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Abstract. We consider a flexible greedy approach to wavelength assign-
ment in an optical network with the goal of minimizing the cost incurred
by wavelength conversions and fiber deployment. The greedy approach pro-
cesses demands one by one in a certain order and makes a locally optimal
choice for each demand. We address several heuristics for creating desirable
demand orderings, including a random ordering, as well as a hybrid method
that begins with a graph coloring algorithm. One of the primary strengths
of our heuristics is that they are both simple and flexible. Hence, additional
practical engineering and cost constraints can be easily incorporated into the
approach. An empirical evaluation shows that our greedy approach works

well on real-world networks under realistic demand loads.

Keywords. optical network design, discrete optimization, wavelength

assignment, greedy algorithm, graph coloring

1 Introduction

Modern optical networks provide efficient information transport on the order of terabits. This is
realized by the cutting-edge technology of Dense Wavelength Division Multiplex (DWDM). In this
setting, an optical fiber is partitioned into a large number of wavelengths, and traffic demands

sharing a common fiber are transported on distinct wavelengths. Typically, abundant dark fibers
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Wavelength Assignment in Optical Network Design

are already installed underground. However, activating or deploying these fibers to create high-
speed and high-capacity networks is expensive. Optical equipment for backbone networks in the
US cost in the order of hundreds of millions of dollars. Hence, there is a great deal of interest in
modeling and exploring algorithmic solutions for designing such networks, with the objective of

cost optimization.

Unfortunately, optical network design is highly complex from the perspective of combinatorial
optimization as well as software engineering. These problems were addressed in the practical context
in [7]. In particular, [7] presents a collection of design tools developed at Bell Labs for the purpose

of optimizing backbone networks from major US and European carriers.

We begin with an overview of optical network design. There are many levels of abstraction
to model an optical network. This includes the entire spectrum from the high-level design (i.e.
specification of traffic routes and wavelengths) to the simulation of optical signals (i.e. the compu-
tation of optical quantities such as signal-to-noise ratio, dispersion, and non-linear phase shift). All
components are closely interconnected. However, since each component requires drastically differ-
ent techniques (e.g., discrete optimization for the high-level design and solving partial differential
equations for simulating optical signals) a commonly accepted approach is to decompose the entire

problem into relatively independent and more manageable pieces.

We focus on the algorithmic issues that arise from the high-level design, which addresses two
basic issues, routing and wavelength assignment. Routing aims to find a path of fibers between
the source and destination nodes of each demand; wavelength assignment aims to find available
wavelengths within each fiber to carry the requested bandwidth of the demand. Both routing and
wavelength assignment can be formulated as graph-theoretic problems in their cleanest mathemat-
ical abstraction. However, even in these simple forms, routing contains classic NP-hard problems
such as edge-disjoint paths, congestion minimization and buy-at-bulk network design. As we shall
see later, wavelength assignment has a close association with vertex coloring. All these problems

are not only hard to solve optimally, but also hard to approximate.

To make things worse, the practical aspect of routing and wavelength assignment has an over-
whelming amount of details in engineering constraints and cost specification. The source of the
engineering constraints can be both service providers and equipment vendors. For example, fiber
connections in the network may be of heterogeneous types, some of which may be able to carry
more wavelengths than others; a demand may request specific nodes, edges or wavelengths to use
or to avoid; a node may have a degree bound (i.e. an upper bound on the number of incident fibers
that actively carry traffic); a demand path may be restricted by hop count or by distance limit;
a link may only be able to carry a certain subset of wavelengths; a node may impose restrictions
on the wavelengths going through it due to the equipment the node has. In addition to these con-
straints that affect the feasibility of a solution, how to price a design can also be messy. Roughly
speaking, the total equipment cost for activating a set of fibers to carry traffic is proportional to

the number of such fibers. However, the exact cost also depends on the fiber type, its physical
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length, the number of wavelengths in use, and the highest active wavelength in use, etc. These
additional factors have the second-order effect on the total equipment cost. Therefore, to a first
approximation, the number of active fibers is linearly proportional to the total equipment cost of
the network.

In this study, we separate routing from wavelength assignment and focus on the latter in isola-
tion. This separation is motivated by the algorithmic difficulty of both problems alluded to before
and is consistent with the tools perspective of [7]. We choose to work on a clean formulation of
wavelength assignment that captures the core of the problem. We also choose a simple heuristic
approach to solve the core problem. This approach gives us the flexibility to easily accommodate
the messier engineering requirements as needed, and it allows the ever-changing pricing of optical
components to drive the optimization.

We have considered other approaches to tackle the problem. Here are several examples. We
could formulate the core problem as an integer linear program (ILP) and attempt to solve it with a
commercial solver like CPLEX. This approach works well on very small problem instances. Thus,
optimal solutions obtained by CPLEX can sometimes be used to judge the quality of heuristic solu-
tions (as we do in Section 4). However, drawbacks of an ILP approach include both lack of scalability
and inflexibility in accommodating extra constraints. Other approaches have similar drawbacks.
Algorithms for wavelength assignment/demand routing on specific types of networks [20] generally
either don’t successfully extend to different classes of networks, or don’t easily accommodate addi-
tional constraints. Likewise, viewing wavelength assignment in a planning context and encoding it
as either a boolean satisfiability [10] or constraint satisfaction [4] problem was considered. Existing
solvers [8, 5] could then be used to generate wavelength assignments. However, as before, these
encoding-based approaches have drawbacks related to both scalability and to difficulties handling
realistic engineering constraints. Hence, we focus on investigating simple, scalable, and flexible
greedy solution methods.

We now state the wavelength assignment problem in terms of two abstracted models. To begin,
we are given a network modeled by a simple undirected graph N = (V| E), and a set of demands
Py, ..., P;. Each demand d; sends one wavelength of traffic along a specified path P;. The task
of wavelength assignment is to assign these paths to wavelengths from the range [1, u| where p is
the fiber capacity. Given the demand paths, the minimum number of fibers necessary on link e is
f(e) =[L(e)/u], where L(e) is the number of demand paths traversing link e.

In the first of our two models, which we call Min-Fiber, each demand path is assigned one
wavelength from beginning to end, with no wavelength conversion. If we let N.(w) denote the
number of times wavelength w is used on link e due to an assignment, then max,, N.(w) is the
number of fibers link e would have to deploy. We denote this quantity by F'(e). Note that F'(e) is
necessarily at least f(e). The objective of Min-Fiber is then

min Z F(e).
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Note that a more general objective function could be minimizing a weighted sum ), ¢(e)F'(e)
for edge-dependent weights ¢(e). As we shall see, our greedy heuristic is directly applicable to this
generalization. However, for this paper we stick to minimizing the total number of fibers. For
reasons alluded to before, minimizing the fiber count directly implies cost minimization.

In the second model, which we call Min-Conversion, we allow wavelength conversion along a
demand path. In particular, we can potentially partition each demand path P; into several subpaths
and assign each subpath a distinct wavelength. The number of conversions is then the number of
subpaths minus one. We refer to this quantity as C'(7). In this model, we require exactly f(e) fibers

deployed on link e, i.e. no extra fibers. The objective of Min-Conversion is then

Figure 1: Network solution for Min-Conversion

Figure 1 illustrates a very simple example. There are four network nodes: A, B, C' and O;
three demands (i.e. routes): AOB, AOC and BOC; and we are allowed two wavelengths per fiber.
We begin with all wavelengths available. If the first demand is AOB, it is routed completely on
one wavelength. Then AOC' is routed completely on the second wavelength. There is now one
wavelength available on both AO and OB, but these are different wavelengths. A converter is,
therefore, placed at O for the demand BOC.

B

Figure 2: Network solution for Min-Fiber

Figure 2 shows the Min-Fiber solution for the same simple network as in Figure 1. Here,
however, rather than adding a converter for the demand BOC, additional fiber is added to the link
ocC.
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To be useful in practice a wavelength assignment algorithm must be both robust and easily
adaptable to additional unforeseen physical, economic, and engineering constraints imposed by
the service provider. For example, a service provider may wish to prioritize the use of some
wavelengths over others, or to use wavelengths in bundles. Therefore, we purposefully seek a
solution technique that is both simple and adaptable. In this paper we introduce and empirically
evaluate several heuristic greedy solution techniques for Min-Fiber and Min-Conversion. Our
solution techniques are not only simple and adaptable, but also quite accurate for instances that

come from real-world networks, as we shall see.

2 Preliminaries and Related Work

In this section we give a review of related work. In doing so we both: (i) explain why Min-Fiber

and Min-Conversion are hard, and (i7) motivate our choice of greedy solution techniques.

2.1 Difficulty of Min-Fiber and Min-Conversion

For a graph G = (V, E) defined on a vertex set V and an edge set E, a coloring for G is an
assignment of colors to the vertices such that no vertices sharing a common edge are assigned the
same color. The chromatic number of G, x(G), is defined to be the smallest number of colors that
a coloring of G must have. Determining x(G) for an arbitrary graph G is NP-hard. Furthermore,

1=€ is also hard, where n denotes the number of

even approximating x(G) to within a factor of n
vertices.

To demonstrate why Min-Fiber and Min-Conversion are difficult, we relate them to vertex
coloring. Given a wavelength assignment instance defined on a network N = (Vy, Ey) and a
set of demand paths Pi,..., P;, we create a demand graph D = (Vp, Ep). The vertices in D
correspond one-to-one to the demand paths. In particular, each vertex v; € Vp corresponds to the
demand path P;. Furthermore, (v;,v;) € Ep if and only if P;N P; # (). An example demand graph
is shown in Figure 3.

Consider the Min-Per-Link problem: assuming all links are given the same number of fibers,
how many fibers are required for an optimal wavelength assignment? The Min-Per-Link problem
is clearly easier than the Min-Fiber problem, and solving it is equivalent to finding the chromatic
number of the associated problem’s demand graph. Standard hardness results for the chromatic
number problem [11] (i.e. determining x(D)) suggest the difficulty of Min-Per-Link. Given that
Min-Per-Link is hard, it is not surprising that Min-Fiber is also difficult. For a formal proof
of the inapproximability of Min-Per-Link see [1] and for the inapproximability of Min-Fiber
see [2].

The inapproximability of Min-Conversion is less studied, though the problem is NP-hard
even for simple topologies such as rings and trees [2]. The following informal argument indicates

the NP-hardness of the conversion problem. Recall that d is the number of demands we must
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Figure 3: The left graph is the network with demand paths
D1 = ADE, D2 = ADG, D3 = FDE, D4 =
FDA, D5 = BDG and D6 = CEG. The right
graph is the demand graph.

satisfy. We begin by noting that we can use a solution method for Min-Conversion to solve
Min-Per-Link. Suppose we can solve Min-Conversion in polynomial-time as long as each edge
has at least max.cp, f(e) fibers (i.e. we allow additional fibers per link — in the next paragraph we
will demonstrate that this does not influence our argument). Clearly no conversions are required
to solve such a Min-Conversion instance if the number of fibers per link is chosen to be large
enough. Thus, we can solve Min-Per-Link by solving O(d) Min-Conversion problems (with the
same network demands), where the number of fibers per link is varied from max.cg, f(e) to d.
The smallest number of fibers per link requiring zero conversions is our answer.

We finish by noting that we may solve any Min-Per-Link problem by considering an equivalent
demand graph derived network with O(d?) links. Furthermore, by adding an additional O(yu - d*)
trivial (i.e. single-link) demands we can increase its minimum number of required fibers per link
without influencing the number of conversions necessary to solve the same problem. Therefore,
we can indeed test any given number of fibers per link as a solution to a given Min-Per-Link
problem by considering a conversion-equivalent demand graph derived network Min-Conversion
problem. The upshot is that we can solve the Min-Per-Link problem in polynomial-time if we
have a polynomial-time solution method for Min-Conversion. The difficulty of Min-Conversion

follows.

2.2 When the Going Gets Tough, the Tough Get Greedy

The inapproximability and hardness of optimally solving Min-Fiber and Min-Conversion mean
that we have to consider a potentially suboptimal approach. In the absence of polynomial time
algorithms with a constant approximation guarantee, we fall back on heuristic greedy solution
techniques. Greedy heuristic solution methods have been fruitfully applied to many NP-hard prob-
lems including vertex coloring [19], SAT solving [16, 3], set covering [17], strip packing [13], and
generalized planning [9] problems.

Generally greedy techniques perform surprisingly well. Many greedy/heuristic techniques have
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been applied to the graph coloring problem with favorable results [12, 18, 14, 6]. See [15] for a survey
of many more. Perhaps most inspiring for us is the work of Turner [19], who demonstrated that a
simple greedy vertex coloring algorithm performs optimally on most graphs. The strong empirical
results associated with greedy SAT solvers [16] are also encouraging, especially considering that
propositional satisfiability is an NP-complete problem. For these reasons we employ greedy priority

wavelength assignment methods along the lines of [13].

3 Our Greedy Approach

Without assuming any additional properties for the network, finding the least expensive Min-
Fiber/Min-Conversion network design that satisfies all demands currently necessitates the use
of a superpolynomial-time algorithm. Of course, such algorithms are generally computationally
infeasible. Thus, we have taken a greedy approach to solving Min-Fiber/Min-Conversion.
Generally, a greedy optimization algorithm iteratively makes locally optimal assignments in the
hope of reaching a globally optimal solution. In this case, we order our demands according to
several heuristics and then seek to make locally optimal wavelength assignments for them, one at

a time. Our general algorithm is the following.

Algorithm 3.1 Optimize Design:
1. Let Pr(1y, ..., Pry be an ordering of the demand paths.
e Fori=1,...,d: find locally optimal solution for Py .
2. Randomly perturb the ordering m and let Pri(yy, ..., Pr(q) be the resulting ordering.

e Fori=1,...,d: find locally optimal solution for P (.

In our simulations, the random perturbation of step 2 was implemented by randomly permuting
sets of adjacent indices. Note that both steps 1 and 2 can be repeated multiple times. If so, the
best ordering of the trials is recorded.

The Optimize Design algorithm has essentially two components: ordering and locally optimal
solution. The latter component is greedy as it does its best for each demand in the currently
considered order. We discuss this greedy step in Section 3.1. Of greatest importance here is that
as each ordered demand is treated by the greedy algorithm, assignments are made that change
the set of available wavelengths for subsequently ordered demands. Therefore, the order in which
the demands are treated is crucial for a good final design. Indeed, it can be shown that there is
always some ordering which leads to an optimal solution [21]. Of course, there is no known efficient
method which is guaranteed to determine such an ordering (see Section 2.1 above). Thus, we order

our demands heuristically and/or randomly.
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As we can see, the above framework is extremely flexible. For example, it can be tuned to
accommodate constraints such as avoiding forbidden wavelengths or enforcing desired wavelengths

at a link/node, etc. Different objective functions can also be swapped in, as needed.

3.1 Greedy Solution Given Ordering

While there are possible combinations of networks, demand sets and demand orderings for which
the greedy approach would return a result far inferior to an optimal solution, we are considering
realistic networks and always consider a handful of orderings. Under such conditions, the greedy
approach generally yields a good solution. Importantly, the greedy algorithm does so relatively
quickly. We have two greedy routines, Greedy-Conversion and Greedy-Fiber, which respectively
minimize the number of conversions and the number of deployed fibers. Each takes a demand as
input and returns a wavelength assignment path for that demand. In the algorithms that follow, a

demand path P consists of links {eq, ..., e, }.

Algorithm 3.2 Greedy-Conversion(P)

1. Start at link ey. Assign the wavelength w € [1,u] that is available on the greatest number

of consecutive subsequent links. If this is k links on wavelengths W, assign W to the subpath

{e1,ex}.

2. Repeat (1), starting at ep4q until all links are treated.

We note that Greedy-Conversion in fact finds a wavelength assignment with a minimum number
of conversions for each demand path as ordered. But it happens that this assignment is also

determined by treating the path greedily.

Algorithm 3.3 Greedy-Fiber(P)

1. Determine the wavelength that is available on the greatest number of {e1,...,en}. Suppose it

18 W.
2. Add a fiber on the links where W is not available. Update the network.

3. Assign wavelength w to path P.

3.2 Ordering

We propose four different orderings for our demands. We then process the demands in the given
order using our greedy Section 3.1 methods. The first approach uses the length heuristic: demands
are ordered according to the number of links that they travel, and the longest are prioritized. The
second uses the load heuristic: each link is given a weight according to the number of demands

that travel that link. The weights along each demand’s route are summed to give the load, and
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demands with higher route loads are prioritized. The third ordering approach is random, in which
the ordering is a random permutation of all the demands. The fourth approach uses graph coloring.
This approach is more involved and is discussed in Section 3.3. We note here, though, that while
its output is a set of assignments, it may also be viewed as returning the ordering that produces
those assignments when the algorithm is applied.

Each of these four methods may be used, as well as in combinations, to create an ordering for

the demands.

3.3 Demand Preprocessing via Vertex Coloring

Network fibers are assumed to each support p wavelengths. Therefore, if it is possible to cover a
problem’s demand graph with u colors, neighboring demands will be assigned different wavelengths
(i.e. colors) and will not conflict on their common link(s). Since, in general, p colors will not
suffice to color the demand graph, we color as many demands as possible with p colors using a fast
coloring algorithm known to perform well “on most graphs” [19]. Each demand that is assigned
a color is then routed, and we turn to the unrouted demands. These fall into two groups: those
with only one fiber on each link and those with more than one fiber on each link. We set the first
group aside, and treat the second group by creating its demand graph. This process is repeated
as long as demands remain with at least one unused fiber. In this way we are able to assign a
large number of wavelength routes using established graph coloring methods before turning to our
demand ordering heuristics. Unprocessed demands are then handled globally by the length, load,

or random approaches.

4 Empirical Evaluation

The problem instances that we study closely resemble those from major carriers in the US and
Europe. Each instance specifies a network topology and a demand matrix which reflects the traffic
estimate by the carriers. The networks are sparsely-connected and consist of a collection of inter-
connected rings. The ring-based topology is prevalent in practice and is well documented. For
example, [22] studies wavelength minimization over a tree of rings and proves constant approxi-
mation guarantees. The practical motivation comes from the need for failure protection. In the
presence of a failed node or link, affected demands can then be routed along a backup path. We do
not focus on the issue of protection in our study. For the purpose of wavelength assignment, we fix
routes for the demands by computing either shortest paths or some longer paths that would pack
in more demands. We also scale the entries in the traffic matrix to create varying demand loads
on the active fibers. We remark that the purpose of this empirical evaluation is to test the greedy
approach on “common” instances and see how it would help with real-life designs. Our focus is not
on creating hard obscure instances.

Although for proprietary reasons, we cannot present real data exactly, Figure 4 is a perturbed

10
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network topology of one small instance we tested. As we can see, it is a planar graph with 20+
nodes and an average node degree slightly over 2. It consists of 6 inter-connected rings. The traffic
demands originate from about 80 node-pairs. Nodes corresponding to large cities typically have
more traffic originating from or terminating at them. The fiber capacity p ranges from 20 to 50 in

our tests.

Figure 4: A perturbed topology of an instance tested.

We divide the networks that we considered into three groups, each with 3 instances. The first
consists of small networks. For the most part, we know the optimal solution for these networks,
because for sufficiently small instances either a commercial solver like CPLEX can yield an optimal
solution or we were able to reason what an optimal solution looked like. We find here that all of our
approaches quickly find the optimal solution. See Figure 5 for results on small and lightly loaded
networks.

The second group is networks with a small number of nodes, but a heavy demand load on most
links (i.e. such as about 80% required usage of available wavelengths). For some instances in this
group we know the optimal solution, and for these cases we observe that taking the best result from
our set of methods has returned the optimal solution. For instances in this group, for which we
don’t know the optimal solution, we find that the random ordering yields the best solution, where
a few hundred orderings were tried. See Figure 6 for results on small networks with heavy demand
loads.

For the group of networks consisting of a large number of nodes and with heavy saturation of
most of the links, we find that the length and load approaches and the vertex coloring approach
result in better solutions than the random ordering, where we significantly increased the number
of orderings for this group than the previous two groups. However, since we do not know any of
the optimal solutions for these networks, we do not know how close our solution is to optimal. The

results are summarized in Figure 7 below.

11
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The key observation is that for a small number of demands, random ordering outperforms
our other heuristics. Yet for larger demand sets the length, load and vertex coloring approaches
outperform the random approach. A plausible explanation is that in the smaller demand sets, all
demands are of comparable size, and, therefore, there is not an inherent scale of complexity for
the demands. For the large, heavily loaded networks, however, there are clear distinctions between
heavy or light and long or short. Therefore the heuristic is more effective in the large network

setting.
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5 A New Direction

We have presented heuristics to find the minimum number of fibers or conversions. In the final
section of this paper we consider a new direction that uses a combination of both objectives. A
natural way to do this is to check how many fewer conversions are required if one fiber is added.
To apply this idea, we list all the extra fibers we need to add according to Min-Fiber. We add
one of them and determine the minimum number of conversions needed. We try each fiber on the
list, and select the one that results in the greatest decrease in conversions. We repeat this routine
until all fibers have been added. Then we view the results to make an allocation based on the cost
of each outcome. Table 1 shows the effect of this algorithm for a large ring network.

The tradeoff between the number of deployed fibers and the number of conversions is dictated
by the ratio of the equipment cost for activating a fiber and the cost of a conversion. This ratio
is obviously product dependent, and a reasonable number can be from the range of [10,20]. In
the following we show our preliminary observation assuming that deploying 1 fiber is as expensive
as 10 conversions. The last row of the table gives a cost estimate for different combinations. It
clearly suggests that, in terms of cutting the cost, we should add 5 fibers to the specific links and

use another 49 conversions to solve the remaining conflicts.

6 Conclusion

In this paper we considered the Min-Fiber and Min-Conversion optical network wavelength
assignment problems. These problems deal with assigning wavelengths to network user demands
in a fashion that minimizes the total number of deployed fibers or conversions, respectively. Given
the expense of laying additional fibers or adding conversion equipment, these problems are of great
commercial interest to optical network service providers.

Given the inherent difficulty involved with obtaining optimal solutions to either Min-Fiber
or Min-Conversion, we propose using well-proven priority-based greedy heuristics as solution
methods. Not only are greedy methods flexible to future constraints, but they have also been

shown to work well on a plethora of other difficult (i.e. NP-hard) problems. Indeed, in keeping

Number of extra fibers | 0 1 2 3 4 5
Number of conversions | 129 | 109 | 90 | 79 | 60 | 49
Total cost 129 | 119 | 110 | 109 | 100 | 99
Number of extra fibers | 6 7 8 9 10 | 11
Number of conversions | 40 | 30 | 20 | 20 | 20 0
Total cost 100 | 100 | 100 | 110 | 120 | 110

Table 1: Allocation and cost results for a Large Ring Network

15
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with the good reputation of greedy heuristics, our solution methods also perform well empirically
on realistic wavelength assignment instances. As seen in Section 4, our greedy solution techniques
all perform nearly optimally (i.e. within a factor of two or better) on all assignment problems for
which the optimal solution is known. However, our study has not allowed us to draw a definitive
conclusion as to which ordering is superior under what circumstances.

Perhaps most interestingly, we introduce a new mixed Min-Fiber/Conversion cost reduction
model in Section 5. Preliminary tests indicate that our new mixed fiber/conversion cost reduction
scheme creates wavelength assignments, conversion nodes, and additional fiber installations more
cost effectively then either Min-Fiber or Min-Conversion solutions alone. Hence, our new mixed

fiber/conversion model is potentially useful and can benefit from further exploration.
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