Notes on Lemma 6, July 26, 2012

Mark Iwen

Lemma 6 on page 19 in Section 6 of "Combinatorial Sublinear-Time Fourier Algorithms" contains a couple typos, one of which necessitates a correction. ${ }^{1}$ In particular, the calculation performed on line seven of the proof omits a constant factor of $(2 \pi)^{2 \kappa}$ which, when corrected, has the unfortunate effect of causing the interpolation error considered therein to grow exponentially, instead of shrinking exponentially as desired. This omission is ultimately a consequence of mistakenly considering p_{R}^{x} as a polynomial with domain $[0,1]$ instead of $[0,2 \pi]$.

It is worth mentioning that the current proof works as written for signals which are oversampled by a factor of ≥ 2. That is, if $\widehat{\mathbf{A}}(\omega)=0$ for all $|\omega|>N / 4$, then Lemma 6 holds essentially as stated. In fact, the neglected constant factor of $(2 \pi)^{2 \kappa}$ can be entirely erased by considering the signal in question to be oversampled by a factor of 2π (i.e., the oversampling rate directly cancels the neglected constant). This oversampling factor can be reduced to 2 if one is willing to accept a slower rate of exponential decay in interpolation error as κ increases. However, fixing Lemma 6 so that it works for general trigonometric polynomials of degree $N / 2$ requires more work.

1 Correction in the General Case

In order to correct Lemma 6 in general we will consider a modified version of the function, $f:[0,2 \pi] \rightarrow \mathbb{C}$, defined at the bottom of page 18. Instead, we replace f with the closely related function f_{0} defined by

$$
\begin{equation*}
f_{0}(x):=\frac{1}{2 \pi} \sum_{\omega=1-\left\lceil\frac{N}{2}\right\rceil}^{\left\lfloor\frac{N}{2}\right\rfloor} \widehat{\mathbf{G}}(\omega) \widehat{\mathbf{A}}(\omega) \cdot e^{\mathrm{i} \omega \cdot x}, \quad x \in[0,2 \pi] . \tag{1}
\end{equation*}
$$

Here $\widehat{\mathbf{G}}$ is the sequence of Fourier coefficients of a filter function. Thus, f_{0} is effectively a filtered version of f. We imagine that we have sampling access to f as defined on page 18, but do our calculations with the filtered version, f_{0}, instead. We will discuss the discrete and (effectively) band limited "low-pass" filter, G, in more detail below (see Section 2). For now, we simply assume that there exists a constant $C \in \mathbb{R}^{+}$such that $|\widehat{\mathbf{G}}(\omega)| \leq C \cdot e^{-|\omega| \cdot 8 \kappa / N}$ for all $\omega \in \mathbb{Z}$.

Correcting the calculation on line seven of the proof of Lemma 6 by inserting the omitted

[^0]constant factor in red, we note that:
\[

$$
\begin{equation*}
\left|\mathbb{R e}\left\{f_{0}(x)\right\}-p_{R}^{x}(x)\right| \leq \frac{\left|\left\|f_{0}^{(2 k)}\right\|_{\infty}\right|}{(2 \kappa)!} \cdot \prod_{m=1}^{\kappa}\left(\frac{m \cdot 2 \pi}{N}\right)^{2} \tag{2}
\end{equation*}
$$

\]

We must now correct for this additional constant factor, which is accomplished in the general case by replacing f with f_{0} in the calculation. Note that

$$
\left|\left\|f_{0}^{(2 k)}\right\|_{\infty}\right| \leq \frac{C}{2 \pi} \sum_{\omega=1-\left\lceil\frac{N}{2}\right\rceil}^{\left\lfloor\frac{N}{2}\right\rfloor}|\omega|^{2 \kappa} \cdot e^{-|\omega| \cdot 8 \kappa / N} \cdot|\widehat{\mathbf{A}}(\omega)| \leq \frac{C}{2 \pi} \cdot\left(\frac{N}{4 e}\right)^{2 \kappa} \sum_{\omega=1-\left\lceil\frac{N}{2}\right\rceil}^{\left\lfloor\frac{N}{2}\right\rfloor}|\widehat{\mathbf{A}}(\omega)| .
$$

Continuing our calculation from Equation 2 we see that

$$
\left|\mathbb{R e}\left\{f_{0}(x)\right\}-p_{R}^{x}(x)\right| \leq \frac{1}{(2 \kappa)!} \cdot \frac{C \cdot\|\hat{\mathbf{A}}\|_{1}}{2 \pi}\left(\frac{N}{4 e}\right)^{2 \kappa} \cdot \prod_{m=1}^{\kappa}\left(\frac{m \cdot 2 \pi}{N}\right)^{2} \leq \frac{C \cdot\|\hat{\mathbf{A}}\|_{1}}{2 \pi \cdot 2^{\kappa}} \cdot \frac{\prod_{m=1}^{\kappa} m^{2}}{(2 \kappa)!}
$$

Thus, $\left|\mathbb{R e}\left\{f_{0}(x)\right\}-p_{R}^{x}(x)\right| \leq \frac{C \cdot\|\hat{\mathbf{A}}\|_{1}}{2 \pi \cdot 4^{\kappa}}$. The remainder of the argument goes through as before, and we obtain the following modified form of Lemma 6 .

Lemma 6. Let \boldsymbol{A} be an N-length complex valued array and suppose that $\hat{\mathbf{A}}$ is (c, p) compressible. Fix $\tilde{c} \in \mathbb{R}^{+}$. Using $2 \kappa=O\left(\log \left(p \cdot k^{p} / \tilde{c} \cdot \delta\right)\right)$ interpolation points from \boldsymbol{A} per f_{0}-evaluation will guarantee that every line 8 DFT entry from Algorithm 2 is calculated to within $\frac{\tilde{c} \cdot c \delta}{2 p-1} \cdot k^{-p}$ precision.

We conclude this section by pointing out that this modified version of Lemma 6 can still be used to prove a modified version of Corollary 5 on page 20. This can be done by executing Algorithm $2 O(\kappa)$-times on $O(\kappa)$ different f_{0} variants, instead of executing it on f directly. Given that $\widehat{\mathbf{G}}$ is known and relatively large for all ω with $|\omega|=O(N / \kappa)$, we can recover all energetic frequencies of size $O(N / \kappa)$ from $\hat{\mathbf{A}}$ by using the results of Algorithm 2 on f_{0} (see Equation 1 for the definition of f_{0}). Thus, we can recover all energetic frequencies from $\hat{\mathbf{A}}$ by modulating $f O(\kappa)$-times and then filtering with \mathbf{G}. In particular, we may define

$$
f_{j^{\prime}}(x):=\left(\mathbf{G} \star e^{\dot{\mathrm{i}} \cdot x \cdot\left\lceil j^{\prime} N / C^{\prime} \kappa\right\rceil} f\right)(x) \approx \frac{1}{2 \pi} \sum_{\omega=1-\left\lceil\frac{N}{2}\right\rceil}^{\left\lfloor\frac{N}{2}\right\rfloor} \widehat{\mathbf{G}}(\omega) \widehat{\mathbf{A}}\left(\omega-\left\lceil\frac{j^{\prime} N}{C^{\prime} \kappa}\right\rceil\right) \cdot e^{\mathrm{i} \omega \cdot x}, \quad x \in[0,2 \pi],
$$

for $j^{\prime} \in\left[-C^{\prime \prime} \kappa, C^{\prime \prime} \kappa\right] \cap \mathbb{Z}$ and fixed constants $C^{\prime}, C^{\prime \prime} \in \mathbb{N}$. Executing Algorithm 2 on each of these $f_{j^{\prime}}$ will allow one to recover all energetic frequencies from $\hat{\mathbf{A}}$.

2 The filter G

The filter G must have several properties in order to allow the production of a sublineartime Fourier algorithm (i.e., in order for a modified version of Corollary 5 on page 20 to
hold as discussed above). Most important among these properties are the following: First, the filter array $\mathbf{G}:[1, N] \cap \mathbb{Z} \rightarrow \mathbb{C}$ should be zero almost everywhere. This allows $f_{j^{\prime}}=$ $\mathbf{G} \star\left(e^{\mathfrak{i} \cdot x \cdot\left\lceil j^{\prime} N / C^{\prime} \kappa\right\rceil} f\right)$ to be sampled quickly using only a few samples from f in the process. Of course, it is much more likely that \mathbf{G} will be "almost zero" everywhere, in which case the convolution involved in the definition of $f_{j^{\prime}}$ can still be (approximately) computed both quickly and accurately using only a few samples from f.

Second, the Fourier transform of the filter, $\widehat{\mathbf{G}}$, should have both the properties alluded to in Section 1 above. Mainly, $\widehat{\mathbf{G}}$ should exhibit exponential decay for larger frequencies, i.e. $|\widehat{\mathbf{G}}(\omega)|$ should be $O\left(e^{-|\omega| \cdot 8 \kappa / N}\right)$. However, $|\widehat{\mathbf{G}}(\omega)|$ should not decay too quickly. That is, \mathbf{G} should serve as a decent low-pass filter. In particular, we require that $|\widehat{\mathbf{G}}(\omega)|$ be relatively large (e.g., larger than $1 / 10$) for all ω with $|\omega| \leq N / 2 \kappa$.

Gaussian filters generally fulfill the required properties listed above. For example, one can take

$$
\widehat{\mathbf{G}}(\omega)=\left\{\begin{array}{ll}
e^{\frac{-3 \cdot \kappa^{2} \cdot \omega^{2}}{N^{2}}} & \text { if } \omega \in\left(\left\lceil\frac{N}{2}\right\rceil,\left\lfloor\frac{N}{2}\right\rfloor\right] \cap \mathbb{Z} \tag{3}\\
0 & \text { otherwise }
\end{array} .\right.
$$

The filter \mathbf{G} can then be taken as the inverse discrete Fourier transform of $\widehat{\mathbf{G}} .^{2}$ In this case, G will also "look Guassian", and therefore be "almost zero everywhere" as desired. See Figure 1 for graphs of this Gaussian filter when $N=200,001$ and $\kappa=7$. Note that the desired properties we have discussed in this section are indeed achieved in this example.

[^1]

Figure 1: The example filter, G, in Equation 3 with length $N=200,001$ and $\kappa=7$. The top graph demonstrates that $|F[\mathbf{G}]|=|\widehat{\mathbf{G}}|$ decays exponentially in accordance with the assumption made in Section 1 above. Furthermore, $F[\mathbf{G}]=\widehat{\mathbf{G}}$ is shown to be relatively large in magnitude (e.g., larger than 0.1) for all frequencies ω with $|\omega| \leq 20,000$. Hence, the filter effectively passes one fifth of the lowest magnitude frequencies. The bottom graph demonstrates the exponential decay of the entries of \mathbf{G} in magnitude. Hence, convolutions with \mathbf{G} can be approximatly sampled both quickly and accurately.

[^0]: ${ }^{1}$ I would like to thank Jieming Mao for bringing my attention to the error discussed herein.

[^1]: ${ }^{2}$ Creating \mathbf{G} in this fashion will result in a one-time computational cost of $O(N \log N)$. This one-time cost can be avoided however - see, e.g., section 7 of "Nearly Optimal Sparse Fourier Transform" by Hassanieh, Indyk, Katabi, and Price.

