

j ) in terms of covering numbers for M. To do this we will use
Dudley’s inequality in combination with the knowledge thatMrel

j ⊂ B(0, 2) (by definition). By Dudley’s inequality

w(Mrel
j ) ≤ C′

∫ 2

0

√
log(N (Mrel

j , ε)) dε

≤ C′
(∫ ε̃

0

√
log(N (Mrel

j , ε)) dε+

∫ 2

ε̃

√
log(N (Mrel

j , ε)) dε

)
where C′ is an absolute constant.

Appealing now to Lemmas 9 and 8 for the first and second terms above, respectively, we can see that

w(Mrel
j ) ≤ C′

(∫ ε̃

0

√
log((6/ε)dN (M, ε)) dε+

∫ 2

ε̃

√
log(N (M, ε/2)) dε

)
≤ C′

∫ 2

0

√
log((6/ε)dN (M, ε/2)) dε

= 2C′
∫ 1

0

√
d log(3/η) + log(N (M, η)) dη

≤ 2C′
√∫ 1

0
d log(3/η) dη +

∫ 1

0
log(N (M, η)) dη

where the last bound follows from Jensen’s inequality.
We can now bound the second term as in the proof of Theorem 2 in Appendix B. Doing so we obtain

w(Mrel
j ) ≤ C′′

√√√√∫ 1

0
d log(3/η) dη + d

(
1 + log

(
c′
√
d

τ

))
+ log(Vol(M))

≤ C′′′
√√√√d

(
1 + log

(
c′
√
d

τ

))
+ log(Vol(M))

where τ is the reach ofM, and C′′′, c′ are an absolute constants. Appealing to (11) together with Theorem 2 now finishes
the proof.

D Data-Driven GMRA

The axiomatic definition of GMRA proves useful in deducing theoretical results but lacks connection to concrete appli-
cations where the structure ofM is not known a priori. Hence, in the following we first describe a probabilistic definition
of GMRA which can be well approximated by empirical data (see [3, 12, 31]) and is connected to the above axioms by ap-
plying results from [31]. In fact, we will see that under suitable assumptions the probabilistic GMRA fulfills the axiomatic
requirements and its empirical approximation allows one to obtain a version of Theorem 1 even when only samples from
M are known.

D.1 Probabilistic GMRA

A probabilistic GMRA ofM with respect to a Borel probability measure Π, as introduced in [31], is a family of (piecewise
linear) operators {Pj : RD → RD}j≥0 of the form

Pj(x) =

Kj∑
k=1

1Cj,k (x)Pj,k(x).
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(A1) There exists an integer 1 ≤ d ≤ D and a positive constant θ1 = θ1(Π) such that for all k = 1, . . . ,Kj ,

Π(Cj,k) ≥ θ12−jd.

(A2) Define the restricted measure Πj,k by Πj,k(S) := Π(S ∩ Cj,k)/Π(Cj,k) for measurable S. There is a positive constant
θ2 = θ2(Π) such that for all k = 1, . . . ,Kj , if X is drawn from Πj,k then, Πj,k-almost surely,

‖X − c′j,k‖2 ≤ θ22−j .

(A3) Denote the eigenvalues of the covariance matrix Σj,k by λj,k1 ≥ · · · ≥ λj,kD ≥ 0. Then there exists σ = σ(Π) ≥ 0,
θ3 = θ3(Π), θ4 = θ4(Π) > 0, and some α > 0 such that for all k = 1, . . . ,Kj ,

λk,jd ≥ θ3
2−2j

d
and

D∑
l=d+1

λj,kl ≤ θ4(σ2 + 2−2(1+α)j) ≤
1

2
λj,kd .

(A4) There exists θ5 = θ5(Π) such that
‖Id− Pj‖∞,Π ≤ θ5(σ + 2−(1+α)j),

where ‖T‖∞,Π = supx∈supp(Π) ‖T (x)‖2, for T : RD → RD.

Table 1: The assumption set on Π.

Here, 1M denotes the indicator function of a setM and, for each refinement level j ≥ 0, the collection of pairs of measurable
subsets and affine projections {(Cj,k,Pj,k)}Kjk=1 has the following structure.

The subsets Cj,k ⊂ RD for k = 1, . . . ,Kj form a partition of RD, i.e., they are pairwise disjoint and their union is RD.
The affine projectors are defined by

Pj,k(x) = c′j,k + PVj,k (x− c′j,k),

where, for X ∼ Π, c′j,k = E[X|X ∈ Cj,k] =: Ej,k[X] ∈ RD and

Vj,k := arg min
dim(V )=d

Ej,k
[
‖X − (c′j,k + ProjV (X − c′j,k))‖22

]
,

where the minimum is taken over all linear spaces V of dimension d. From now on we will assume uniqueness of these
subspaces Vj,k. To point out parallels to the axiomatic GMRA definition, think of Π being supported on the tube of a
d-dimensional manifold. The axiomatic centers cj,k are then considered to be approximately equal to the conditional means
c′j,k of some cells Cj,k partitioning the space, and the corresponding affine projection spaces Pj,k are spanned by eigenvectors
of the d leading eigenvalues of the conditional covariance matrix

Σj,k = Ej,k
[
(X − c′j,k)(X − c′j,k)T

]
.

Defined in this way, the Pj correspond to projectors onto the GMRA approximationsMj introduced above if cj,k = c′j,k.
From [31] we adopt the following assumptions on the entities defined above, and hence, on the distribution Π. From now
on we suppose that for all integers jmin ≤ j ≤ jmax (A1)-(A4) (see Table 1) hold true.

Remark 10 Assumption (A1) ensures that each partition element contains a reasonable amount of Π-mass. Assumption
(A2) guarantees that all samples from Πj,k will lie close to its expection/center. As a result, each c′j,k must be somewhat
geometrically central within Cj,k. Together, (A1) and (A2) have the combined effect of ensuring that the probability mass
of Π is somewhat equally distributed onto the different sets Cj,k, i.e., the number of points in each set Cj,k is approximately
the same, at each scale j. The third and fourth assumptions (A3) and (A4) essentially constrain the geometry of the support
of Π to being effectively d-dimensional and somewhat regular (e.g., close to a smooth d-dimensional submanifold of RD).
We refer the reader to [31] for more detailed information regarding these assumptions.

An important class of probability measures Π fulfilling (A1)-(A4) is presented in [31]. For the sake of completeness we
repeat it here and also discuss a method of constructing the partitions {Cjk}

Kj
k=1 from such probabilities measures. From

here on letM be a smooth d-dimensional submanifold of SD−1 ⊂ RD. Let UK denote the uniform distribution on a given
set K. We have the following definition.

Definition 4 ( [31, Definition 3]) Assume that 0 ≤ σ < τ . The distribution Π is said to satisfy the (τ, σ)-model
assumption if (i) there exists a smooth, compact submanifoldM ↪→ RD with reach τ such that supp(Π) = tubeσ(M), (ii)
the distributions Π and Utubeσ(M) are absolutely continuous with respect to each other so the Radon-Nikodym derivative

dΠ
dUtubeσ(M)

exists and satisfies

0 < φ1 ≤
dΠ

dUtubeσ(M)

≤ φ2 <∞ Utubeσ(M) − almost surely.

The constants φ1 and φ2 are implicitly assumed to only depend on a slowly growing function of D, compare [31, Remark
4].
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Let us now discuss the construction of suitable partitions {Cjk} by making use of cover trees. A cover tree T on a finite set
of samples S ⊂M is a hierarchy of levels with the starting level containing the root point and the last level containing every
point in S. To every level a set of nodes is assigned which is associated with a subset of points in S. To be precise, given
a set S of n distinct points in some metric space (X, dX). A cover tree T on S is a sequence of subsets Ti ⊂ S, i = 0, 1, . . .
that satisfies the following, see [8]:
(i) Nesting: Ti ⊆ Ti+1, i.e., once a point appears in Ti it is in every Tj for j ≥ i.
(ii) Covering: For every x ∈ Ti+1 there exists exactly one y ∈ Ti such that dX(x,y) ≤ 2−i. Here y is called the parent of

x.
(iii) Separation: For all distinct points x,y ∈ Ti, dX(x,y) > 2−i.

The set Ti denotes the set of points in S associated with nodes at level i. Note that there exists N ∈ N such that Ti = S
for all i ≥ N . Herein we will presume that S is large enough to contain an ε-cover ofM for ε > 0 sufficiently small.

Moreover, the axioms characterizing cover trees are strongly connected to the dyadic structure of GMRA. For a given
cover tree (for construction see [8]) on a set Xn = {X1, . . . Xn} of i.i.d. samples from the distribution Π with respect to
the Euclidean distance let aj,k for k = 1, . . . ,Kj be the elements of the jth level of the cover tree, i.e. Tj = {aj,k}

Kj
k=1 and

define
κj(x) = arg min

1≤k≤Kj
‖x− aj,k‖2.

With this a partition of RD into Voronoi regions

Cj,k = {x ∈ RD : κj(x) = k} (25)

can be defined. Maggioni et. al. showed in [31, Theorem 7] that by this construction all assumptions (A1)-(A4) can be
fulfilled.

The question arises if the properties of the axiomatic definition of GMRA in Definition 1 are equally met. As only parts
of the axioms are relevant for our analysis, we refrain from giving rigorous justification for all properties.

1. GMRA property (1) holds by construction if the matrices Φj,k are defined, s.t. ΦTj,kΦj,k = PVj,k along with any
reasonable choice of centers cj,k.

2. The dyadic structure axioms (2a) – (2c) also hold as a trivial consequence of the cover tree properties (i) – (iii) above
if the axiomatic centers cj,k are chosen to be the elements of the cover tree set Tj (i.e., the aj,k elements). By the
(ρ, σ)-model assumption samples drawn from Π will have a quite uniform distribution all over supp(Π). Hence, the
probabilistic centers c′j,k of each Cj,k-set will also tend to be close to the axiomatic centers cj,k = aj,k proposed here
for small σ (see, e.g., assumption (A2) above).

3. One can deduce GMRA property (3a) from the fact that our chosen centers aj,k belong toM if supp(Π) =M (or to
a small tube aroundM if σ is small).

4. The first part of (3b) is implied by (A4) with the uniform constant θ5 for all x ∈M if aj,k is sufficiently close to c′j,k.
To show the second part of (3b) note that

‖x− Pj,k′ (x)‖2 ≤ ‖x− cj,k′‖2 + ‖cj,k′ − Pj,k′ (x)‖2 = ‖x− cj,k′‖2 + ‖PVj,k′ (x− cj,k′ )‖2

≤ 2‖x− cj,k′‖2 ≤ 32 max{‖x− cj,kj(x)‖2, C12−j−1}

≤ 32 max{Cε2−j , C12−j−1} ≤ C · 2−j

where in the second last step we used our cover tree properties (recall that cj,k = aj,k). Again, the constants C,Cε > 0
do not depend on the chosen x ∈M as long as S is well chosen (e.g., contains a sufficiently fine cover ofM).

Considering the GMRA axioms above we can now see that only the first part of (3b) may not hold in a satisfactory
manner if we choose to set ΦTj,kΦj,k = PVj,k and cj,k = aj,k. And, even when it doesn’t hold with Cz being independent of
j it will still at least still hold with a worse j dependence due to assumption (A2).

D.2 Empirical GMRA

The axiomatic properties only hold above, of course, if the GMRA is constructed with knowledge of the true PVj,k -subspaces.
In reality, however, this won’t be the case and we are rather given some training data consisting of n samples from near/on
M, Xn = {X1, ..., Xn}, which we assume to be i.i.d. with distribution Π. These samples are used to approximate the real
GMRA subspaces based on Π such that the operators Pj can be replaced by their estimators

P̂j(x) =

Kj∑
k=1

1{x∈Cj,k}P̂j,k(x)

where {Cj,k}
Kj
k=1 is a suitable partition of Rd obtained from the data,

P̂j,k(x) = ĉj,k + P
V̂j,k

(x− ĉj,k),

ĉj,k =
1

|Xk,j |
∑

x∈Xj,k
x,

V̂j,k = arg min
dim(V )=d

1

|Xj,k|
∑

x∈Xj,k
‖x− ĉj,k − PV (x− ĉj,k)‖22
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and Xj,k = Cj,k ∩ Xn. In other words, working with above model we have one perfect GMRA that cannot be computed
(unless Π is known) but fulfills all important axiomatic properties, and an estimated GMRA that is at hand but that is only
an approximation to the perfect one. Thankfully, the main results of [31] stated in Appendix E give error bounds on the
difference between perfect and estimated GMRA with cj,k = ĉj,k ≈ c′j,k ≈ aj,k that only depend on the number of samples
from Π one can acquire. Following their notational convention we will denote the empirical GMRA approximation at level j,
i.e., the set P̂j projects onto, by M̂j = {P̂j(z) : z ∈ B(0, 2)}∩B(0, 2) and the affine subspaces by P̂j,k = {P̂j,k(z) : z ∈ RD}.
We again restrict the approximation to B(0, 2). The single affine spaces will be non-empty as all ĉj,k lie by definition close
to B(0, 1) if supp(Π) is close toM, which we assume.

In the empirical setting OMS has to be slightly modified to conform to our empirical GMRA notation. Hence, (6) and (7)
become

ĉj,k′ ∈ arg min
ĉj,k∈Ĉj

dH(sign(Aĉj,k),y). (26)

{
x∗ = arg minz∈RD

∑m
l=1(−yl)〈al, z〉,

subject to z ∈ conv
(
PS(P̂j,k′ ∩ B(0, 2))

)
.

(27)

OMS can be adapted in a similar way by changing (6) and (7). To stay consistent with the axiomatic notation we denote
the sets containing the centers c′j,k and ĉj,k by C′j and Ĉj respectively. As shown in Appendix E the main result also holds
in this setting. There is only an additional influence of sample size on the probability.

E Proof of Theorem 1 with Empirical GMRA

Recall the definitions of probabilistic GMRA, empirical GMRA and the modifications of (6) resp. (7) to become (26) resp.
(27). We start with the central result of [31].

Theorem 6 ( [31, Theorem 2]) Suppose that assumptions (A1)-(A3) are satisfied (see Table 1). Let X,X1, . . . Xn be

an i.i.d. sample from Π and set d̄ = 4d2
θ42
θ23

. Then for any jmin ≤ j ≤ jmax and any t ≥ 1 such that t+ log(max{d̄, 8}) ≤
1
2
θ1n2−jd,

E
[
‖X − P̂j(X)‖22

]
≤ 2θ4

(
σ2 + 2−2j(1+α)

)
+ c12−2j (t+ log(max{d̄, 8}))d2

n2−jd
,

and if in addition (A4) is satisfied,

∥∥∥Id− P̂j
∥∥∥
∞,Π

≤ θ5
(
σ + 2−(1+α)j

)
+

√
c1

2
2−2j

(t+ log(max{d̄, 8}))d2

n2−jd

with probability ≥ 1− 2jd+1

θ1

(
e−t + e−

θ1
16
n2−jd

)
, where c1 = 2

(
12
√

2
θ32

θ3
√
θ1

+ 4
√

2 θ2
d
√
θ1

)2

.

Theorem 6 states that under assumptions (A1)-(A4) the empirical GMRA approximates M as well as the perfect
probabilistic one as long as the number of samples n is sufficiently large. For the proof of our main theorem we only need
the following two bounds which can be deduced from (20) and (21) in [31] by setting t = 2jd. As both appear in the proof
of Theorem 6, we state them as a corollary. The interested reader may note that nj,k appearing in the original statements
can be lower bounded by θ1n2−jd.

Corollary 2 Under the assumptions of Theorem 6 the following holds for any C1 > 0 as long as j, α are sufficiently large
and σ is sufficiently small:

Pr

[
max
k∈Kj

∥∥∥PVj,k − P
V̂j,k

∥∥∥ ≥ C1

12
2−j−2

]
≤

2

θ2
2jde

−2jdmin

{
1,

32θ22d
2

C2
1

}

Pr

[
max
k∈Kj

∥∥∥c′j,k − ĉj,k

∥∥∥
2
≥
C1

12
2−j−2

]
≤

2

θ2
2jde

−2jdmin

{
1,

32θ22d
2

C2
1

}

if n ≥ nmin =
(
2jd + log(max{d̄, 8})

)
min

{
144

θ22d

C1θ1θ3
2(d+1)j+3, 96 θ2

C1θ1
2dj+1

}2

.

Remark 11 By Corollary 2 with probability of at least 1−O(2jd exp(−2jd)) the empirical centers ĉj,k of one level j have
a worst case distance to the perfect centers c′j,k of at most O(2−j−2) if n & O(23jd). As a result, the empirical centers ĉj,k
will also be at most O(2−j−2) distance from their associated cover tree centers aj,k if n & O(23jd) by assumption (A2).
The same holds true for the projectors PVj,k and P

V̂j,k
in operator norm.
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The proof of Theorem 1 in this setting follows the same steps as in the axiomatic one. First, we give an empirical version
of Lemma 5. Then we link x and x∗ as described in Section 4.2 while controlling the difference between empirical and
axiomatic but unknown GMRA by Corollary 2. The following extension of Lemma 1 will be regularly used.

Corollary 3 (Bound of Gaussian width) The Gaussian width of M∪Mj ∪ M̂j can be bounded from above by

max{w(M), w(Mj), w(M̂j)} ≤ w(M∪Mj ∪ M̂j) ≤ 2w(M) + 2w(Mj) + 2w(M̂j) + 5

≤ 2w(M) + C
√
dj

where M̂j is defined as at the end of Appendix D.

Proof : The proof follows directly the lines of the proof of Lemma 1. The additional term w(M̂j) can be bounded in
the same way as w(Mj).

Remark 12 By structure of the proof one can easily obtain several subversions of the inequalities, e.g., w(M ∪ M̂j) ≤
2w(M) + 2w(M̂j) + 5. We will use them while only referring to Corollary 3. Moreover, similar generalizations as in Lemma
1 apply (cf. Remark 6)

Note that we are now setting our empirical GMRA centers cj,k to be the associated mean estimates ĉj,k as a means
of approximating the axiomatic GMRA structure we would have if we had instead chosen our centers to be the true
expectations c′j,k (recall Appendix D). We also implicitly assume below that there exists a constant C1 > 0 for which the
associated axiomatic GMRA properties in Section 2 hold when the centers cj,k are chosen as these true expectations c′j,k
and the ΦTj,kΦj,k as PVj,k .

Lemma 10 Fix j sufficiently large. Under the assumptions of Theorem 6 and n ≥ nmin if m ≥ C̄C−6
1 26(j+1)w(M ∪

PS(Ĉj))2 the index k′ of the center ĉj,k′ chosen in step I of the algorithm fulfills

‖x− c′j,k′‖2 ≤ 16 max{‖x− c′j,kj(x)‖2, C12−j−1}.

for all x ∈M ⊂ SD−1 with probability at least 1−O
(
2jd exp(−2jd) + exp(δ2m)

)
.

Proof : The proof will be similar to the one of Lemma 5. By definition we have

dH(sign(Aĉj,k′ ),y) ≤ dH(sign(Aĉj,kj(x)),y).

As, for all z, z′ ∈ SD−1, dH(sign(Az), sign(Az′)) = m · dA(z, z′), this is equivalent to

dA(PS(ĉj,k′ ),x) ≤ dA(PS(ĉj,kj(x)),x).

Theorem 3 transfers the bound to normalized geodesic distance, namely

dG(PS(ĉj,k′ ),x) ≤ dG(PS(ĉj,kj(x)),x) + 2δ

with probability at least 1− 2 exp(−cδ2m) where δ = C12−j−1. Observe dG(z, z′) ≤ ‖z− z′‖2 ≤ πdG(z, z′) for all
z, z′ ∈ SD−1 (see Lemma 4) which leads to

‖PS(ĉj,k′ )− x‖2 ≤ πdG(PS(ĉj,kj(x)),x) + 2πδ

≤ π‖PS(ĉj,kj(x))− x‖2 + 2πδ.

We will now use the fact that by Corollary 2

‖ĉj,k − c′j,k‖2 ≤
C1

12
2−j−2

for all k ∈ Kj with probability at least 1 − O(2jd exp(−2jd)). From this we first deduce by GMRA property (3a)
that ‖ĉj,k − PS(ĉj,k)‖2 ≤ ‖ĉj,k − PS(c′j,k)‖2 ≤ ‖ĉj,k − c′j,k‖2 + ‖c′j,k − PS(c′j,k)‖2 < (C1 + C1/2)2−j−2 for all

ĉj,k ∈ Ĉj . Combining above estimates and using triangle inequality we obtain

‖cj,k′ − x‖2 ≤ ‖PS(ĉj,k′ )− x‖2 + ‖ĉj,k′ − PS(ĉj,k′ )‖2 + ‖ĉj,k′ − c′j,k′‖2

< π‖PS(ĉj,kj(x))− x‖2 + 2πδ + 2C12−j−2

≤ π(‖ĉj,kj(x) − PS(ĉj,kj(x))‖2 + ‖ĉj,kj(x) − c′j,kj(x)‖2 + ‖c′j,kj(x) − x‖2) + 2πδ + C12−j−1

< π‖cj,kj(x) − x‖2 + 2πδ + (1 + π)C12−j−1

≤ (4π + 1) max{‖cj,kj(x) − x‖2, C12−j−1}

≤ 16 max{‖cj,kj(x) − x‖2, C12−j−1}.

A union bound over both probabilities yields the result.
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Having Lemma 10 at hand we can now show a detailed version of Theorem 1 in this case. For convenience please first
read the proof of Theorem 5. As above choosing ε = 2

√
j 2−j yields Theorem 1 for OMS-simple with a slightly modified

probability of success and slightly different dependencies on C1 and C̃x in (9).

Theorem 7 Let M ⊂ SD−1 be given by its empirical GMRA for some levels j0 ≤ j ≤ J from samples X1, ..., Xn for
n ≥ nmin (defined in Corollary 2), such that 0 < C1 < 2j0+1 where C1 is the constant from GMRA properties (2b)
and (3a) for a GMRA structure constructed with centers c′j,k and with the ΦTj,kΦj,k as PVj,k . Fix j and assume that

dist(0,M̂j) ≥ 1/2. Further let

m ≥ 64 max{C′, C̄}C−6
1 26(j+1)(w(M) + C

√
dj)2.

where C′ is the constant from Theorem 4, C̄ from Theorem 3 and C from Lemma 1. Then, with probability at least
1−O

(
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)
the following holds for all x ∈M with one-bit measurements y = sign(Ax) and GMRA

constants C̃x from property (3b) satisfying C̃x < 2j−1: The approximations x∗ obtained by OMS fulfill
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Proof : The proof consists of the same three steps as the one of Theorem 5. First, we apply Lemma 10 in (I). By
the GMRA axioms this supplies an estimate for ‖x − Pj,k′ (x)‖2 with high probability (recall that Pj,k′ (x) will
be PVj,k′ (x − c′

j,k′ ) + c′
j,k′ in this case). In (II) we use (I) to deduce a bound on ‖x − P̂j,k′ (x)‖2, and then use

Theorem 4 to bound the distance between P̂j,k′ (x)/‖P̂j,k′ (x)‖2 and the minimum point x∗ of

x∗ = arg min
z

m∑
l=1

(−yl)〈al, z〉, subject to z ∈ K := conv
(
PS(P̂j,k′ ∩ B(0, 2))

)
(28)

with high probability. Taking the union bound over all events, part (III) then concludes with an estimate of the
distance ‖x− x∗‖2 by combining (I) and (II).

(I) Set δ = C12−j−1 and recall that C12−j−2 < 1/2 by assumption which implies by GMRA property (3a) that
all centers in C′j are closer to SD−1 than 1/2, i.e. 1/2 ≤ ‖c′j,k‖2 ≤ 3/2. Moreover, Corollary 2 holds with probability
at least 1 − O(2jd exp(−2jd)) and implies ‖ĉj,k − c′j,k‖2 ≤ (C1/12)2−j−2 ≤ 1/4. Hence, by triangle inequality
1/4 ≤ ‖ĉj,k‖2 ≤ 7/4. From this and (10) we deduce

w(PS(Ĉj)) ≤ γ(PS(Ĉj)) ≤ 4γ(Ĉj) ≤ 8w(Ĉj) + 4

√
2

π
dist(0, Ĉj) ≤ 8w(Ĉj) + 8. (29)

As Ĉj ⊂ M̂j we know by Corollary 3 and (29) that
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Hence, Lemma 5 implies
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{∥∥∥x− c′j,kj(x)

∥∥∥
2
, C12−j−1

}
.

with probability at least 1−O
(
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)
. By GMRA property (3b) we get

‖x− Pj,k′ (x)‖2 ≤ C̃x2−j (31)

for some constant C̃x.

(II) Define α̂ =
∥∥∥P̂j,k′ (x)

∥∥∥
2
. Note that ‖x − c′

j,k′‖2 ≤ 4 as x ∈ SD−1 and all c′j,k are close to the sphere by
assumption. Hence,

‖Pj,k′ (x)− P̂j,k′ (x)‖2 ≤ ‖c′j,k′ + PVj,k′ (x− c′j,k′ )− ĉj,k′ − P
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by application of Corollary 2. This implies 1/4 ≤ α̂ ≤ 7/4 as x ∈ SD−1 and

‖x− P̂j,k′ (x)‖2 ≤ ‖x− Pj,k′ (x)‖2 + ‖Pj,k′ (x)− P̂j,k′ (x)‖2 ≤ C̃x2−j +
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by (31) and the assumption that max{C̃x, C1/4} · 2−j ≤ 1/2. As before we create the setting of Theorem 4.
Define x̃ := P̂j,k′ (x)/α̂ ∈ SD−1, ỹ := sign(Ax̃) = sign(AP̂j,k′ (x)), K = conv(PS(P̂j,k′ ∩ B(0, 2))) and τ :=

(2C̃x + 5
4
C1)2−j . If applied to this, Theorem 4 would give the desired bound on ‖x̃− x∗‖2. We first have to check

dH(ỹ,y) ≤ τm. Recall that 1
α̂
≤ 4 and as α̂ > 0 one has α̂w(K) = w(α̂K). By applying Corollary 3 again we have

that
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We can now use Theorem 3, Lemma 4 and ‖x̃− P̂j,k′ (x)‖2 = |1− α̂| ≤ ‖x− P̂j,k′ (x)‖2 to obtain

dH(ỹ,y)

m
= dA(x̃,x) ≤ dG(x̃,x) + 2δ ≤ ‖x̃− x‖2 + 2δ ≤ ‖x̃− P̂j,k′ (x)‖2 + ‖P̂j,k′ (x)− x‖2 + 2δ
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with probability at least 1 − 2 exp(−cδ2m). Assuming the above events hold true we can apply Theorem 4 as by
Corollary 3, in analogy to (30) and (20), that
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‖x̃− x∗‖22 ≤ δ
√

log
( e
δ

)
+ 11τ

√
log
( e
τ

)
. (33)

(III) We conclude as in Theorem 5. Recall that ‖x̃− P̂j,k′ (x)‖2 = |1− α| ≤ ‖x− Pj,k′ (x)‖2 ≤ (C̃x + C1
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)2−j . By
union bound we obtain with probability at least 1−O

(
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)
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As explained in the proof of Theorem 5 the last step was simplified for notational reasons.
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