
Notes on Lemma 6, July 26, 2012
Mark Iwen

Lemma 6 on page 19 in Section 6 of “Combinatorial Sublinear-Time Fourier Algorithms”
contains a couple typos, one of which necessitates a correction.1 In particular, the calculation
performed on line seven of the proof omits a constant factor of (2π)2κ which, when corrected,
has the unfortunate effect of causing the interpolation error considered therein to grow
exponentially, instead of shrinking exponentially as desired. This omission is ultimately
a consequence of mistakenly considering pxR as a polynomial with domain [0, 1] instead of
[0, 2π].

It is worth mentioning that the current proof works as written for signals which are
oversampled by a factor of ≥ 2. That is, if Â (ω) = 0 for all |ω| > N/4, then Lemma 6
holds essentially as stated. In fact, the neglected constant factor of (2π)2κ can be entirely
erased by considering the signal in question to be oversampled by a factor of 2π (i.e., the
oversampling rate directly cancels the neglected constant). This oversampling factor can be
reduced to 2 if one is willing to accept a slower rate of exponential decay in interpolation
error as κ increases. However, fixing Lemma 6 so that it works for general trigonometric
polynomials of degree N/2 requires more work.

1 Correction in the General Case

In order to correct Lemma 6 in general we will consider a modified version of the function,
f : [0, 2π] → C, defined at the bottom of page 18. Instead, we replace f with the closely
related function f0 defined by

f0(x) :=
1

2π

bN2 c∑
ω=1−dN2 e

Ĝ (ω) Â (ω) · eiω·x, x ∈ [0, 2π]. (1)

Here Ĝ is the sequence of Fourier coefficients of a filter function. Thus, f0 is effectively a
filtered version of f . We imagine that we have sampling access to f as defined on page 18,
but do our calculations with the filtered version, f0, instead. We will discuss the discrete and
(effectively) band limited “low-pass” filter, G, in more detail below (see Section 2). For now,

we simply assume that there exists a constant C ∈ R+ such that
∣∣∣Ĝ (ω)

∣∣∣ ≤ C · e−|ω|·8κ/N for

all ω ∈ Z.
Correcting the calculation on line seven of the proof of Lemma 6 by inserting the omitted

1I would like to thank Jieming Mao for bringing my attention to the error discussed herein.

1

constant factor in red, we note that:

|Re {f0(x)} − pxR(x)| ≤

∣∣∣‖f (2k)
0 ‖∞

∣∣∣
(2κ)!

·
κ∏

m=1

(
m · 2π
N

)2

. (2)

We must now correct for this additional constant factor, which is accomplished in the general
case by replacing f with f0 in the calculation. Note that

∣∣∣‖f (2k)
0 ‖∞

∣∣∣ ≤ C

2π

bN2 c∑
ω=1−dN2 e

|ω|2κ · e−|ω|·8κ/N ·
∣∣∣Â (ω)

∣∣∣ ≤ C

2π
·
(
N

4e

)2κ bN2 c∑
ω=1−dN2 e

∣∣∣Â (ω)
∣∣∣ .

Continuing our calculation from Equation 2 we see that

|Re {f0(x)} − pxR(x)| ≤ 1

(2κ)!
· C · ‖Â‖1

2π

(
N

4e

)2κ

·
κ∏

m=1

(
m · 2π
N

)2

≤ C · ‖Â‖1
2π · 2κ

·
∏κ

m=1m
2

(2κ)!
.

Thus, |Re {f0(x)} − pxR(x)| ≤ C·‖Â‖1
2π·4κ . The remainder of the argument goes through as

before, and we obtain the following modified form of Lemma 6.

Lemma 6. Let A be an N-length complex valued array and suppose that Â is (c, p)-
compressible. Fix c̃ ∈ R+. Using 2κ = O (log(p · kp/c̃ · δ)) interpolation points from A
per f0-evaluation will guarantee that every line 8 DFT entry from Algorithm 2 is calculated
to within c̃·cδ

2p−1 · k
−p precision.

We conclude this section by pointing out that this modified version of Lemma 6 can still
be used to prove a modified version of Corollary 5 on page 20. This can be done by executing
Algorithm 2 O(κ)-times on O(κ) different f0 variants, instead of executing it on f directly.

Given that Ĝ is known and relatively large for all ω with |ω| = O(N/κ), we can recover all
energetic frequencies of size O(N/κ) from Â by using the results of Algorithm 2 on f0 (see
Equation 1 for the definition of f0). Thus, we can recover all energetic frequencies from Â
by modulating f O(κ)-times and then filtering with G. In particular, we may define

fj′(x) :=
(
G ? ei·x·dj

′N/C′κef
)

(x) ≈ 1

2π

bN2 c∑
ω=1−dN2 e

Ĝ (ω) Â

(
ω −

⌈
j′N

C ′κ

⌉)
· eiω·x, x ∈ [0, 2π],

for j′ ∈ [−C ′′κ,C ′′κ]∩Z and fixed constants C ′, C ′′ ∈ N. Executing Algorithm 2 on each of
these fj′ will allow one to recover all energetic frequencies from Â.

2 The filter G

The filter G must have several properties in order to allow the production of a sublinear-
time Fourier algorithm (i.e., in order for a modified version of Corollary 5 on page 20 to

2

hold as discussed above). Most important among these properties are the following: First,
the filter array G : [1, N] ∩ Z → C should be zero almost everywhere. This allows fj′ =
G ?

(
ei·x·dj

′N/C′κef
)

to be sampled quickly using only a few samples from f in the process.
Of course, it is much more likely that G will be “almost zero” everywhere, in which case
the convolution involved in the definition of fj′ can still be (approximately) computed both
quickly and accurately using only a few samples from f .

Second, the Fourier transform of the filter, Ĝ, should have both the properties alluded
to in Section 1 above. Mainly, Ĝ should exhibit exponential decay for larger frequencies, i.e.
|Ĝ (ω) | should be O

(
e−|ω|·8κ/N

)
. However, |Ĝ (ω) | should not decay too quickly. That is, G

should serve as a decent low-pass filter. In particular, we require that |Ĝ (ω) | be relatively
large (e.g., larger than 1/10) for all ω with |ω| ≤ N/2κ.

Gaussian filters generally fulfill the required properties listed above. For example, one
can take

Ĝ(ω) =

{
e
−3·κ2·ω2

N2 if ω ∈
(⌈

N
2

⌉
,
⌊
N
2

⌋]
∩ Z

0 otherwise
. (3)

The filter G can then be taken as the inverse discrete Fourier transform of Ĝ.2 In this case,
G will also “look Guassian”, and therefore be “almost zero everywhere” as desired. See
Figure 1 for graphs of this Gaussian filter when N = 200, 001 and κ = 7. Note that the
desired properties we have discussed in this section are indeed achieved in this example.

2Creating G in this fashion will result in a one-time computational cost of O(N logN). This one-time cost
can be avoided however – see, e.g., section 7 of “Nearly Optimal Sparse Fourier Transform” by Hassanieh,
Indyk, Katabi, and Price.

3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−30

10
−20

10
−10

10
0

Vector Entry, j

E
n
tr
y
S
iz
e
,
|G

(j
)|

The Discrete Filter Vector, G

G

max{e
−j / 2

, 0.2*10
−16

}

−80,001 −60,001 −40,001 −20,001 1 20,001 40,001 60,001 80,001
10

−20

10
−10

10
0

10
10

Frequency, ω

E
n
tr
y
S
iz
e

Fourier Transform of G , F [G]

F[G](ω)

0.1

6 e
−32 |ω| / N

Figure 1: The example filter, G, in Equation 3 with length N = 200, 001 and κ = 7. The
top graph demonstrates that |F [G]| = |Ĝ| decays exponentially in accordance with the

assumption made in Section 1 above. Furthermore, F [G] = Ĝ is shown to be relatively
large in magnitude (e.g., larger than 0.1) for all frequencies ω with |ω| ≤ 20, 000. Hence,
the filter effectively passes one fifth of the lowest magnitude frequencies. The bottom graph
demonstrates the exponential decay of the entries of G in magnitude. Hence, convolutions
with G can be approximatly sampled both quickly and accurately.

4

