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Abstract. In this short note, we consider the worst case noise robustness of any phase retrieval algorithm
which aims to reconstruct all nonvanishing vectors x ∈ Cd (up to a single global phase multiple) from the
magnitudes of an arbitrary collection of local correlation measurements. Examples of such measurements
include both spectrogram measurements of x using locally supported windows and masked Fourier transform
intensity measurements of x using bandlimited masks. As a result, the robustness results considered herein
apply to a wide range of both ptychographic and Fourier ptychographic imaging scenarios. In particular,
the main results imply that the accurate recovery of high-resolution images of extremely large samples using
highly localized probes is likely to require an extremely large number of measurements in order to be robust
to worst case measurement noise, independent of the recovery algorithm employed. As a result, recent
pushes to achieve high-speed and high-resolution ptychographic imaging of integrated circuits for process
verification and failure analysis will likely need to carefully balance probe design (e.g., their effective time-
frequency support) against the total number of measurements acquired in order for their imaging techniques
to be stable to measurement noise, no matter what reconstruction algorithms are applied.

1. Introduction and Statement of Results

We consider the robustness of the finite-dimensional phase retrieval problem in which one attempts to
recover a signal x := (x(1), . . . ,x(d))

T ∈ Cd from one of two nonlinear measurement maps α, β : Cd → RN
given by

α(x) = {|〈x, fk〉|}Nk=1 and β(x) = {|〈x, fk〉|2}Nk=1,

where the vectors {f1, . . . , fN} ⊂ Cd form a frame (i.e., a spanning set) of Cd. This problem is motivated by
inverse problems that arise in several scientific areas including optics [21], astronomy [9], quantum mechanics
[8], and audio signal processing [16, 20]. In particular, we will focus on a special class of frame vectors fk
which have localized support (i.e., all of whose nonzero entries are contained in an interval of length at most
δ � d). Such frames are commonly encountered in applications like ptychographic imaging in which small
overlapping regions of a much larger specimen are illuminated one at a time, and a detector captures the
intensities of the resulting local diffraction patterns [18].

It is clear that for any θ ∈ R one has α(eiθx) = α(x) and β(eiθx) = β(x). Therefore, we can at best hope
to recover x up to the equivalence relation x ∼ x′, if x = e

iθx′ for some θ ∈ R. Following the work of Balan
et al. [2, 3], we will consider two commonly used metrics on Cd/ ∼: the natural metric

D2(x,x′) := min
θ∈R
‖x− e

iθx′‖2,

and the matrix-norm induced metric

d1(x,x′) := ‖xx∗ − x′x′∗‖1 :=
∑
k

σk(xx∗ − x′x′∗),

where σk(xx∗ − x′x′∗) is the k-th singular value of the (at most rank-two) matrix xx∗ − x′x′∗. In [3], Balan
et al. showed that if α and β are injective on Cd/ ∼, then β is bi-Lipschitz with respect to d1, and α is
bi-Lipschitz with respect to D2, where in both cases RN is equipped with the Euclidean norm.

Motivated by applications such as (Fourier) ptychography [18, 22] and related numerical methods [13, 14],
we will study frames which are constructed as the shifts of a family of locally supported measurement vectors.
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Specifically, we assume that {m1,m2, . . . ,mK} is a family of measurement masks in Cd such that for all
1 ≤ k ≤ K the nonzero entries of mk are contained in the set [δ] := {1, . . . , δ} for some δ ≤ d

4 (although all
of our results remain valid if the support of our masks are contained in any interval of length δ). Letting
L be an integer which divides d, such that a := d

L < δ, we consider nonlinear phaseless measurement maps
Y,Z : Cd → RK×L defined by their coordinate functions

Yk,`(x) := |〈S`amk,x〉|2 (1.1)

and
Zk,`(x) := |〈S`amk,x〉| (1.2)

for 1 ≤ k ≤ K and 1 ≤ ` ≤ L. Here S` is the circular shift operator on Cd defined for all ` ∈ Z by

(S`x)(n) := x ((n+ `− 1) mod d+ 1) .

(The + 1 is needed because we are indexing our vectors from one.) For notational convenience, we will
assume that d is even, although our results remain valid, with similar proofs, when d is odd.

The purpose of this paper is to provide lower bounds on the Lipschitz constants of any maps, A and B,
which reconstruct x from Y and Z, respectively. With such lower bounds in hand, one would be better
equipped to, e.g., judge the optimality of theoretical noisy reconstruction guarantees for phase retrieval
algorithms which utilize locally supported measurements (see, e.g., [13, 14]). Unfortunately, Y and Z are
not injective on all of Cd/ ∼. For example, if two vectors x± ∈ Cd are defined by

x±(n) :=


1, 1 ≤ n ≤ d

2 − δ
0, d

2 − δ < n ≤ d
2

±1, d
2 < n ≤ d− δ

0, d− δ < n ≤ d

, (1.3)

then x+ 6∼ x−, but Y (x+) = Y (x−) and Z(x+) = Z(x−). (If d were odd, we could add an extra entry of 1
to x±.) However, it can be shown [13] that Y and Z are injective when restricted to the subset of Cd such
that x(n) 6= 0 for all 1 ≤ n ≤ d, for certain choices of masks in the case where L = d. Given this, we will
consider the maps Y and Z restricted to the subset

Cp,q = {x ∈ Cd/ ∼ such that p ≤ |x(n)| ≤ q for all 1 ≤ n ≤ d},
for some fixed 0 < p ≤ q, and provide lower bounds on the Lipschitz constants of A and B which grow
linearly with respect to the ratio q

p .

1.1. Related Work and Implications. Our local measurement maps (1.1) and (1.2) are closely related
to several practical measurement models that have been explored in the phase retrieval literature including,
for example, Short-Time Fourier Transform (STFT) magnitude measurements (see, e.g., [5, 15, 17, 19]).
In particular, suppose that our STFT magnitude measurements are generated by a compactly supported
window w ∈ Cd whose nth-entry w(n) is nonzero only if n ∈ [δ]. In this setting, we can use one locally
supported maskmk to represent each measured frequency ωk ∈ Ω ⊂ [d] := {1, . . . , d} by lettingmk := Wωkw
for each frequency index k, where Wωk is the modulation operator defined on Cd by

(Wωkw)(n) := e
2πi(n−1)(ωk−1)

d w(n).

In this case, we have

|〈S`amk,x〉| = |〈x, S`aWωkw〉| =
∣∣∣〈x, e 2πi`a(ωk−1)

d WωkS`aw
〉∣∣∣ = |〈x,WωkS`aw〉|

for all k and `. Therefore, one can see that the main results below yield lower Lipschitz bounds for any such
STFT magnitude measurements in terms of the total number of shifts L, the number of measured frequencies
K, and the window w’s support size δ.

Another common model considered in the phase retrieval literature concerns masked Fourier measurements
of the form

|F Diag(wk) x|2, (1.4)
where F is the d× d discrete Fourier transform matrix whose entries are defined by

Fj,k := e
−2πi (j−1)(k−1)

d ,



LOWER LIPSCHITZ BOUNDS FOR PHASE RETRIEVAL FROM LOCALLY SUPPORTED MEASUREMENTS 3

and {w1, . . . ,wk} ⊂ Cd is a family of measurement vectors (see, e.g., [4, 6, 7, 11]). In this setting one can ask
what effect, if any, requiring each wk to be bandlimited (i.e., to have support size δ � d in the Fourier basis)
might have on the stability of these measurements. Furthermore, one might also consider subsampling each
of the masked Fourier measurements in frequency instead of acquiring measurements for all d frequencies.
(This may even be a necessity due to, for example, detector limitations.) We will show that our results may
also be applied to these types of measurements as a special case.

Suppose for example that each measurement vector wk has ŵk(n) := (Fwk)(n) = 0 for all n /∈ {1}∪{d−
δ+ 2, . . . , d}.1 For a vector u ∈ Cd, let ũ ∈ Cd be the vector obtained by reflecting the entries of u about its
first entry so that

ũ(n) := u ((1− n) mod d+ 1) .

In this case, we see that the measurements (1.4) are given by the measurement map (1.1) applied to x̂ with

the locally supported measurement masks mk := 1
d
˜̂wk. Indeed,

|〈S`amk, x̂〉| =
1

d

∣∣∣∣〈x̂, S`a ˜̂wk

〉∣∣∣∣ =
1

d

∣∣∣∣∣
d∑

n=1

x̂ (n)S`a ˜̂wk (n)

∣∣∣∣∣
=

1

d

∣∣∣∣∣
d∑

n=1

x̂ (n) ŵk ((1− `a− n) mod d+ 1)

∣∣∣∣∣
=

1

d
|(ŵk ∗ x̂) (−`a mod d+ 1)| , (1.5)

where ∗ is circular convolution given by

(x ∗ y)(m) =

d∑
n=1

x(n)y((m− n) mod d+ 1).

Continuing from (1.5), we see by the convolution theorem

|〈S`amk, x̂〉| = |F (wk ◦ x) ((−`a mod d) + 1)| = |F (Diag (wk)x) ((−`a mod d) + 1)| ,
where ◦ represents the Hadamard (componentwise) product.

As a result, we see that recovering a vector x from masked Fourier measurements of the form (1.4) with
bandlimited measurement vectors wk is equivalent to recovering x̂ from measurements (1.1) with locally
supported measurement masks mk. Therefore, the main results below also yield lower Lipschitz bounds for
any such masked Fourier magnitude measurements in terms of the total number of frequencies L collected per
measurement vector, the total number K of measurement vectors used, and the maximum Fourier support
size δ of each bandlimited measurement vector.

1.2. Main Results. The main results of this paper are the following two theorems which provide lower
bounds for the Lipschitz constants of any maps A and B for which A(Y (x)) = x and B(Z(x)) = x for all
x ∈ Cp,q.
Theorem 1. Let 0 < p ≤ q, and consider the map Z restricted to the subset Cp,q ⊂ Cd/ ∼ . Assume that
δ ≤ d

4 and that d = aL for some integer 1 ≤ a < δ. Then if B is any Lipschitz map (with respect to D2) such
that B(Z(x)) = x for all x ∈ Cp,q, we have that

CB ≥ C
q
√
da

p
√
K‖m‖∞δ3/2

= C
qd

p
√
KL‖m‖∞δ3/2

, (1.6)

where CB is the Lipschitz constant of B, ‖m‖∞ := max1≤k≤K ‖mk‖∞, and C is a universal constant.

Theorem 2. Let 0 < p ≤ q, and consider the map Y restricted to the subset Cp,q ⊂ Cd/ ∼. Assume that
δ ≤ d

4 and that d = aL for some integer 1 ≤ a < δ. Then if A is any Lipschitz map (with respect to d1) such
that A(Y (x)) = x for all x ∈ Cp,q, we have that

CA ≥ C
qd
√
a

p
√
K‖m‖2∞δ5/2

= C
qd3/2

p
√
KL‖m‖2∞δ5/2

, (1.7)

1Note that this particular support interval (modulo d) is not particularly special. The same arguments below can be extended
to apply to any interval of support of size ≤ δ in a straightforward fashion.
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where CA is the Lipschitz constant of A, ‖m‖∞ := max1≤k≤K ‖mk‖∞, and C is a universal constant.

Ideally, we would like a stable phase retrieval algorithm to have have CA = O(1) (or CB = O(1)) while
using only KL = O(d) total measurements. Unfortunately, Theorems 1 and 2 demonstrate that this is
impossible when δ, the support size of the masks, is very small. At best, a phase retrieval algorithm that
uses only KL = O(d) local correlation measurements can have global Lipschitz constants that are of size
O
(

d
δ5/2

)
in the case of Y -measurements, and O

( √
d

δ3/2

)
in the case of Z-measurements. This implies that

extremely large samples x (i.e., with d large) cannot be stably recovered from measurements which are
noisy and extremely localized (i.e., with δ small) in the worst case using only O(d) total measurements. To
contextualize this in an application setting, one may consider recent research initiatives aimed at achieving
the ability to rapidly obtain detailed images of relatively large circuit boards [12]. One approach to solving
this problem involves using ptychographic imaging and taking STFT magnitude measurements of the circuit
board using a probe (i.e., an STFT window function) with a comparably small effective support size δ. In
this context, Theorem 2 implies that the probe’s effective support size should not be taken to be too small
unless additional measurements are taken in order to help ensure stability to noise.

As we shall see, the proofs of both Theorems 1 and 2 will depend on signals modeled along the lines of
(1.3) whose support sets are composed of two disjoint components separated from one another by at least
δ zeroes. In [13] it was noted that phase retrieval of such signals using locally supported masks mk of
the type proposed herein was impossible, and that recovery of signals with more than δ consecutive small
entries appeared to be unstable. Interestingly enough, subsequent work in the infinite-dimensional setting
has independently identified such disjointly supported signals as being the principal cause of instability in
phase retrieval problems using continuous Gabor measurements as well because they lead to measurements
which are supported on disjoint subsets of the time-frequency plane [1, 10]. Similarly, we will use (essentially)
disjointly supported signals similar to those in (1.3) to provide lower bounds on the Lipschitz constants of
our maps A and B using the fact that they (i) are relatively far apart with respect to the D2 and d1 metrics
defined above and (ii) produce measurements with respect to our maps Y and Z which are (nearly) identical.

2. The Proofs of Theorem 1 and Theorem 2

We are now prepared to prove our main results.

Proof of Theorem 1. First observe that for any x,x′ ∈ Cp,q,

D2(x,x′) = D2(B(Z(x)), B(Z(x′))) ≤ CB‖Z(x)− Z(x′)‖2.

Therefore,

CB ≥ sup
D2(x,x′)

‖Z(x)− Z(x′)‖2
, (2.1)

where the supremum is taken over all x 6∼ x′ ∈ Cp,q. Define x+ and x− ∈ Cd by

x±(n) :=


q, 1 ≤ n ≤ d

2 − δ
p, d

2 − δ < n ≤ d
2

±q, d
2 < n ≤ d− δ

p, d− δ < n ≤ d

.

Note that D2(x+,x−) ≥ q
√
d since d < d

4 and for all θ ∈ R,

‖x+ − e
iθx−‖22 ≥

d/2−δ∑
n=1

|(1− e
iθ)q|2 +

d−δ∑
n=d/2+1

|(1 + e
iθ)q|2

=

(
d

2
− δ
)
q2|1− e

iθ|2 +

(
d

2
− δ
)
q2|1 + e

iθ|2

≥ d

4
q2
(
|1− e

iθ|2 + |1 + e
iθ|2
)

= dq2,
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since |1− e
iθ|2 + |1 + e

iθ|2 = 4 for all θ. Let Z± := Z(x±). We will show that

‖Z+ − Z−‖2 ≤ C
√
Kp‖m‖∞

δ3/2√
a
. (2.2)

Since B(Z±) = x±, combining this with (2.1) will complete the proof.
Observe that for all k, the support of S`amk is contained in [1 + `a, δ+ `a]. Therefore, Z+

k,` = Z−k,` except
when 1 + `a ≤ d

2 < δ + `a or 1 + `a ≤ d − δ < δ + `a since if the support of S`amk does not intersect
(d2 , d− δ], we have that 〈S`amk,x

+〉 = 〈S`amk,x
−〉, and if the support of S`amk is contained in (d2 , d− δ],

then 〈S`amk,x
+〉 = −〈S`amk,x

−〉. We will restrict attention to the case where 1 + `a ≤ d− δ < δ+ `a. The
case where 1 + `a ≤ d

2 < δ + `a is similar.
For fixed ` such that 1 + `a ≤ d− δ < δ + `a, let

j := `a+ 2δ − d

so that the last j nonzero entries of S`amk are located in positions greater than d − δ and the first δ − j
nonzero entries are located in positions less than or equal to d− δ. (Note that 1 ≤ j ≤ δ − 1.) Then,

〈S`amk,x
−〉 = −q

δ−j∑
n=1

mk(n) + p

δ∑
n=δ−j+1

mk(n) = −〈S`amk,x
+〉+ 2p

δ∑
n=δ−j+1

mk(n).

Therefore,
|Z−k,` − Z

+
k,`| ≤ 2jp‖m‖∞. (2.3)

Since 1 ≤ j ≤ δ − 1, summing over the set of ` such that 1 + `a ≤ d− δ < δ + `a, corresponds to summing
over j = a, 2a, . . . , b δ−1a ca if a divides d− 2δ, or summing over j = j0, j0 + a, j0 + 2a, . . . , j0 + b δ−j0−1a ca for
some 0 < j0 < a otherwise. Therefore, in either case

‖Z+ − Z−‖22 ≤ C‖m‖2∞p2
K∑
k=1

bδ/ac+1∑
t=1

|at|2 ≤ CKa2‖m‖2∞p2
(
δ

a

)3

= CKp2‖m‖2∞
δ3

a
, (2.4)

which proves (2.2) and completes the proof. �

Proof of Theorem 2. Similarly to the proof of Theorem 1,

CA ≥ sup
d1(x,x′)

‖Y (x)− Y (x′)‖2
, (2.5)

where the supremum is again taken over all x 6∼ x′ ∈ Cp,q. Let x± be in as in the proof of Theorem 1, and
let Y ± := Y (x±). By the same reasoning as in the previous proof, Y +

k,` = Y −k,`, unless 1 + `a ≤ d
2 < δ + `a or

1 + `a ≤ d− δ < δ + `a. We will again restrict attention to the case where 1 + `a ≤ d− δ < δ + `a. Let ` be
such that 1 + `a ≤ d− δ < d+ `a, and again let j := `a+ 2δ − d.

Since for all k and `, we have
|Z±k,`| ≤ q‖m‖∞δ,

we see
|Y +
k,` − Y

−
k,`|2 = |(Z+

k,`)
2 − (Z−k,`)

2| = |Z+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`| ≤ 4‖m‖2∞qδpj,

by (2.3). Therefore, by the same reasoning as in (2.4),

‖Y + − Y −‖22 ≤ C‖m‖4∞q2δ2p2
K∑
k=1

bδ/ac+1∑
t=1

|ta|2 ≤ CK‖m‖4∞q2δ2p2a2
(
δ

a

)3

= CK‖m‖4∞q2p2
δ5

a
.

Thus, the proof will follow from (2.5) once we show d1(x+,x−) ≥ Cdq2.
For n,m ∈ N, let 0n×m and 1n×m denote the n × m matrices of all zeros and of all ones respectively.

With this notation we see that

x± = (q11×η, p11×δ,±q11×η, p11×δ)
T ,
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and

x±x±
∗

=


q21η×η qp1η×δ ±q21η×η qp1η×δ
qp1δ×η p21δ×δ ±qp1δ×η p21δ×δ
±q21η×η ±qp1η×δ q21η×η ±qp1η×δ
qp1δ×η p21δ×δ ±qp1δ×η p21δ×δ

 ,

where η := d
2 − δ. Therefore,

x+x+∗ − x−x−
∗

= 2q


0η×η 0η×δ q1η×η 0η×δ
0δ×η 0δ×δ p1δ×η 0δ×δ
q1η×η p1η×δ 0η×η p1η×δ
0δ×η 0δ×δ p1δ×η 0δ×δ

 .

We will show that the matrix

M :=


0η×η 0η×δ q1η×η 0η×δ
0δ×η 0δ×δ p1δ×η 0δ×δ
q1η×η p1η×δ 0η×η p1η×δ
0δ×η 0δ×δ p1δ×η 0δ×δ

 ∈ Rd×d

has two nonzero singular values given by

σ1 = σ2 =
√
η2q2 + 2ηδp2. (2.6)

This will imply d1(x+,x−) = 4q
√
η2q2 + 2ηδp2 ≥ Cdq2 as desired.

Using the fact that 1m×n1n×k = n1m×k, we see that

MTM =


q1η×ηq1η×η q1η×ηp1η×δ 0η×η q1η×ηp1η×δ
p1δ×ηq1η×η p1δ×ηp1η×δ 0δ×η p1δ×ηpη×δ

0η×η 0η×δ q1η×ηq1η×η + 2p1η×δp1δ×η 0η×δ
p1δ×ηq1η×η p1δ×ηp1η×δ 0δ×η p1δ×ηp1η×δ



=


ηq21η×η ηqp1η×δ 0η×η ηqp1η×δ
ηqp1δ×η ηp21δ×δ 0δ×η ηp21δ×δ

0η×η 0η×δ ηq21η×η + 2δp21η×η 0η×δ
ηqp1δ×η ηp21δ×δ 0δ×η ηp21δ×δ

 .

Therefore, MTM has rank at most two because the second block of rows is equal to the fourth block of rows,
which in turn is a multiple of the first block of rows. (Each block can of course have at most one linearly
independent row.) We may check that two linearly independent eigenvectors are given by

(01×η, 01×δ,11×η, 01×δ)
T

and
(q11×η, p11×δ, 01×η, p11×δ)

T ,

each with eigenvalue η(ηq2 + 2δp2). This proves (2.6) and therefore completes the proof. �

3. Examples: Lower Bounds for Specific Measurement Masks

In this section, we will see that the estimates of Theorems 1 and 2 can be improved for specific choices of
well-conditioned measurement masks.

3.1. Windowed Fourier Measurement Masks. In this subsection, we consider a family of masks {mk}2δ−1k=1 ,
defined by

mk(n) :=

{
e
−n/b

(2δ−1)1/4 e
2πi(k−1)(n−1)/(2δ−1) 1 ≤ n ≤ δ

0 δ < n ≤ d
, (3.1)

for some fixed parameter b > 4.Masks of this form are closely related to those used in ptychographic imaging
(see, for example, [13], Section 1.3 and the references provided therein). In [13] it was shown that, with this
choice of masks, the map Y, restricted to the subset of Cd where x(n) 6= 0 for all 1 ≤ n ≤ d, can be inverted
by an algorithm which is both efficient and numerically stable in the case where L = d.
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Corollary 1. Let 0 < p ≤ q, and consider the map Z restricted to the subset Cp,q ⊂ Cd/ ∼ . Assume that
δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of masks given by (3.1) and
B is any Lipschitz map (with respect to d1) such B(Z(x)) = x for all x ∈ Cp,q, then

CB ≥ CKb
q
√
da

p(2δ − 1)1/4δ1/2
= CKb

qd

p
√
L(2δ − 1)1/4δ1/2

, (3.2)

where Kb := e
1/b − 1, CB is the Lipschitz constant of B, and C is a universal constant.

Corollary 2. Let 0 < p ≤ q, and consider the map Y restricted to the subset Cp,q ⊂ Cd/ ∼ . Assume that
δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of masks given by (3.1) and
A is any Lipschitz map (with respect to d1) such A(Y (x)) = x, for all x ∈ Cp,q, then

CA ≥ CK2
b

qd
√
a

p
√
δ

= CK2
b

qd3/2

p
√
L
√
δ
, (3.3)

where Kb := e
1/b − 1, CA is the Lipschitz constant of A, and C is a universal constant.

Remark 1. For this choice of masks, K = 2δ− 1 and ‖m‖∞ = e
−1/b(2δ− 1)−1/4. Therefore, the constants

obtained in Corollaries 1 and 2 have the same asymptotic behavior with respect to a and d, but are larger
with respect to δ than those obtained by directly applying Theorems 1 and 2 to this choice of masks.

Remark 2. Similar lower bounds can be derived for any choice of masks along the lines of (3.1) whose
nonzero entries have magnitudes that form a truncated geometric progression.

Proof of Corollary 1. Let x± and Z± be as in the proofs of Theorems 1 and 2. As before, note that
Z+
k,` = Z−k,` except when either 1 + `a ≤ d

2 < δ + `a or 1 + `a ≤ d − δ < δ + `a. We will again restrict
attention to the case where 1 + `a ≤ d− δ < δ + `a.

Fix ` such that 1 + `a ≤ d− δ < δ+ `a, and as in the proof of the preceding theorems, let j := `a+ 2δ− d
so that the last j nonzero entries of S`amk are located in positions greater than d − δ and the first δ − j
nonzero entries are located in positions less than or equal to d− δ. We have seen that

Z±k,` =

∣∣∣∣∣∣±q
δ−j∑
n=1

mk(n) + p

δ∑
n=δ−j+1

mk(n)

∣∣∣∣∣∣ .
Therefore,

|Z−k,` − Z
+
k,`| ≤ 2p

∣∣∣∣∣∣
δ∑

n=δ−j+1

mk(n)

∣∣∣∣∣∣ ≤ 2p

δ∑
n=δ−j+1

|mk(n)|. (3.4)

To estimate the above sum, we note that |mk(n)| = (2δ − 1)−1/4sn, where s := e
−1/b. Since 0 < s < 1,

δ∑
n=δ−j+1

|mk(n)| ≤ (2δ − 1)−1/4
δ∑

n=1

sn ≤ (2δ − 1)−1/4
s

1− s
.

For each 1 ≤ k ≤ 2δ − 1, there are at most δ
a choices of ` such that 1 + `a ≤ d− δ < δ + `a. Therefore,

‖Z+ − Z−‖22 ≤ C(2δ − 1)
δ

a
p2(2δ − 1)−1/2

(
s

1− s

)2

= C(2δ − 1)1/2
δ

a
p2
(

e
−1/b

1− e−1/b

)2

= C(2δ − 1)1/2
δ

a
p2
(

1

e1/b − 1

)2

.

Recalling that D2(x+,x−) ≥ q
√
d as shown in the proof of Theorem 1 and applying (2.1) completes the

proof. �
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Proof of Corollary 2. Let x± and Y ± be as in the proofs of Theorems 1 and 2. Note that for all k, `,

|Z±k,`| ≤ q
δ∑

n=1

|mk(n)| ≤ q(2δ − 1)−1/4
δ∑

n=1

sn ≤ q(2δ − 1)−1/4
s

1− s
, (3.5)

where s = e
−1/b as in the proof of Corollary 2. We again note that Y +

k,` = Y −k,` except when either
1+`a ≤ d

2 < δ+`a or 1+`a ≤ d−δ < δ+`a and again restrict attention to the case where 1+`a ≤ d−δ < δ+`a.
Combining (3.4) and (3.5) gives

|Y +
k,` − Y

−
k,`| = |Z

+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`|

≤ Cqp(2δ − 1)−1/2
(

s

1− s

)2

.

For each 1 ≤ k ≤ 2δ − 1, there are at most δ
a choices of ` such that 1 + `a ≤ d− δ < δ + `a. Therefore,

‖Y + − Y −‖22 ≤ C(2δ − 1)
δ

a
q2p2(2δ − 1)−1

(
s

1− s

)4

≤ C δ
a
q2p2

(
e
−1/b

1− e−1/b

)4

= C
δ

a
q2p2

(
1

e1/b − 1

)4

.

Recalling d1(x+,x−) ≥ Cdq2, as shown in the proof of Theorem 1, completes the proof. �

3.2. Two-Shot Measurement Masks. Consider the family of masks {mk}2δ−1k=1 defined by

m1 := e1

m2j := e1 + ej+1 (3.6)
m2j+1 := e1 + iej+1

for 1 ≤ j ≤ δ − 1, where {e1, . . . , ed} is the standard orthonormal basis for Rd. In [14] it was shown that,
with this choice of masks, the map Y is injective on the subset of Cd where all entries are nonzero and can
be inverted through a well-conditioned algorithm in the case L = d.

Corollary 3. Fix 0 < p ≤ q, and consider the map Z restricted to the subset Cp,q ⊂ Cd/ ∼ . Assume that
δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of masks defined by (3.6) and
B is any Lipschitz map (with respect to D2) such that B(Z(x)) = x for all x ∈ Cp,q, then

CB ≥ C
q
√
da

pδ
= C

qd√
Lpδ

,

where CB is the Lipschitz constant of B and C is a universal constant.

Corollary 4. Let 0 < p ≤ q, and consider the map Y restricted to the subset Cp,q ⊂ Cd/ ∼ . Assume that
δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of masks defined by (3.6) and
A is any Lipschitz map (with respect to d1) such that A(Y (x)) = x for all x ∈ Cp,q, then

CA ≥ C
qd
√
a

pδ
= C

qd3/2√
Lpδ

,

where CA is the Lipschitz constant of A and C is a universal constant.

Remark 3. Note that for this choice of masks K = 2δ− 1. Therefore, the constants obtained in Corollaries
3 and 4 exhibit the same asympotic behavior with respect to d and are asymptotically larger with respect to δ
than those obtained by applying Theorems 1 and 2 to this choice of masks.

Proof of Corollary 3. Let x± be as in the proof of Theorems 1 and 2. Note that for all 1 ≤ n ≤ d,
|x+(n)| = |x−(n)|. Therefore, it is clear that for all `,

|〈S`am1,x
+〉| = |x+(`a+ 1)| = |x−(`a+ 1)| = |〈S`am1,x

−〉|,
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and

|〈S`am2j+1,x
+〉| = |x+(`a+ 1) + ix+(`a+ j + 1)| = |x−(`a+ 1) + ix−(`a+ j + 1)| = 〈S`am2j+1,x

−〉|
since the real and imaginary parts of 〈S`am2j+1,x

+〉 and 〈S`am2j+1,x
−〉 have the same absolute values.

Therefore, to estimate ‖Z+ − Z−‖2 we only need to consider the terms Z+
2j,` − Z−2j,`. Furthermore, it is

clear that Z+
2j,` will equal Z−2j,`, unless ` is chosen in such a way that either `a + 1 ≤ d

2 < `a + j + 1 or
`a+ 1 ≤ d− δ < `a+ j + 1. In either of these cases,

|Z+
2j,` − Z

−
2j,`| = 2p. (3.7)

Therefore, we will be able to compute ‖Z+ − Z−‖2 once we estimate the number of ` such that `a + 1 ≤
d
2 < `a+ j + 1 or `a+ 1 ≤ d− δ < `a+ j + 1, which we will do in the following lemma.

Lemma 3. For fixed j, the number of ` such that `a+1 ≤ d
2 < `a+j+1 is less than or equal to j

a . Likewise,
the number of ` such that `a+ 1 ≤ d− δ < `a+ j + 1 is less than or equal to j

a .

Proof. If `a+ 1 ≤ d
2 < `a+ j + 1, then d

2 − j ≤ `a ≤
d
2 − 1, and any set of j consecutive integers can contain

at most j
a multiples of a. Likewise, if `a+ 1 ≤ d− δ < `a+ j + 1, then d− δ − j ≤ `a ≤ d− δ − 1. �

Combining (3.7) and Lemma 3 gives

‖Z+ − Z−‖22 ≤
δ∑
j=1

2j

a
(2p)2 ≤ C p

2δ2

a
= C

Lp2δ2

d
.

Therefore, recalling the fact that D2(x+,x−) ≥
√
dq, as shown in the proof of Theorem 1, the proof follows

from (2.1). �

Proof of Corollary 4. Since each mk has at most two nonzero entries, |Z+
k,` + Z−k,`| ≤ 4q for all k and `.

Therefore, by (3.7) each nonzero entry of Y + − Y − satisfies

|Y +
k,` − Y

−
k,`| ≤ |Z

+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`| ≤ Cqp.

Furthermore, similarly to the proof of Corollary 3, Y +
k,` − Y −k,` is nonzero if and only if k = 2j for some

1 ≤ j ≤ δ − 1 and `a+ 1 ≤ d
2 < `a+ j + 1 or `a+ 1 ≤ d− δ < `a+ j + 1. Therefore, by Lemma 3,

‖Y + − Y −‖22 ≤ C
δ∑
j=1

2j

a
(pq)2 ≤ C q

2p2δ2

a
= C

Lq2p2δ2

d
.

Finally, recalling from the proof of Theorem 2 that d1(x+,x−) ≥ Cdq2, the result follows from (2.5). �

4. Discussion and Future Work

We believe that this initial work opens up several interesting corridors for further research. First and
perhaps most obvious among these is the development of algorithms together with optimal STFT windows,
etc., that have Lipschitz upper bounds which match these lower bounds to the extent possible (keeping in
mind, of course, that the lower bounds developed here may be gross underestimates). Existing algorithms
for local correlation measurements such as [13, 14] yield upper bounds for the measurements Y considered
above (1.1) with respect to the D2-metric, a metric with respect to which an inverse of Y will not generally
be Lipschitz [3]. As a result, the upper bounds they provide are not quite appropriate to compare to the
lower bounds considered here. Nonetheless, the Lipschitz lower bounds developed here do seem to at least
heuristically justify the necessity of, e.g., the d-dependence present in those existing worst case upper bounds.

Another interesting avenue of research would be to explore the extension of the related infinite-dimensional
results developed by Alaifari et al. [1, 10] to the finite-dimensional discrete setting. The resulting theory
would potentially provide more fine-grained insights into the recovery of samples x from discrete STFT
magnitude measurements, and could also possibly be extended to results concerning general local correlation
measurement maps of the type we consider here in a way that would allow for the relaxation of the support
assumptions currently made on the masks {m1,m2, . . . ,mK}. Finally, one could also consider local Lipschitz
and Hölder lower bounds as opposed to global lower bounds. Though perhaps more difficult to analyze, such
lower bounds may be more likely to correspond to achievable upper bounds.
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