Notes on Lemma 6, July 26, 2012

Mark Iwen

Lemma 6 on page 19 in Section 6 of “Combinatorial Sublinear-Time Fourier Algorithms”
contains a couple typos, one of which necessitates a correction.! In particular, the calculation
performed on line seven of the proof omits a constant factor of (27)%* which, when corrected,
has the unfortunate effect of causing the interpolation error considered therein to grow
exponentially, instead of shrinking exponentially as desired. This omission is ultimately
a consequence of mistakenly considering pf, as a polynomial with domain [0, 1] instead of
0, 27].

It is worth mentioning that the current proof works as written for signals which are
oversampled by a factor of > 2. That is, if A (w) = 0 for all |w| > N/4, then Lemma 6
holds essentially as stated. In fact, the neglected constant factor of (2m)%® can be entirely
erased by considering the signal in question to be oversampled by a factor of 27 (i.e., the
oversampling rate directly cancels the neglected constant). This oversampling factor can be
reduced to 2 if one is willing to accept a slower rate of exponential decay in interpolation
error as k increases. However, fixing Lemma 6 so that it works for general trigonometric
polynomials of degree N/2 requires more work.

1 Correction in the General Case

In order to correct Lemma 6 in general we will consider a modified version of the function,
f :[0,27] — C, defined at the bottom of page 18. Instead, we replace f with the closely
related function fy defined by
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Here G is the sequence of Fourier coefficients of a filter function. Thus, fj is effectively a
filtered version of f. We imagine that we have sampling access to f as defined on page 18,
but do our calculations with the filtered version, fy, instead. We will discuss the discrete and
(effectively) band limited “low-pass” filter, G, in more detail below (see Section 2). For now,

we simply assume that there exists a constant C' € R™ such that ‘(A} (w)‘ < O - e lWISs/N for

all w e Z.
Correcting the calculation on line seven of the proof of Lemma 6 by inserting the omitted

T would like to thank Jieming Mao for bringing my attention to the error discussed herein.



constant factor in red, we note that:
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We must now correct for this additional constant factor, which is accomplished in the general
case by replacing f with f; in the calculation. Note that
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Continuing our calculation from Equation 2 we see that
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Thus, |Re{fo(x)} —ph(z)] < %ﬁﬂl. The remainder of the argument goes through as

before, and we obtain the following modified form of Lemma 6.

Lemma 6. Let A be an N-length complex valued array and suppose that A s (c,p)-
compressible. Fiz ¢ € RY. Using 2 = O (log(p - kP/¢ - §)) interpolation points from A
per fo-evaluation will guarantee that every line 8 DFT entry from Algorithm 2 is calculated
to within 2‘;—?51 - kP precision.

We conclude this section by pointing out that this modified version of Lemma 6 can still
be used to prove a modified version of Corollary 5 on page 20. This can be done by executing
Algorithm 2 O(k)-times on O(k) different f, variants, instead of executing it on f directly.
Given that G is known and relatively large for all w with |w| = O(N/k), we can recover all
energetic frequencies of size O(N/k) from A by using the results of Algorithm 2 on fo (see
Equation 1 for the definition of fy). Thus, we can recover all energetic frequencies from A
by modulating f O(k)-times and then filtering with G. In particular, we may define
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for j € [-C"k,C"k] N Z and fixed constants C",C” € N. Executing Algorithm 2 on each of
these f;; will allow one to recover all energetic frequencies from A.

2 The filter G

The filter G must have several properties in order to allow the production of a sublinear-
time Fourier algorithm (i.e., in order for a modified version of Corollary 5 on page 20 to
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hold as discussed above). Most important among these properties are the following: First,
the filter array G : [1, N] N Z — C should be zero almost everywhere. This allows f; =
G * (eﬁ'x'fj/N/ C's] f) to be sampled quickly using only a few samples from f in the process.
Of course, it is much more likely that G will be “almost zero” everywhere, in which case
the convolution involved in the definition of f; can still be (approximately) computed both
quickly and accurately using only a few samples from f.

Second, the Fourier transform of the filter, G, should have both the properties alluded
to in Section 1 above. Mainly, G should exhibit exponential decay for larger frequencies, i.e.
|G (w) | should be O (e~“I*%/V)  However, |G (w) | should not decay too quickly. That is, G
should serve as a decent low-pass filter. In particular, we require that |G (w) | be relatively
large (e.g., larger than 1/10) for all w with |w| < N/2k.

Gaussian filters generally fulfill the required properties listed above. For example, one
can take
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The filter G can then be taken as the inverse discrete Fourier transform of G.2 In this case,
G will also “look Guassian”, and therefore be “almost zero everywhere” as desired. See
Figure 1 for graphs of this Gaussian filter when N = 200,001 and x = 7. Note that the
desired properties we have discussed in this section are indeed achieved in this example.

2Creating G in this fashion will result in a one-time computational cost of O(N log N). This one-time cost
can be avoided however — see, e.g., section 7 of “Nearly Optimal Sparse Fourier Transform” by Hassanieh,
Indyk, Katabi, and Price.



Fourier Transform of G, F[G]
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Figure 1: The example filter, G, in Equation 3 with length N = 200,001 and x = 7. The
top graph demonstrates that |F|[G]| = |G| decays exponentially in accordance with the
assumption made in Section 1 above. Furthermore, F[G] = G is shown to be relatively
large in magnitude (e.g., larger than 0.1) for all frequencies w with |w| < 20,000. Hence,
the filter effectively passes one fifth of the lowest magnitude frequencies. The bottom graph
demonstrates the exponential decay of the entries of G in magnitude. Hence, convolutions
with G can be approximatly sampled both quickly and accurately.



