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Abstract

We study the problem of estimating the best k term Fourier representation for a given frequency-sparse signal
(i.e., vector) A of length N � k. More explicitly, we investigate how to deterministically identify k of the largest
magnitude frequencies of Â, and estimate their coefficients, in polynomial(k, log N) time. Randomized sublinear
time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving
this problem [24, 25]. In this paper we develop the first known deterministic sublinear time sparse Fourier Transform
algorithm which is guaranteed to produce accurate results. As an added bonus, a simple relaxation of our deterministic
Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best
randomized Fourier method [25]. Finally, the Fourier algorithm we develop here implies a simpler optimized version
of the deterministic compressed sensing method previously developed in [30].

1 Introduction
Suppose we are given a periodic function f : [0, 2π] → C which is well approximated by a k-sparse trigonometric
polynomial

f̃ (x) =
k∑

j=1

C jeiω j·x, {ω1, . . . , ωk} ⊂

[
−

N
2
,

N
2

]
∩ Z, (1)

where the smallest such N is much larger than k. We seek simple methods for quickly recovering a high-fidelity ap-
proximation to f̃ using as few evaluations of f as possible. In the course of developing four such methods, we explore
the interplay between three generally conflicting goals: (i) deterministic recovery with guarantees, (ii) minimized
recovery runtime, and (iii) minimized evaluations of f .

Compressed Sensing (CS) methods [6, 15, 5, 50, 46, 35] provide a robust framework for reducing the number of
samples required to estimate a periodic function’s Fourier transform (FT). Results on Gelfand widths establish these CS
results as being near-optimal with respect to minimal sampling requirements (see [8], and [49, 16, 35]). For this reason
CS methods have proven useful for reducing high sampling costs in applications such as analog-to-digital conversion
[36, 34] and MR imaging [38, 39]. However, despite small sampling requirements, standard CS Fourier methods
utilizing Basis Pursuit (BP) [15, 5, 14] and Orthogonal Matching Pursuit (OMP) [50, 46] have runtime requirements
which are superlinear in the function’s bandwidth N. We seek to develop methods for applications involving the inter-
polation of high-bandwidth functions where runtime is of primary importance (e.g., CS-based numerical methods for
multiscale problems [13]). Hence, we focus on developing algorithms with runtime complexities that scale sublinearly
(e.g., logarithmically) in the bandwidth of the input function.

A second body of work on compressed sensing includes methods which have achieved near-optimal reconstruction
runtime bounds [24, 25, 11, 12, 45, 27, 29]. However, with the notable exception of [24, 25], these CS algorithms do
∗Results herein supersede preliminary Fourier results in [30, 32].
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not permit sublinear sampling in the Fourier case. Despite their efficient reconstruction algorithms, their total Fourier
measurement and reconstruction runtime costs are still superlinear in the signal size/bandwidth. In the Fourier case
they generally require more operations than a standard FFT for all nontrivial sparsity levels while utilizing approxi-
mately the same number of signal samples.

To date, only randomized Fourier methods [24, 25] have been shown to outperform the FFT in terms of runtime
on frequency-sparse broadband superpositions while utilizing only a fraction of the FFT’s required samples [31].
However, they employ random sampling techniques and thus fail to output good approximate answers with non-zero
probability. Furthermore, they are perhaps unnecessarily complicated to implement and optimize in practice. Related
work includes earlier methods for the sublinear-time reconstruction of sparse trigonometric polynomials via random
sampling [41, 7]. In turn, these methods can be traced back further to algorithms for learning sparse multivariate
polynomials over fields of characteristic zero [20, 42].

Finally, our CS-recovery techniques in Section 5 are related to group testing methods [17]. In particular, our k-
majority separating collection of sets construction is related to the number theoretic group testing construction utilized
in [19]. This relationship to group testing, in combination with the Fourier transform’s natural aliasing behavior, is
essentially what allows our sublinear-time Fourier methods to be constructed. For more on group testing and signal
recovery see [26].

1.1 Illustrative Examples
In this section we present some simple examples in order to illustrate the methods which will ultimately allow us to
construct sublinear-time sparse Fourier algorithms. We begin by outlining a means for recovering functions consisting
of one energetic frequency (e.g., a cosine function in the real case). We then outline how to extend these ideas to allow
the recovery of more complicated trigonometric polynomials containing two energetic frequencies. Along the way we
introduce terminology and useful concepts used in subsequent sections.

1.1.1 Singe Frequency Functions

Let f : [0, 2π]→ C be a non-identically zero function of the form

f (x) = C · eiωx

consisting of a single unknown frequency ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z. Recovering f with a standard FFT would dictate the

need for at least N equally spaced samples from [0, 2π) to avoid aliasing effects (see [4]). Thus, we would have to
compute the FFT of the N-length vector

A( j) = f
(

2π j
N

)
, j ∈ [0,N) ∩N.

However, if we use aliasing to our advantage, we can correctly determine ω with significantly fewer f -samples as
follows.

Let A2 be the 2-element array of equally spaced f -samples from [0, 2π). Thus, we have

A2(0) = f (0) = C, and A2(1) = f (π) = C · (−1)ω.

Calculating the discrete Fourier transform of A2, denoted Â2, we get that

Â2(0) = C · π · (1 + (−1)ω) , and Â2(1) = C · π ·
(
1 + (−1)ω+1

)
.

Note that since ω is an integer, exactly one element of Â2 will be non-zero. If Â2(0) , 0 then we know that ω ≡ 0
modulo 2. On the other hand, Â2(1) , 0 implies that ω ≡ 1 modulo 2. We say that

f̂ (ω) =
∫ 2π

0
f (x) e−iωx dx = 2π · C
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has been aliased to Â2(ω mod 2). Note that by computing Â2 we have effectively hashed the Fourier transform of f
into a 2 element array.

More generally, we may replace 2 by any natural number in the paragraph above and obtain the same aliasing-
based hashing behavior. Thus, we may compute several potentially aliased Fast Fourier Transforms in parallel to
discover ω modulo 3, 5, . . . , the O(log N)th prime. Once we have collected these moduli we can reconstruct ω via the
famous Chinese Remainder Theorem (see [47]).

Theorem 1. CHINESE REMAINDER THEOREM (CRT): Any integer x is uniquely specified mod N by its remainders
modulo m relatively prime integers p1, . . . , pm as long as

∏m
l=1 pl ≥ N.

To finish our example, suppose that N = 106 and that we have used three FFT’s with 100, 101, and 103 samples
to determine that ω ≡ 34 mod 100, ω ≡ 3 mod 101, and ω ≡ 1 mod 103, respectively. Using that ω ≡ 1 mod 103 we
can see that ω = 103 · a + 1 for some integer a. Using this new expression for ω in our second modulus we get

(103 · a + 1) ≡ 3 mod 101⇒ a ≡ 1 mod 101.

Therefore, a = 101 · b + 1 for some integer b. Substituting for a we get that ω = 10403 · b + 104. By similar work we
can see that b ≡ 10 mod 100 after considering ω modulo 100. Hence, ω = 104, 134 by the CRT. As an added bonus
we note that our three FFTs will have also provided us with three different estimates of ω’s coefficient C.

The end result is that we have used significantly less than N samples to determine ω. Using the CRT we required
only 100 + 101 + 103 = 304 samples from f to determine ω since 100 · 101 · 103 > 106. In contrast, a million
f -samples would be gathered during recovery with a standard FFT. Besides needing significantly less samples than
the FFT, this CRT-based single frequency method dramatically reduces the required computational effort. Moreover,
it is deterministic. There is no chance of failure. Of course, a single frequency signal is incredibly simple. Signals
involving more than 1 non-zero frequency are much more difficult to handle since frequency moduli may begin to
collide modulo various numbers. Dealing with the potential difficulties caused by such frequency collisions in a
deterministic way comprises the majority of this paper.

1.1.2 Two Frequencies

Suppose, for simplicity, that we now wish to recover a function, f : [0, 2π] → C, consisting of two unknown
frequencies ω1, ω2 ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z. Hence, we have

f (x) = C1 · eiω1x + C2 · eiω2x.

Furthermore, assume for the moment that we have discovered a natural number n such that

ω1 mod n , ω2 mod n.

In this case we will say that n separates ω1 and ω2. Our current goal is to demonstrate how we may obtain information
about the identities of both ω1 and ω2 using n in combination with several small discrete Fourier transforms.

Fix c ∈ N and let h1 = ω1 mod n, h2 = ω2 mod n. We will refer to both h1 and h2 as residues, or remainders,
modulo n. If we form an array of c · n equally spaced samples

Ac·n( j) = f
(

2π j
cn

)
, j ∈ [0,n) ∩ Z,

we can see from our discussion of aliasing in Section 1.1.1 that Âc·n will have 0 in every entry except for the two
entries

Âc·n(ω1 mod cn) = C1 , 0, and Âc·n(ω2 mod cn) = C2 , 0.

Thus, we can determine both h1 and h2 by considering∣∣∣∣Ân(0)
∣∣∣∣ , ∣∣∣∣Ân(1)

∣∣∣∣ , . . . , ∣∣∣∣Ân(n − 1)
∣∣∣∣ .

3



The two largest entries will be the residues h1 and h2.
We would like to repeat the procedure described in the last paragraph for several different values of c, thereby

learning both ω1 and ω2 modulo several different cn values. We can then imagine being able to reconstruct both ω1
andω2 using the CRT as per Section 1.1.1. However, before this approach can work, we must deal with two difficulties:
First, the procedure as described above will not yield residues of ω1 and ω2 modulo relatively prime integers since n
divides cn for all c ∈ Z. Second, in the worst case (e.g., if C1 = C2), we will not be able to determine which residues
modulo each cn-value correspond to ω1 versus ω2. If we mismatch residues from ω1 and ω2 during our CRT based
reconstruction we could obtain a potentially huge number of bogus frequencies. The following procedure, inspired by
work from [45, 11, 12], circumvents both of these difficulties.

Suppose we have calculated both Ân and Â2·n. Focusing on ω1, we know that

Â2·n(ω1 mod 2n) = C1 = Ân(h1).

Since ω1 = h1 + a · n for some a ∈ Z, we can see that either

ω1 mod 2n = h1, or ω1 mod 2n = h1 + n

must be true depending on whether a is even or odd, respectively. Therefore, we may determine ω1 mod 2n by

ω1 mod 2n =

 h1 if
∣∣∣∣Ân(h1) − Â2·n(h1)

∣∣∣∣ < ∣∣∣∣Ân(h1) − Â2·n(h1 + n)
∣∣∣∣

h1 + n otherwise
. (2)

Finally, once we have calculated ω1 mod 2n we may calculate ω1 mod 2 by

ω1 mod 2 = (ω1 mod 2n) mod 2.

Furthermore, if 2 is relatively prime to n, we can use both these ω1 residues together in the CRT. Using several Âc·n in
this fashion we can discover ω1 modulo c = 2, 3, 5, . . . , the O(log N)th prime. Once we have collected these moduli
we can then reconstruct ω1 as discussed in Section 1.1.1. Of course, ω2 can be reconstructed in a similar manner.

Note that we used the assumption that n separates ω1 and ω2 throughout this discussion. If, for example, both
h1 = h2 and C1 = C2 are true, then Equation 2 is not guaranteed to hold. In this case we might incorrectly calculate
ω1 mod cn for one of our c = 2, 3, . . . values, resulting in the incorrect recovery ofω1 and/orω2. In the next section we
discuss strategies for dealing with the fact that n is not generally known to possess the desired separation properties.

1.1.3 Separating Two Frequencies

In Section 1.1.2 we assumed we knew a small natural number n that separated the two unknown frequencies ω1, ω2 ∈(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩Z. Given such an n, we outlined how to reconstruct both ω1 and ω2 using a few aliased discrete Fourier

transforms of small size. In this section we will utilize an example to quickly sketch how we can recover ω1 and
ω2 even if we do not have any knowledge concerning separating n-values. The techniques below were motivated by
similar number theoretic group testing strategies employed in [44, 19].

Suppose that N = 106, and let n1,n2,n3,n4, and n5 be the five relatively prime values 100, 101, 103, 107, and 109,
respectively. Clearly the product of any three (or more) of these five n-values is larger than N. As a consequence, if
ω1 ≡ ω2 mod n j for more than two unique j values in {1, 2, 3, 4, 5} then ω1 = ω2 by the Chinese Remainder Theorem.
To see why this is true, note that ω1 = ω1 mod N, ω2 = ω2 mod N, and any three of our n j-values are relatively prime
with product larger than N. Therefore, the CRT dictates that any two distinct integers ω1 and ω2 can collide (i.e., have
the same remainders) modulo at most two of our relatively prime n j-values. If ω1 and ω2 collide more than twice they
must be equal.

We are now in the happy position of knowing that the majority of our five n j-values must separate ω1 and ω2.
However, we do not know which 3 or more of the 5 n j-values are good separating values. In this simple two frequency
case we could find a separating value by, for example, choosing one of the five values,

ñ j ∈ {100, 101, 103, 107, 109},
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uniformly at random and then seeing if its associated discrete Fourier transform, Âñ j , contains two nonzero entries.

If Âñ j contains two nonzero values, it would mean that ñ j separates ω1 and ω2. Methods from Section 1.1.2 could
then be used to recover both frequencies. Furthermore, we expect to have to test only two randomly chosen n j-values
before finding one that separates ω1 and ω2.

A related deterministic approach simply temporarily assumes that all five n j-values separate ω1 and ω2. The
recovery methods from Section 1.1.2 are then applied once for each of the five n j-values (i.e., with n = 100, 101, 103,
107, and 109). The fact that a couple n j-values may not actually separate the two frequencies can be accounted for
later by inspecting the recovered answers. Each time the Section 1.1.2 recovery methods are applied with a different
n j-value, at most two unique frequency answers are returned, for a total of at most 10 answers (with multiplicity).
Within these at most 10 answers, ω1 and ω2 must both appear at least three times each. This is because at least 3 of
our 5 n j-values must separate ω1 and ω2, and whenever separation occurs our Section 1.1.2 methods are guaranteed
to return the correct answers. Hence, at least 6 of our at most 10 answers are guaranteed to be correct. The at most
4 remaining incorrect answers will contain at most 4 incorrectly recovered frequencies, each of which can appear at
most twice. The end result is that (i) both ω1 and ω2 will appear in our list of at most 10 answers at least 3 times
each, and (ii) no incorrect frequency can appear in our list of answers more than twice. Hence, if we return all answers
which appear 3 or more times we will get exactly ω1 and ω2.

To conclude, recall from Section 1.1.2 that whenever an n j-value separates ω1 and ω2, the aliased discrete Fourier
transform Ân j will contain two nonzero entries: one equal to f̂ (ω1) = 2π · C1 and another equal to f̂ (ω2) = 2π · C2.

Thus, both f̂ (ω1) and f̂ (ω2) will be calculated correctly in at least three of Â100, Â101, Â103, Â107, and Â109. Given that
we have identified ω1 and ω2, at this point it is easy to find one of the at least 3 separating n j-values by calculating

ω1 mod 100, . . . , ω1 mod 109,

and
ω2 mod 100, . . . , ω2 mod 109.

Once a separating n j-value, n, has been found, we can calculate f̂ (ω1) and f̂ (ω2) by

f̂ (ω1) = Ân(ω1 mod n), and f̂ (ω2) = Ân(ω2 mod n).

We are now equipped with methods for recovering any 2-frequency superposition. More importantly, we will see
in subsequent sections that the ideas we have employed here extend naturally to allow the approximate recovery of
more complicated functions.

1.2 Results and Related Work
In this paper we construct the first known deterministic sublinear-time sparse Fourier algorithm guaranteed to produce
accurate approximations of frequency-sparse signals. In order to produce our new Fourier algorithm we introduce a
combinatorial object called a k-majority separating collection of sets which can be constructed using number theoretic
methods. The number theoretic nature of our construction allows the sublinear-time computation of Fourier mea-
surements via aliasing. Finally, a simple relaxation of our deterministic Fourier method provides a new randomized
Fourier algorithm with near-optimal sampling/runtime requirements for k-sparse signals (i.e., signals with at most k
nonzero frequencies).

Table 1 compares the Fourier algorithms developed in this paper to existing sparse Fourier methods. All the
methods listed are robust with respect to noise (i.e., are robust trigonometric interpolation methods). The runtime
and sampling requirements are for recovering exact k-sparse trigonometric polynomials (see Equation 1). The second
column indicates whether the result recovers (up to machine precision) the input signal with high probability (w.h.p.),
or deterministically (D) with guarantees. “With high probability” indicates a nonuniform 1

NΘ(1) failure probability per
signal. In some cases, for simplicity, a factor of “log(k)” or “log(N/k)” was weakened to “log(N)”.

Looking at Table 1 we can see that our randomized recovery results in Section 4 require an additional log(N) factor
in terms of sampling complexity over both the Linear Programming (LP) and Orthogonal Matching Pursuit (OMP) re-
construction methods. However, the Section 4 algorithms are simpler to implement and have lower guaranteed runtime
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Fourier Algorithm w.h.p./D Runtime Function Samples
LP [6] or OMP [50] w.h.p. NO(1) O(k · log(N)) [5, 35]

Section 4 w.h.p. O(N · log3(N)) O(k · log2(N))
Section 4 D O(N · k · log2(N)) O(k2

· log2 N)
Sparse Fourier [25] w.h.p. O(k · logO(1)(N)) O(k · logO(1)(N))

Section 5 w.h.p. O(k · log5(N)) O(k · log4(N))
Section 5 D O(k2

· log4(N)) O(k2
· log4(N))

Table 1: Sparse Fourier Algorithms

complexity. The Section 4 algorithms are also capable of exactly reconstructing k-sparse signals in an exact arithmetic
setting. More interestingly, we note that our Monte Carlo result in Section 5 has similar runtime requirements to the
sparse Fourier method developed in [25].

1.2.1 Sublinear-time Methods: Approximation Guarantees

Of the aforementioned compressed sensing methods, our deterministic Fourier results are most closely related to the
work of Cormode and Muthukrishnan (CM) [12, 45, 11]. In effect, the deterministic sublinear-time Fourier methods
in Section 5 are improved versions of CM’s deterministic compressed sensing results which have been specifically
adapted to the Fourier CS setting. Thus, the results in Section 5 exhibit similar approximation guarantees to the results
of CM despite the fact that CM’s methods do not themselves directly yield sparse Fourier algorithms.

Fix p, c ∈ R+. We will refer to any periodic function whose bth-largest magnitude Fourier coefficient is less than
c · b−p for all b ∈ N as (c, p)-compressible. For given c, p values, both CM and this paper provide sparse approximation
guarantees in terms of the min-max error over all (c, p)-compressible functions. In essence, the Fourier Transform
(FT) of any input (c, p)-compressible function is guaranteed to be approximated with error at most as large as the error
incurred by approximating the worst possible (c, p)-compressible function’s FT by its best possible k-term Fourier
representation (see Section 2 for details). These types of compressible approximation guarantees have a long history.
See Chapter 9 of [40] for more about approximating signals that are (c, p)-compressible in various bases (e.g., Fourier,
wavelet, etc).

Given a (c, p)-compressible function with p > 2, CM implicitly provide a two stage algorithm which produces
an accurate Fourier approximation consisting of k-frequencies ∈

[
−

N
2 ,

N
2

]
∩ Z. In the first stage an array containing

O
(
k

4p
p−2 log4 N

)
entries is calculated using Ω(N)-time/signal samples. In the second stage, a O

(
k

6p
p−2 log6 N

)
time

algorithm uses the array from the first stage to generate the k-term Fourier approximation. In contrast, our determin-
istic methods developed in Section 5 can recover a k-term Fourier approximation with the same error guarantees in

O
(
k

2p
p−1 · log6 N

)
time. This runtime is both sublinear in N and faster than the second stage of CM’s algorithm for all

p > 2. Furthermore, the number of signal samples used is O
(
k

2p
p−1 · log5 N

)
, also sublinear in N.

Given any periodic function f , we can best approximate its Fourier transform using k of its largest magnitude
Fourier coefficients. Let f̃ denote the associated optimal k-sparse trigonometric polynomial approximation to f (e.g.,
see Equation 1). The randomized sparse Fourier transform algorithms developed in [24, 25] can, for example, produce
a k-term Fourier approximation, R̂, for each input function f which has∥∥∥ f̂ − R̂

∥∥∥
2
≤

√

2 ·
∥∥∥∥ f̂ − ˆ̃f

∥∥∥∥
2

with high probability. Note that this approximation result is quite strong. It states that the output, R̂, is highly likely to
be near-optimal with respect to each input function f . Unfortunately, it is impossible for a deterministic sublinear-time
Fourier algorithm to obtain this type of strong l2-approximation guarantee (see Section 5 of [8]). Thus, we focus on
the weaker min-max approximation guarantees proven for the sublinear-time algorithms developed in Section 5.
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The remainder of this paper is organized as follows: In Section 2 we introduce relevant definitions, terminology,
and background. Then, in Section 3 we define k-majority selective collections of sets and present number theoretic
constructions. In Section 4 we use k-majority selective collections of sets to develop simple superlinear-time Fourier
algorithms. We also present analysis of these algorithms’ runtime and sampling requirements. In Section 5 we
modify the results from Section 4 in order to produce sublinear-time Fourier algorithms. The discrete versions of
these algorithms are briefly presented in Section 6. Finally, a preliminary empirical evaluation of the deterministic
algorithms is included in Section 7. Section 8 contains a short conclusion.

2 Preliminaries
Throughout the remainder of this paper we will be interested in complex valued functions f : [0, 2π] 7→ C and signals
(or arrays) of length N containing f values at various x ∈ [0, 2π]. We shall denote such signals by A, where A( j) ∈ C
is the signal’s jth complex value for all j ∈ [0,N) ∩ Z. Hereafter we will refer to the process of either calculating,
measuring, or retrieving the f value associated with any A( j) ∈ C from machine memory as sampling from f and/or
A. Finally, throughout the remainder of the paper [0,N) will always denote [0,N) ∩ Z. Likewise,

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
will

always stand for
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z.

Given a signal A, we define its discrete lq-norm to be

‖A‖q =

N−1∑
j=0

|A( j)|q


1
q

. (3)

More specifically, we will refer to ‖A‖22 as A’s energy. We will say that A ∈ lq if ‖A‖qq converges (i.e., we allow
N = ∞). Finally, j and ω will always denote integers.

2.1 Compressed Sensing and Compressibility
Given a signal A, let Ψ be an invertible N ×N matrix under which A is sparse (i.e., only k � N entries of Ψ · A are
significant/large in magnitude). Compressed sensing (CS) methods [24, 25, 11, 12, 45, 27, 29, 30] deal with generating
a K×N measurement matrix,M, with the smallest number of rows possible (i.e., K minimized) so that the k significant
entries ofΨ · A can be well approximated by a recovery algorithm using only the K-element vector result of

(M ·Ψ) · A (4)

as input. Thus, CS methods attempt to approximate Ψ · A using only a compressed set of measurements. For the
purposes of this paper our compressed set of measurements will take the form of a compressed (i.e., sublinear) set of
function samples.

A fast CS recovery algorithm will output k tuples from [0,N) × C. We will refer to any such set of k < N tuples{
(ω̃l,Cl) ∈ [0,N) × C

∣∣∣∣ l ∈ [1, k]
}

as a sparseΨ representation and denote it with a superscript ‘s’. Note that if we are given a sparseΨ representation,
Rs
Ψ, we may consider Rs

Ψ to be a length-N signal. We simply view Rs
Ψ as the N length signal

RΨ( j) =
{

C j if ( j,C j) ∈ Rs
Ψ

0 otherwise

for all j ∈ [0,N). Using this idea, we may reconstruct R in any desired basis using Rs
Ψ.

A k term/tuple sparse Ψ representation is k-optimal for a signal A if it contains k of the largest magnitude entries
ofΨ ·A. More precisely, we’ll say that a sparseΨ representation Rs

Ψ is k-optimal for A if there exists a valid ordering
ofΨ · A by magnitude∣∣∣ (Ψ · A) (ω1)

∣∣∣ ≥ ∣∣∣ (Ψ · A) (ω2)
∣∣∣ ≥ · · · ≥ ∣∣∣ (Ψ · A) (ω j)

∣∣∣ ≥ · · · ≥ ∣∣∣ (Ψ · A) (ωN)
∣∣∣ (5)
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so that
{

(ωl, (Ψ · A) (ωl))
∣∣∣ l ∈ [1, k]

}
= Rs

Ψ. Note that a signal A may have several k-optimalΨ representations if its
Ψ · A entry magnitudes are non-unique. For example, there are two 1-optimal sparse Fourier representations for the
signal

A( j) = 2e
−2πi j

N + 2e
2πi j

N , N > 2.

However, all k-optimal Ψ representations, Rs
opt Ψ, for any signal A will always have both the same unique ‖Ropt Ψ‖2

and ‖(Ψ · A) − Ropt Ψ‖2 values.
We conclude this subsection with two definitions: Letωb be a bth largest magnitude entry ofΨ·A as per Equation 5.

We will say that a signalΨ ·A is (algebraically) (c, p)-compressible for some c, p ∈ R+ if | (Ψ · A) (ωb)| ≤ c · b−p for
all b ∈ [1,N]. If Rs

opt Ψ is a k-optimalΨ representation we can see that

‖(Ψ · A) − Ropt Ψ‖
2
2 =

N∑
b=k+1

∣∣∣ (Ψ · A) (ωb)
∣∣∣2 ≤ c2

·

∫
∞

k
b−2pdb =

c2

2p − 1
· k1−2p (6)

as long as p > 1/2. For any (c, p)-compressible signal class (i.e., for any choice of p > 1/2 and c ∈ R+) we will
refer to the related optimal O(k1−2p)-size worst case error value (i.e., see Equation 6 above) as ‖Copt

k ‖
2
2. Similarly, we

define an exponentially compressible (or exponentially decaying) signal for fixed c, α ∈ R+ to be one for which∣∣∣ (Ψ · A) (ωb)
∣∣∣ ≤ c · e−αb for all b ∈ [1,N]. The optimal worst case error is then

‖Copt
k ‖

2
2 ≤ c2

·

∫
∞

k
e−2αbdb =

c2

2α
· e−2αk. (7)

2.2 The Fourier Case
For the remainder of this paper we will be interested the special CS case where Ψ is the N × N Discrete Fourier
Transform (DFT) matrix. In this case we have

Ψi, j =
2π
N
· e

2πi·i· j
N . (8)

Thus, the DFT of A, denoted Â, is another signal of length N defined as follows:

Â(ω) =
2π
N
·

N−1∑
j=0

e
−2πiω j

N A( j), ∀ω ∈
(
−

⌈
N
2

⌉
,

⌊
N
2

⌋]
. (9)

We will refer to any index, ω, of Â as a frequency. Furthermore, we will refer to Â(ω) as frequency ω’s coefficient for
each ω ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
.

We may recover A from its DFT via the Inverse Discrete Fourier Transform (IDFT) as follows:

A( j) = ̂̂A −1

( j) =
1

2π
·

b
N
2 c∑

ω=1−d N
2 e

e
2πiω j

N Â(ω), ∀ j ∈ [0,N). (10)

Parseval’s identity tells us that ‖Â‖2 =
√

2π
N · ‖A‖2 for any signal. Note that any non-zero coefficient frequency will

contribute to Â’s energy. Hence, we will also refer to |Â(ω)|2 as frequency ω’s energy. If |Â(ω)| is relatively large, we
will say that ω is energetic.

Fix accuracy parameter δ to be small (e.g., δ = 0.1). Given an input signal, A, with a compressible Fourier trans-
form, our deterministic Fourier algorithm will identify k of the most energetic frequencies from Â and approximate
their coefficients to produce a sparse Fourier representation R̂s

with

‖Â − R̂‖22 ≤ ‖Â − R̂opt‖
2
2 + δ‖C

opt
k ‖

2
2. (11)

It should be noted that the Fourier reconstruction algorithms below all extend naturally to the general compressed
sensing case presented in Section 2.1 above via work analogous to that presented in [30].
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3 Combinatorial Constructions
The following combinatorial structures are motivated by k-strongly separating sets [28, 11]. Their properties directly
motivate our Fourier reconstruction procedures in Sections 4 and 5.

Definition 1. A collection, S, of subsets of
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
is called k-majority selective if both of the following are true:

(i) ∪S∈S S =
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
, and (ii) for all X ⊂

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
with |X| ≤ k and all n ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
, more than half of

the subsets S ∈ S containing n are such that S ∩ X = {n} ∩ X (i.e., every n ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
occurs separated from all

(other) members of X in more than half of the S elements containing n).

Definition 2. Fix an arbitrary X ⊂
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
with |X| ≤ k. A random collection of subsets of

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
, S,

assembled independently of X is called (k, σ)-majority selective if both of the following are true with probability at
least σ: (i) ∪S∈S S =

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
, and (ii) for all n ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
, more than half of the subsets S ∈ S containing n

have the property that S ∩ X = {n} ∩ X (i.e., with probability ≥ σ every n ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
occurs separated from all

(other) members of X in more than half of the S elements containing n).

The existence of such sets is easy to see. For example, the collection of subsets

S =

{
{n}

∣∣∣∣∣∣n ∈
(
−

⌈
N
2

⌉
,

⌊
N
2

⌋]}
consisting of all the singleton subsets of

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
is k-majority selective for all k ≤ N. Generally, however, we are

interested in creating k-majority selective collections which contain as few subsets as possible (i.e., much fewer than
N subsets). We next give a construction for a k-majority selective collection of subsets for any k,N ∈ N with k ≤ N.
Our construction is motivated by the prime groupings techniques first employed in [44]. We begin as follows:

Define p0 = 1 and let pl be the lth prime natural number. Thus, we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . .

Choose q,K ∈ N (to be specified later). We are now ready to build a collection of subsets, S. We begin by letting S j,h
for all 0 ≤ j ≤ K and 0 ≤ h ≤ pq+ j − 1 be

S j,h =

{
n ∈

(
−

⌈
N
2

⌉
,

⌊
N
2

⌋] ∣∣∣∣∣∣ n ≡ h mod pq+ j

}
. (12)

Next, we progressively define S j to be all integer residues mod pq+ j, i.e.,

S j = {S j,h | h ∈ [0, pq+ j)}, (13)

and conclude by setting S equal to the union of all K such pq+ j residue groups:

S = ∪K
j=0S j. (14)

Hereafter S j-primes will refer to the set of K + 1 primes, {pq, . . . , pq+K}, used to construct S. We are now ready to
prove that S is indeed k-majority selective if K is chosen appropriately.

Lemma 1. Fix k. If we set K ≥ 2k
⌊
logpq

N
⌋
, then S as constructed above will be a k-majority selective collection of

sets.

Proof:

Let X ⊂
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
be such that |X| ≤ k. Furthermore, choose n ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
and let x ∈ X be such that x , n.

By the Chinese Remainder Theorem we know that x and n may only collide modulo at most blogpq
Nc of the K + 1

9



primes pq+K ≥ · · · ≥ pq. This is because the product of any blogpq
Nc + 1 S j-primes will be larger than N. Hence,

there can be at most kblogpq
Nc S j-primes which fail to separate n from every element of X − {n}. We can now see

that n will be isolated from all the (other) elements of X modulo at least K + 1 − kblogpq
Nc ≥ kblogpq

Nc + 1 > K+1
2

S j-primes. Furthermore, n will appear in at most K + 1 subsets of S. This leads us to the conclusion that S is indeed
k-majority selective. 2

Note that at leastΩ(k) coprime integers are required in order to create a k-majority separating collection of subsets
in this fashion. Given any n ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
, the Chinese Remainder Theorem can be used to create a k element subset

X with the property that each element of X collides with n in any desired Ω(1) S j-coprime numbers ≤ N
2 . Thus, it is

not possible to significantly decrease the number of relatively prime values required to construct k-majority separating
collections using these arguments.

The number of coprime integers required to construct each k-majority separating collection is directly related to
the number of signal samples required by our subsequent Fourier algorithms. Given that we depend on the number
theoretic nature of our constructions in order to take advantage of aliasing phenomena, it is unclear how to reduce the
sampling complexity for our deterministic Fourier methods below. However, this does not stop us from appealing to
randomized number theoretic constructions in order to decrease the number of required coprime values (and, therefore,
samples). We next present a construction for (k, σ)-majority selective collections which motivates our subsequent
Monte Carlo Fourier algorithms.

Lemma 2. Suppose N is an integer grater than 3. Fix q, k, and an arbitrary X ⊂
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
with |X| ≤ k. We

may form a (k, σ)-majority selective collection of subsets, S, as follows: Set K ≥ 7k
⌊
logpq

N
⌋

and create a multiset

J ⊂ [0,K]∩N by independently choosing 21 · ln N
1−σ elements from [0,K]∩N uniformly at random with replacement.

Set S = ∪ j∈JS j (see Equation 13).

Proof:

Fix n ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
. A prime chosen uniformly at random from {pq, . . . , pq+K} will separate n from all (other)

elements of X with probability at least 6
7 . This is because at most kblogpq

Nc of the K ≥ 7kblogpq
Nc S j-primes we

select from can fail to separate n from every element of X − {n} (see the proof of Lemma 1). Now consider the |J|
independent Poisson trails,

Yn
1 , . . . ,Y

n
m, . . . ,Y

n
|J|,

related to the |J| randomly selected S j-primes by

Yn
m =

{
1 if the mth selected S j-prime separates n from X − {n}
0 otherwise .

From above, the probability that each Yn
m is 1 is a least 6

7 . Thus, µ = E
[∑|J|

m=1 Yn
m

]
≥

6·|J|
7 .

Using the Chernoff bound (see [43]) we get that the probability of

|J|∑
m=1

Yn
m <

4
7
· |J|

is less than e−
µ
18 ≤ e−

|J|
21 ≤

1−σ
N . Since |J| > 21, we can see that

∑|J|
m=1 Yn

m will be less than |J|+1
2 with probability less

than 1−σ
N . Hence, the probability of n being congruent to any element of X − {n} modulo half of J’s primes (with

multiplicity) is less than 1−σ
N . The union bound can now be employed to show that the majority of J’s primes will

separate every element of
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
from the (other) elements of X with probability at least σ. 2

Lemma 2 creates a (k, σ)-majority selective collection of subsets, S, which is a multiset: some S j-prime(s) may be
selected multiple times. If this occurs, we treat the discrete Fourier transform related to each multiply-selected prime
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as multiple transforms for counting purposes only. That is, we only calculate one DFT per multiply-selected prime,
perform one frequency identification step in Algorithm 2 of Section 5 per multiply-selected prime, etc.. However,
we count the results of these calculations multiple times for the purposes of coefficient estimation (e.g., for lines
23 through 30 of Algorithm 2). Finally, note that in Lemma 2 we may set K ≥ C · kblogpq

Nc for any integer
C ∈ {3, 4, 5, . . . } and still obtain similar results. There is no particular reason for choosing C = 7 in Lemma 2 above.

We conclude this section by bounding the number of subsets contained in our k-majority and (k, σ)-majority se-
lective collections. These subset bounds will ultimately provide us with sampling and runtime bounds for our Fourier
algorithms. The following lemma is easily proved using results from [32].

Lemma 3. Choose q so that pq is the smallest prime ≥ k. If S is a k-majority selective collection of subsets created as
per Lemma 1, then |S| is Θ

(
k2
· log2

k N · log(k log N)
)
. If S is a

(
k, 1 − 1

NO(1)

)
-majority selective collection of subsets

created as per Lemma 2, then |S| is O
(
k · logk N · log(k log N) · log N

)
.

Proof:

Suppose S is a k-majority selective collection of subsets created as per Lemma 1. In this case

|S| =

K∑
j=0

pq+ j.

It follows from results in [32] that
K∑

j=0

pq+ j =
p2

q+K+1

2 ln pq+K+1
·

(
1 +O

(
1

ln pq+K+1

))
−

p2
q

2 ln pq
·

(
1 +O

(
1

ln pq

))
. (15)

Furthermore, since pq is the smallest prime ≥ k, the Prime Number Theorem (see [47]) tells us that

q =
k

ln k

(
1 +O

( 1
ln k

))
and

pq = k
(
1 +O

(
ln ln k

ln k

))
.

Thus, if we use the smallest possible value for K (i.e., K = 2kblogpq
Nc), we can see that q + K + 1 is Θ

(
k · logk N

)
.

Applying the Prime Number Theorem once more we have that

pq+K+1 = Θ
(
k · logk N · log

(
k · log N

))
. (16)

Utilizing Equation 15 now reveals that

|S| =

K∑
j=0

pq+ j = Θ
(
k2
· log2

k N · log(k · log N)
)
.

If S is
(
k, 1 − 1

NO(1)

)
-majority selective, the stated |S| bound follows from Lemma 2 combined with Equation 16.

In this case S consists of O(log N) randomly selected S j-sets, each with cardinality less than pq+K+1. After noting that
Equation 16 still holds if K = 7kblogpq

Nc, we can see that

|S| = O
(
pq+K+1 · log N

)
= O

(
k · logk N · log

(
k · log N

)
· log N

)
.

The theorem follows. 2

Let α ∈ (0, 1) be a constant, and suppose that k = Θ(Nα) so that logk N is O(1). In this case, we have a
construction for k-majority selective collections, S, with |S| = Θ

(
k2
· log N

)
. Furthermore, we have a construction

for
(
k, 1 − 1

NO(1)

)
-majority selective collections, S, with |S| = O

(
k · log2 N

)
.
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Algorithm 1 SUPERLINEAR APPROXIMATE

1: Input: Signal pointer f , integers k ≤ B ≤ N
2: Output: R̂s, a sparse representation for f̂
3: Initialize R̂s

← ∅

4: Set K = 2B
⌊
logpq

N
⌋
, q so that pq−1 < B ≤ pq

5: for j from 0 to K do

6: Apq+ j ← f (0), f
(

2π
pq+ j

)
, . . . , f

(
2π(pq+ j−1)

pq+ j

)
7: Âpq+ j ← DFT[Apq+ j ]
8: end for
9: for ω from 1 −

⌈
N
2

⌉
to

⌊
N
2

⌋
do

10: Re {Cω} ← median of multiset
{
Re

{
Âpq+j (ωmod pq+j)

} ∣∣∣ 0 ≤ j ≤ K
}

11: Im {Cω} ← median of multiset
{
Im

{
Âpq+j (ωmod pq+j)

} ∣∣∣ 0 ≤ j ≤ K
}

12: end for
13: R̂s

← (ω,Cω) entries for k largest magnitude Cω’s

4 Superlinear-Time Fourier Algorithms

For the remainder of the paper we will assume that f : [0, 2π] 7→ C has the property that f̂ ∈ l1. Our goal is to identify
k of the most energetic frequencies in f̂ (i.e., the first k entries in a valid ordering of f̂ as in Equation 5) and then
estimate their Fourier coefficients. Intuitively, we want f to be a continuous function which is dominated by a small
number of energetic frequencies spread out over a large bandwidth. In this scenario our algorithms will allow us to
ignore f ’s bandwidth and instead sample at a rate primarily dependent on the number of energetic frequencies present
in f ’s Fourier spectrum.

Let C ≥ 1 be a constant (to be specified later) and set

ε =
| f̂ (ωk)|

C
. (17)

Now, let B be the smallest integer such that
∞∑

b=B+1

| f̂ (ωb)| ≤
ε
2
. (18)

Note that ωB is defined to be the last possible significant frequency
(
i.e., with energy > a fraction of | f̂ (ωk)|

)
. We

will assume below that N is chosen large enough so that

Ω = {ω1, . . . , ωB} ⊂

(
−

⌈
N
2

⌉
,

⌊
N
2

⌋]
. (19)

We expect to work with signals for which k ≤ B � N. Later we will give specific values for C and B depending
on k, the desired approximation error, and f̂ ’s compressibility characteristics. For now we show that we can iden-
tify/approximate k of f̂ ’s largest magnitude entries each to within ε-precision via Algorithm 1.

Algorithm 1 works by using the k-majority separating structure created by the aliased DFTs in line 7 to isolate
f̂ ’s significantly energetic frequencies. Every DFT which successfully separates a frequency ω j from all the (other)

members ofΩ will provide a good
(

i.e., within ε
2 ≤

|Â(ωk)|
2

)
coefficient estimate for ω j. Frequency separation occurs

because more than 1
2 of our aliased DFT’s won’t collide any n ∈

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
with any (other) member of Ω (see

Lemma 1). At most B logpq
N of the DFT calculations for any particular frequency can be significantly contaminated

via collisions withΩ members. Therefore, we can take medians of the real/imaginary parts of the 2B logpq
N+ 1 DFT
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residues associated with each frequency coefficient as a good estimate of that frequency coefficient’s real/imaginary
parts. Since more than half of these measurements must be accurate, the medians will be accurate. In order to formalize
this argument we need the following lemma.

Lemma 4. Every Cω calculated in lines 10 and 11 is such that | f̂ (ω) − Cω| ≤ ε.

Proof:

Suppose that Cω is calculated by lines 10 and 11. Then, its real/imaginary part is given by the median of K + 1
estimates of f̂ (ω)’s real/imaginary parts. Each of these estimates is calculated by

Âpq+ j (h) =
2π
pq+ j

pq+ j−1∑
m=0

f
(

2πm
pq+ j

)
e
−2πihm

pq+ j (20)

for some 0 ≤ j ≤ K, 0 ≤ h < pq+ j. Via aliasing each estimate reduces to

Âpq+ j (h) =
2π
pq+ j

pq+ j−1∑
m=0

f
(

2πm
pq+ j

)
e
−2πihm

pq+ j =
2π
pq+ j

pq+ j−1∑
m=0

 1
2π

∞∑
ρ=−∞

f̂ (ρ)e
2πiρm
pq+ j

 e
−2πihm

pq+ j (21)

=

∞∑
ρ=−∞

f̂ (ρ)

 1
pq+ j

pq+ j−1∑
m=0

e
2πi(ρ−h)m

pq+ j

 = ∑
ρ≡h mod pq+ j

f̂ (ρ) (22)

=
〈
χS j,h , f̂ · χ(−d N

2 e,b
N
2 c]

〉
+

∑
ρ≡h mod pq+ j,ρ<(−d N

2 e,b
N
2 c]

f̂ (ρ). (23)

Thus, by Lemma 1 and Equations 18 and 19, more than half of our f̂ (ω) estimates will have∣∣∣ f̂ (ω) − Âpq+ j (ωmod pq+ j)
∣∣∣ ≤ ∑

ρ<Ω

∣∣∣ f̂ (ρ)
∣∣∣ ≤ ε

2
.

It follows that taking medians as per lines 10 and 11 will result in the desired ε-accurate estimate for f̂ (ω). 2

It is natural to wonder whether lines 10 and 11 in Algorithm 1 can be replaced by a single median of the absolute
values of the proper Âpq+ j entries. In fact, an argument similar to one establishing Lemma 4 above can be used to
show that such a single median will indeed produce an accurate estimate of each frequency coefficient’s magnitude.
However, it is theoretically possible that the selected median-magnitude Âpq+ j entry would have a highly inaccurate
phase. For example, the selected median-magnitude coefficient value for a frequency ω could be an entry from a DFT
that collided ω with a member of Ω − {ω} having a coefficient equal to −2 · f̂ (ω). In this case the selected median-
magnitude value would have the correct magnitude, but the phase would be off by π radians (i.e., we would recover
the negative of the correct value). Thus, if we want to estimate each frequency coefficient (and not just the coefficient
magnitudes) it appears to be necessary to separately consider both the real and imaginary parts of each frequency
coefficient.

Finally, we note that the condition on q, that pq−1 < B ≤ pq, in Algorithm 1 is not strictly necessary. We assume it
here so that the runtime and sampling complexities for Algorithm 1 can be derived in terms of B and N using Lemma 3
and analytic number theoretic results from [32]. See Section 7 for more on implementation details, relaxing conditions
on q, etc. The following Theorem presents itself.

Theorem 2. Let R̂opt be a k-optimal Fourier representation for the Fourier transform of our input function f . Then,

the k-term representation R̂s
returned from Algorithm 1 is such that ‖ f̂ − R̂‖22 ≤ ‖ f̂ − R̂opt‖

2
2 +

9k·| f̂ (ωk)|2

C . Furthermore,

Algorithm 1’s runtime is O
(
N · B · log2 N·log2(B log N)

log2 B

)
. The number of f samples used isΘ

(
B2
· log2

B N · log(B log N)
)
.
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Proof:

Choose any b ∈ (0, k]. Using Lemma 4 we can see that the only way some ωb < R̂s
B is if there exists some

associated b′ ∈ (k,N] so that ωb′ ∈ R̂s
and

| f̂ (ωk)| + ε ≥ | f̂ (ωb′ )| + ε ≥ |Cωb′ | ≥ |Cωb | ≥ | f̂ (ωb)| − ε ≥ | f̂ (ωk)| − ε.

In this case we will have 2ε > | f̂ (ωb)| − | f̂ (ωb′ )| ≥ 0 so that

| f̂ (ωb′ )|2 + 4ε
(
ε + | f̂ (ωk)|

)
≥ | f̂ (ωb′ )|2 + 4ε

(
ε + | f̂ (ωb′ )|

)
≥ | f̂ (ωb)|2. (24)

Now using Lemma 4 we can see that

‖ f̂ − R̂‖2 =
∑

(ω,·)<R̂s

| f̂ (ω)|2 +
∑

(ω,Cω)∈R̂s

| f̂ (ω) − Cω|2 ≤
∑

(ω,·)<R̂s

| f̂ (ω)|2 + k · ε2.

Furthermore, we have

k · ε2 +
∑

(ω,·)<R̂s

| f̂ (ω)|2 = k · ε2 +
∑

b∈(0,k], ωb<R̂s

| f̂ (ωb)|2 +
∑

b′∈(k,N], ωb′<R̂s

| f̂ (ωb′ )|2.

Using observation (24) above we can see that this last expression is bounded above by

k · (5ε2 + 4ε| f̂ (ωk)|) +
∑

b′∈(k,N], ωb′∈R̂
s

| f̂ (ωb′ )|2 +
∑

b′∈(k,N], ωb′<R̂s

| f̂ (ωb′ )|2 ≤ ‖ f̂ − R̂opt‖
2
2 + k · (5ε2 + 4ε| f̂ (ωk)|).

Substituting for ε (see Equation 17) gives us our result. Namely,

k · (5ε2 + 4ε| f̂ (ωk)|) =
k| f̂ (ωk)|2

C

( 5
C
+ 4

)
≤

9k| f̂ (ωB)|2

C
.

We conclude by providing sampling/runtime bounds for Algorithm 1. Lines 5 through 8 take O
(∑K

j=0 pq+ j log pq+ j

)
time if the K + 1 DFTs are each computed using the Chirp z-Transform [3, 48]. Furthermore, Lemma 5 and Equation
8 from [32] reveal that

K∑
j=0

pq+ j log pq+ j = Θ

B2
·

log2 N · log2(B log N)

log2 B

 .
Continuing, each line 10 and 11 median calculation can be performed using a O(K · log K)-time sorting algorithm (see
[10]). Thus, lines 9 through 13 require O

(
N · B logB N · log(B log N)

)
time in total. Combining the runtime bounds

for lines 5 through 8 and lines 9 through 13 gives us the stated runtime result. The sampling complexity follows
directly from Lemma 3. 2

It is not difficult to see that the proofs of Lemma 4 and Theorem 2 still hold using the (k, σ)-majority selective
properties of randomly chosen primes. In particular, if we run Algorithm 1 using randomly chosen primes along the
lines of Lemma 2 then Theorem 2 will still hold whenever the primes behave in a majority selective fashion. The only
change required to Algorithm 1 is that we compute only a random subset of the DFTs in lines 5 through 8. We have
the following corollary.

Corollary 1. Let R̂opt be a k-optimal Fourier representation for the Fourier transform of our input function f . If
we run Algorithm 1 using O

(
log

(
N

1−σ

))
randomly selected primes along the lines of Lemma 2, then with probability

at least σ we will obtain a k-term representation R̂s
having ‖ f̂ − R̂‖22 ≤ ‖ f̂ − R̂opt‖

2
2 +

9k·| f̂ (ωk)|2

C . The runtime will be

O
(
N · logB N · log

(
N

1−σ

)
· log2

(
B log

(
N

1−σ

)))
. The number of f samples will be O

(
B · logB N · log(B log N) · log

(
N

1−σ

))
.
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It has been popular in the compressed sensing literature to consider the recovery of k-frequency superpositions
(see [35] and references therein). Suppose we have

f (x) =
k∑

b=1

Cb · eiωbx for all x ∈ [0, 2π], Ω = {ω1, . . . , ωk} ⊂

(
−

⌈
N
2

⌉
,

⌊
N
2

⌋]
. (25)

Setting B = k and C = 1 is then sufficient to guarantee that
∑
∞

b=B+1 | f̂ (ωb)| = 0. Theorem 2 now tells us that
Algorithm 1 will perfectly reconstruct f . We quickly obtain the final result of this section.

Corollary 2. Suppose f is a k-frequency superposition. Then, Algorithm 1 can exactly recover f in

O
(
N · k · log2 N·log2(k log N)

log2 k

)
time. The number of f samples used isΘ

(
k2
· log2

k N · log(k log N)
)
. If we run Algorithm 1

using O
(
log

(
N

1−σ

))
randomly selected primes along the lines of Lemma 2, then we will exactly recover f with prob-

ability at least σ. In this case the runtime will be O
(
N · logk N · log

(
N

1−σ

)
· log2

(
k log

(
N

1−σ

)))
. The number of f

samples will be O
(
k · logk N · log(k log N) · log

(
N

1−σ

))
.

As before, let α ∈ (0, 1) be a constant and suppose that k = Θ(Nα). Furthermore, let σ = 1 − 1
NO(1) . Corollary 2

implies that our deterministic Algorithm 1 exactly recovers k-frequency superpositions using O(k2 log N) samples. If
randomly selected primes are used, then Algorithm 1 can exactly reconstruct k-frequency superpositions with probabil-
ity 1− 1

NO(1) using O(k log2 N) samples. In this case the sampling complexity of the randomized variant of Algorithm 1
is within a logarithmic factor of the best known Fourier sampling bounds concerning high probability exact recovery
of superpositions [5, 35]. This is encouraging given Algorithm 1’s simplicity. Of greater interest for our purposes
here, however, is that Algorithm 1 can be easily modified to run in sublinear time.

5 Sublinear-Time Fourier Algorithms
In order to reduce the runtime of Algorithm 1 we will replace lines 9 through 13 with a more general version of the
example deterministic recovery approach discussed in Section 1.1.3. This new recovery approach will take advantage
of the combinatorial properties of line 7’s K+1 aliased DFTs (i.e., see Definition 1 and Lemma 1) as follows: Suppose
we can use the CRT to identify all of the k most energetic frequencies that are isolated from all the other elements of
Ω by any given line 7 DFT. Then, by the k-majority selective properties of our K + 1 DFTs, we will be guaranteed
to identify all of the k most energetic frequencies more than K+1

2 times each. Therefore, collecting all frequencies
recovered by more than half of line 7’s DFTs will give us the k most energeticΩ frequencies (along with some possibly
‘junk frequencies’). The ‘junk’ can be discarded, however, by limitedly applying our existing coefficient estimation
method (i.e., lines 10 and 11) to the identified potentially-energetic frequencies. Only truly energetic frequencies will
yield large magnitude coefficient estimates by Lemma 4.

Finally, note that only O(K log K) potentially energetic frequencies can be identified more than K+1
2 times via line

7’s DFTs. Thus, our formally superlinear-time loop (lines 9 - 12) will be sublinearized. Instead of applying lines 10
and 11 to every frequency, we will only apply them to the at most O(K log K) potentially-energetic frequencies we
identify. See Algorithm 2 for the sublinear-time algorithm obtained by modifying Algorithm 1 as outlined above.

Let m be the smallest integer such that
m∏

l=0

pl ≥
N
B
. (26)

The following lemma establishes the correctness of Algorithm 2’s energetic frequency identification procedure.

Lemma 5. Lines 11 through 22 of Algorithm 2 are guaranteed to recover all validω1, . . . , ωk (i.e., allω with |Â(ω)|2 ≥
|Â(ωk)|2 - there may be > k such entries) more than K

2 times. Hence, despite line 25, an entry for all suchωb, 1 ≤ b ≤ k,
will be added to R̂s

in line 31.
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Algorithm 2 SUBLINEAR APPROXIMATE

1: Input: Signal pointer f , integers m, k ≤ B ≤ N
2: Output: R̂s, a sparse representation for f̂
3: Initialize R̂s

← ∅

4: Set K = 2B
⌊
logpq

N
⌋
, q so that pq−1 ≤ max(B, pm) < pq

5: for j from 0 to K do
6: for l from 0 to m do
7: Apl·pq+ j ← f (0), f

(
2π

pl·pq+ j

)
, . . . , f

(
2π(pl·pq+ j−1)

pl·pq+ j

)
8: Âpl·pq+ j ← DFT[Apl·pq+ j ]
9: end for

10: end for
ENERGETIC FREQUENCY IDENTIFICATION

11: for j from 0 to K do
12: Âsort ← Sort Âp0·pq+ j by magnitude (i.e., bth largest magnitude entry in Âsort(b))
13: for b from 1 to B do
14: r0,b ← index of Âp0·pq+ j ’s bth largest magnitude entry

(
i.e., Âsort(b)’s associated residue mod pq+ j

)
15: for l from 1 to m do
16: tmin ← mint∈[0,pl)

∣∣∣Âsort(b) − Âpl·pq+ j (t · pq+ j + r0,b)
∣∣∣

17: rl,b ←
(
r0,b + tmin · pq+ j

)
mod pl

18: end for
19: Construct ω j,b from r0,b, . . . , rm,b via modular arithmetic
20: end for
21: end for
22: Sort ω j,b’s maintaining duplicates and set C(ω j,b) = the number of times ω j,b was constructed via line 19

COEFFICIENT ESTIMATION

23: for j from 1 to K do
24: for b from 1 to B do
25: if C(ω j,b) > K

2 then
26: Re

{
Cω j,b

}
← median of multiset

{
Re

{
̂Apm·pq+h (ωj,b mod pm · pq+h)

} ∣∣∣ 0 ≤ h ≤ K
}

27: Im

{
Cω j,b

}
← median of multiset

{
Im

{
̂Apm·pq+h (ωj,b mod pm · pq+h)

} ∣∣∣ 0 ≤ h ≤ K
}

28: end if
29: end for
30: end for
31: R̂s

← (ω j,b,Cω j,b ) entries for k largest magnitude Cω j,b ’s

Proof:

Fix b̃ ∈ [1, k]. By Lemma 1 we know that there exist more than K
2 pq+ j-primes that isolate ωb̃ from all ofΩ− {ωb̃}.

Denote these primes by

p j1 , p j2 , . . . , p jK′ ,
K
2
< K′ ≤ K.

We next show, for each k′ ∈ [1,K′], that we get Âp0·p jk′
(ωb̃ mod p jk′ ) as one of the B largest magnitude entries found

in line 12. Choose any k′ ∈ [1,K′]. Using Equations 17 and 18 we can see that

ε
2
≤ | f̂ (ωk)| −

∞∑
b′=B+1

| f̂ (ωb′ )| ≤ | f̂ (ωb̃)| −

∣∣∣∣∣∣∣∣
∑

b′<Ω, ωb′≡ωb̃

f̂ (ωb′ )

∣∣∣∣∣∣∣∣ ≤
∣∣∣Âp0·p jk′

(ωb̃ mod p jk′ )
∣∣∣ .
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We also know that the (B + 1)st largest magnitude entry of Âp0·p jk′
must be ≤ ε2 . Hence, for every k′ ∈ [1,K′] we are

guaranteed to execute lines 13-20 with an r0,b = ωb̃ mod p jk′ .
Next, we will show that all the residues required in order to reconstruct ωb̃ by the CRT in line 19 will be found.

Choose any l ∈ [1,m] and set

Ω̄′ =
{
ωb′

∣∣∣ ωb′ < Ω, ωb′ ≡ ωb̃ mod p jk′ , ωb′ . ωb̃ mod plp jk′

}
.

Line 16 inspects all possible residues of ωb̃ mod plp jk′ since

ωb̃ ≡ h mod p jk′ −→ ωb̃ ≡ h + t · p jk′ mod plp jk′

for some t ∈ [0, pl). To see that tmin will be chosen correctly, we note first that

∣∣∣Âp0·p jk′
(ωb̃ mod p jk′ ) − Âpl·p jk′

(ωb̃ mod plp jk′ )
∣∣∣ ≤ ∑

ωb′∈Ω̄′

| f̂ (ωb′ )| ≤
ε
2
≤ | f̂ (ωk)| −

∞∑
b′=B+1

| f̂ (ωb′ )|.

Furthermore, setting r0,b = ωb̃ mod p jk′ and

Ω̃′ =
{
ωb′

∣∣∣ ωb′ < Ω, ωb′ ≡ ωb̃ mod p jk′ , ωb′ . (r0,b + tp jk′ ) mod p jk′ pl for some t with (r0,b + tp jk′ ) . ωb̃ mod plp jk′

}
,

we have

| f̂ (ωk)| −
∞∑

b′=B+1

| f̂ (ωb′ )| ≤ | f̂ (ωb̃)| −

∣∣∣∣∣∣∣∣
∑
ωb′∈Ω̃′

f̂ (ωb′ )

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣Âp0·p jk′

(ωb̃ mod p jk′ ) − Âpl·p jk′

(
(r0,b + tp jk′ ) . ωb̃ mod plp jk′

)∣∣∣∣ .
Hence, lines 16 and 17 will indeed select the correct residue for ωb modulo pl. And, line 19 will correctly reconstruct
ωb at least K′ > K

2 times. 2

Using Lemma 5 along with Lemma 4 and Theorem 2 we obtain the following Theorem concerning Algorithm 2.
The sampling and runtime bounds are computed in [32].

Theorem 3. Let R̂opt be a k-optimal Fourier representation for the Fourier transform of our input function f . Then,

the k-term representation R̂s
returned from Algorithm 2 is such that ‖ f̂−R̂‖22 ≤ ‖ f̂−R̂opt‖

2
2+

9k·| f̂ (ωk)|2

C . Furthermore, Al-

gorithm 2’s runtime is O
(
B2
·

log2 N·log2(B log N)·log2 N
B

log2 B·log log N
B

)
. The number of f samples used is O

(
B2
·

log2 N·log(B log N)·log2 N
B

log2 B·log log N
B

)
.

Also, as above, if we run Algorithm 2 using randomly chosen pq+ j-primes along the lines of Lemma 2 then
Theorem 3 will still hold whenever the pq+ j-primes behave in a majority selective fashion. We have the following
corollary.

Corollary 3. Let R̂opt be a k-optimal Fourier representation for the Fourier transform of our input function f . If we
run Algorithm 2 using O

(
log

(
N

1−σ

))
randomly selected pq+ j-primes along the lines of Lemma 2, then with probability

at least σ we will obtain a k-term representation R̂s
having ‖ f̂ − R̂‖22 ≤ ‖ f̂ − R̂opt‖

2
2 +

9k·| f̂ (ωk)|2

C . The runtime will be

O
(
B ·

log N·log( N
1−σ )·log2(B log( N

1−σ ))·log2 N
B

log B·log log N
B

)
. The number of f samples will be O

(
B ·

log2( N
1−σ )·log(B log N)·log2 N

B

log B·log log N
B

)
.

Let α ∈ (0, 1) be a constant and suppose that k = Θ(Nα). Furthermore, suppose that σ = 1− 1
NO(1) . Theorem 3 tells

us that our sublinear-time deterministic Algorithm 2 exactly recovers k-frequency superpositions in O
(
k2
·

log4 N
log log N

)
time using O

(
k2
·

log3 N
log log N

)
samples. If randomly selected pq+ j-primes are used then Algorithm 2 can exactly recon-

struct k-frequency superpositions with probability 1 − 1
NO(1) in O

(
k · log5 N

log log N

)
time using O

(
k · log4 N

log log N

)
samples. It is
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worth noting here that previous randomized sublinear-time Fourier results [24, 25] do not yield exact reconstructions
of sparse superpositions in this manner. They iteratively produce approximate solutions which converge to the true
superposition in the limit.

We are now ready to give sublinear-time results concerning functions with compressible Fourier coefficients. For
the remainder of this paper we will assume that our input function f : [0, 2π] 7→ C has both (i) an integrable pth deriva-
tive, and (ii) f (0) = f (2π), f ′(0) = f ′(2π), . . . , f (p−2)(0) = f (p−2)(2π) for some p > 1. Standard Fourier coefficient
bounds then imply that f̂ is a (c, p)-compressible∞-length signal for some c ∈ R+ [22, 4]. Before applying Theorem 3
we will determine Algorithm 2’s B and Equation 17’s C variables based on the desired Fourier representation’s size
and accuracy. Moving toward that goal, we note that since f̂ is algebraically compressible, we have

9k · | f̂ (ωk)|2

C
≤

9c2
· k1−2p

C
= Θ

(
2p − 1

C

)
‖Copt

k ‖
2
2. (27)

Thus, in order to achieve multiplicative accuracy δ (see Equation 11), we should set C = Θ
( 2p−1
δ

)
and choose B so

that
∞∑

b=B+1

| f̂ (ωb)| <
c · B1−p

p − 1
≤
| f̂ (ωk)|

2C
= O

(
cδ

2p − 1
· k−p

)
. (28)

Solving, we get that

B = Ω

( p − 1
2p − 1

) 1
1−p

δ
1

1−p k
p

p−1

 .
Applying Theorem 3 gives us the runtime and number of required measurements for Algorithm 2. We obtain the
following Corollary.

Corollary 4. Suppose f : [0, 2π] 7→ C has both (i) an integrable pth derivative, and (ii) f (0) = f (2π), . . . , f (p−2)(0) =
f (p−2)(2π) for some fixed p > 1. Furthermore, assume that f̂ ’s B = O

(
δ

1
1−p k

p
p−1

)
largest magnitude frequencies

all belong to
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
. Fix accuracy parameter δ ∈ R+. Then, we may use Algorithm 2 to return a k-term

sparse Fourier representation, R̂s
, for f̂ with ‖ f̂ − R̂‖22 ≤ ‖ f̂ − R̂opt‖

2
2 + δ‖C

opt
k ‖

2
2 in O

(
δ

2
1−p k

2p
p−1 ·

log6 N
log2 kp

δ

)
time. The

number of f samples used is O
(
δ

2
1−p k

2p
p−1 ·

log5 N
log2 kp

δ

)
. If we run Algorithm 2 using O

(
log

(
N

1−σ

))
randomly selected pq+ j-

primes along the lines of Lemma 2, then with probability at least σ we will obtain a k-term representation R̂s
having

‖ f̂ − R̂‖22 ≤ ‖ f̂ − R̂opt‖
2
2 + δ‖C

opt
k ‖

2
2 in O

(
δ

1
1−p k

p
p−1 ·

log6 N
log kp

δ

)
time. The number of f samples used is O

(
δ

1
1−p k

p
p−1 ·

log5 N
log kp

δ

)
.

If f : [0, 2π]→ C is smooth (i.e., has infinitely many continuous derivatives on the unit circle where 0 is identified
with 2π) it follows from Corollary 4 that Algorithm 2 can be used to find an δ-accurate, with δ = O

(
1
N

)
, sparse k-term

Fourier representation for f̂ in O(k2 log6 N) time using O(k2 log5 N) measurements. If randomly selected pq+ j-primes
are utilized, then Algorithm 2 can obtain a O

(
1
N

)
-accurate k-term Fourier representation for f̂ with high probability

in O(k log6 N) time using O(k log5 N) measurements. Similarly, standard results concerning the exponential decay of
Fourier coefficients for functions with analytic extensions can be used to generate exponentially compressible Fourier
results.

6 Discrete Fourier Results
Suppose we are provided with an array A containing N equally spaced samples from an unknown smooth function
f : [0, 2π]→ C (i.e., f is A’s band-limited interpolent). Then, it is standard to assume that

f (x) =
1

2π

b
N
2 c∑

ω=1−d N
2 e

Â(ω) · eiω·x, x ∈ [0, 2π].
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with

A( j) = f
(

2π j
N

)
, j ∈ [0,N).

We would like to use Algorithm 2 to find a sparse Fourier representation for Â. Not having access to f directly,
and restricting ourselves to sublinear-time approaches only, we have little recourse but to locally interpolate f around
Algorithm 2’s required samples.

For each required Algorithm 2 f -sample at t = 2πh
pq+ jpl
, h ∈ [0, pq+ jpl), we may approximate f (t) to within O

(
N−2κ

)
error by constructing 2 standard local Lagrangian interpolents (one real, one imaginary) around t using A’s nearest 2κ
entries [33]. These errors in f -samples can lead to errors of size O

(
N−2κ

· pmpq+K log pq+K

)
in each of the DFT entries

in line 8 of Algorithm 2. However, as long as these errors are small enough (i.e., of size O
(

cδ
2p−1 · k

−p
)

in the (c, p)-

compressible case) Theorem 3 and all related Section 5 results will still hold. Hence, using 2κ = O
(
log

( 2p−1
cδ · k

p
))

interpolation points per f -sample should be sufficient. We have the following lemma.

Lemma 6. Let A be an N-length complex valued array and suppose that Â is (c, p)-compressible. Fix c̃ ∈ R+. Using

2κ = 2 · log8

( √
2 · kp

c̃ · δ
·

2p2
− p

p − 1

)
interpolation points from A per f -evaluation will guarantee that every line 8 DFT entry from Algorithm 2 is calculated
to within c̃·cδ

2p−1 · k
−p precision.

Proof:

Fix x ∈ [0, 2π] and κ ∈
(
0, N

2

)
∩N. Let j′ =

⌊
x · N

2π

⌋
. We will form two interpolating polynomials of degree at

most 2κ − 1. The first polynomial, px
R : R→ R, will be formed using the 2κ points(2πm

N
, Re {A (m mod N)}

)
, m ∈ ( j′ − κ, j′ + κ] ∩ Z.

The second polynomial, px
I : R→ R, will be formed using the 2κ points(2πm

N
, Im {A (m mod N)}

)
, m ∈ ( j′ − κ, j′ + κ] ∩ Z.

Using standard results concerning polynomial interpolation error (see [33]) we can see that∣∣∣Re {
f (x)

}
− px

R(x)
∣∣∣ ≤ ‖ f (2κ)

‖∞

(2κ)!
·

κ∏
m=1

(m
N

)2
≤

1
(2κ)!

·
‖ Â ‖1

2π

(N
2

)2κ

·

κ∏
m=1

(m
N

)2
≤
‖ Â ‖1
2π · 4κ

·

∏κ
m=1 m2

(2κ)!
≤
‖ Â ‖1
2π · 8κ

.

An analogous bound holds for
∣∣∣Im {

f (x)
}
− px

I (x)
∣∣∣. Therefore, we can see that 2κ samples from A are sufficient to

calculate f (x) to within an error of ‖Â‖1
√

2π·8κ
.

To conclude, we can see that approximating the pl · pq+ j equally spaced DFT of f using these interpolated values
will lead to errors of size∣∣∣∣∣∣∣∣ 2π

pl · pq+ j
·

pl·pq+ j−1∑
m=0

e
−2πihm
pl ·pq+ j f

(
2πm

pl · pq+ j

)
−

2π
pl · pq+ j

·

pl·pq+ j−1∑
m=0

e
−2πihm
pl ·pq+ j

(
p

2πm
pl ·pq+ j

R

(
2πm

pl · pq+ j

)
+ i · p

2πm
pl ·pq+ j

I

(
2πm

pl · pq+ j

))∣∣∣∣∣∣∣∣
for each h ∈

(
−

⌈ pl·pq+ j

2

⌉
,
⌊ pl·pq+ j

2

⌋]
. Using the work above we can see that this error is bounded above by

2π
pl · pq+ j

·

∣∣∣∣∣∣∣∣
pl·pq+ j−1∑

m=0

e
−2πihm
pl ·pq+ j

‖ Â ‖1
√

2π · 8κ

∣∣∣∣∣∣∣∣ ≤
√

2
8κ
· ‖ Â ‖1 ≤

√
2c

8κ
·

(
1 +

∫
∞

1
b−p db

)
≤

√
2c

8κ
·

(
p

p − 1

)
.
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The result follows. 2

Combining Lemma 6 with Corollary 4 from Section 5 yields our final corollary to Theorem 3.

Corollary 5. Let A be an N-length complex valued array and suppose that Â is (c, p)-compressible for fixed c, p ∈ R+.
Then, we may use Algorithm 2 to return a k-term sparse Fourier representation, R̂s

, for Â with ‖Â−R̂‖22 ≤ ‖Â−R̂opt‖
2
2+

δ‖Copt
k ‖

2
2 in O

(
δ

2
1−p k

2p
p−1 ·

log6 N
log kp

δ

)
time. The number of samples used is O

(
δ

2
1−p k

2p
p−1 ·

log5 N
log kp

δ

)
. If we run Algorithm 2 using

O
(
log

(
N

1−σ

))
randomly selected pq+ j-primes along the lines of Lemma 2, then with probability at least σ we will obtain

a k-term representation R̂s
satisfying ‖Â− R̂‖22 ≤ ‖Â− R̂opt‖

2
2 + δ‖C

opt
k ‖

2
2 in O

(
δ

1
1−p k

p
p−1 · log6 N

)
time. The number of

A samples used is O
(
δ

1
1−p k

p
p−1 · log5 N

)
.

Notice that Corollary 5 does not guarantee the exact recovery of k-frequency superpositions in the discrete setting.
Generally, the sparse Fourier representations produced by Algorithm 2 on discrete data will always contain interpola-
tion errors. However, for δ = Θ

(
N−1

)
, we can still consider smooth data A to be Fourier (c,Θ(log N))-compressible

and so achieve an accurate Õ(k2)-time DFT algorithm for large N.

7 A Preliminary Empirical Evaluation
In this section we provide a preliminary empirical evaluation of Algorithm 2. More specifically, we empirically verify
and test the deterministic sampling and runtime requirements for Algorithm 2 stated in Theorem 3. In the process we
will also discuss implementation details which lead to better performance in practice. We will begin by considering
the sampling requirements of Algorithm 2. For ease of discussion, throughout the remainder of this section we will
focus on recovering signals, f : [0, 2π]→ C, containing exactly B = k nonzero frequencies in

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
.

7.1 Sampling Performance
The number of samples utilized by Algorithm 2 is entirely determined by the chosen p0, . . . , pm and S j-primes (see
Equation 26 and Section 3). More specifically, the number of times Algorithm 2 evaluates f equals

K∑
j=0

m∑
l=0

pl · pq+ j =

 m∑
l=0

pl

 ·
 K∑

j=0

pq+ j

 . (29)

In Section 5 we chose our p0, . . . , pm and S j-primes in order to both (i) comply with Lemma 1, and (ii) allow us
to express the sampling and runtime complexities of Algorithm 2 in terms of N and B. However, in practice we can
substantially decrease the sampling usage of Algorithm 2 by changing the relatively prime values it uses (e.g., by
replacing its p0, . . . , pm primes and S j-primes with other values as described below).

In order to recover an exactly Fourier B-sparse signal, f , with bandwidth N using the fewest possible samples
via the methods herein we must choose new ‘pl’ and ‘S j’ integers (not necessarily prime) that minimize Equation 29
subject to the CRT-derived reconstruction requirements discussed in Sections 1.1 and 3. To emphasize that we will no
longer require Algorithm 2 to use primes, let us replace its K + 1 S j-primes with K + 1 s j-integers,

s0 ≤ s1 ≤ · · · ≤ s j ≤ · · · ≤ sK.

Furthermore, let each s j-integer have m j associated r j,l integers, 1 ≤ l ≤ m j. These r j,l integers will play the role for-
mally played by our p1, . . . , pm primes. Optimizing the sample usage of Algorithm 2 is now equivalent to minimizing

K∑
j=0

m j∑
l=1

(r j,l + 1) · s j =

K∑
j=0

s j ·

1 +
m j∑
l=1

r j,l

 (30)

subject to the following constraints:
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1. K
2B ∈ N,

2.
∏ K

2B
j=0 s j ≥ N,

3. s0, · · · , sK are pairwise relatively prime,

4.
∏m j

l=1 r j,l ≥
N
s j

for each j ∈ [0,K] ∩ Z, and

5. s j, r j,1, . . . , r j,m j are pairwise relatively prime for each j ∈ [0,K] ∩ Z.

Unfortunately, it is unclear how to solve this optimization problem in a computationally efficient manner. Naively, it
appears as if the pairwise relatively prime properties of

(NΩ(1)

BΩ(1)

)
sets of possible s j-integers have to be checked during

the solution process.
In Section 5 we approximated the optimal solution to the sampling problem for Algorithm 2 (i.e., Equation 30) by

setting

1. m to be the smallest integer such that
∏m

l=0 pl ≥
N
B ,

2. q so that pq−1 ≤ max(B, pm) < pq,

3. K = 2B
⌊
logpq

N
⌋
,

4. s j = pq+ j for all j ∈ [0,K] ∩ Z,

5. m j = m for all j ∈ [0,K] ∩ Z,

6. r j,l = pl for all j ∈ [0,K] ∩ Z, and l ∈ [1,m] ∩ Z.

Although, as mentioned above, using this approximate solution allows us to obtain sampling bounds in terms of B and
N, it also leads to suboptimal sampling by Algorithm 2 in practice. See Algorithm 3 for a simple procedure which
quickly chooses s j and r j,l integers by greedily minimizing portions of Equation 30. Preliminary experiments indicate
that Algorithm 3 tends to minimize Equation 30 better than the techniques utilized in Section 5.

Algorithm 3 attempts to decrease the number of samples used by Algorithm 2 in two ways. First, note that using
a larger s0 = pq for Algorithm 2 sometimes reduces the total sampling requirements by decreasing the number of S j-
primes, K ≥ 2B

⌊
logpq

N
⌋
, required by Lemma 1. Hence, it is technically possible to increase pq and, as a consequence,

end up requiring a subset of the previously required S j-primes. Based on this observation, Algorithm 3 attempts to

increase the first utilized prime, pq, to a new value, pqmin , which minimizes the resulting sum of K ≥ 2B
⌊
logpqmin

N
⌋

primes.
Second, Algorithm 3 uses powers of pl primes to help decrease Algorithm 2’s sample usage. Instead of performing

DFTs of size p0 · pq+ j, . . . , pm · pq+ j for each prime pq+ j, Algorithm 3 allows Algorithm 2 to compute DFTs of size

p0 · pqmin+ j, p
α j,1

1 · pqmin+ j, . . . , p
α j,l

l · pqmin+ j, . . . , p
α j,mj
m j
· pqmin+ j

for each prime pqmin+ j. Here m j is chosen so that

m j∏
l=1

pα j,l

l ≥
N

pqmin+ j

for each pqmin+ j. As we shall see next, allowing Algorithm 2 the freedom to use powers of pl primes can help to
significantly reduce sample usage.

Consider an N = 60, 000 bandwidth signal, f , containing exactly B = 5 non-zero frequencies. Algorithm 2, as
formulated in Section 5, would set m equal to 6 and use 2, 3, 5, 7, 11, and 13 as its pl-primes (i.e., its r j,l-integers for
all j). This would make q equal to 7 and pq equal to 17. Therefore, K = 2 · 5 · blog17 60, 000c = 30 which would set
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Algorithm 3 CHOOSE s j AND r j,l VALUES

1: Input: integers B,N with B < N
2: Output: s j and r j,l integers
3: m← min

{
β
∣∣∣ ∏β

l=0 pl ≥
N
B

}
4: qmin ← arg minq̃: max{B,m}<pq̃<N

∑2B
⌊
logpq̃

N
⌋

j=0 pq̃+ j

5: K← 2B
⌊
logpqmin

N
⌋

6: for j from 0 to K do
7: Initialize α j,0 ← 1, α j,l ← 0 for 1 ≤ l ≤ m
8: s j ← pqmin+ j

9: while
∏m

l=0 pα j,l

l <
N
s j

do

10: lmin ← arg minl: 1≤l≤m pα j,l

l (pl − 1) + χ{0}(α j,l)
11: α j,lmin ← α j,lmin + 1
12: end while
13: l← 0
14: while α j,l > 0 do
15: r j,l ← pα j,l

l
16: l← l + 1
17: end while
18: m j ← l − 1
19: end for

s0 = 17, s1 = 19, . . . , s30 = 157. The resulting total number of samples would therefore be 42 · (17 + 19 + · · · +
157) = 42 · 2543 = 106, 806.

However, if we employ Algorithm 3 we will set qmin to be 13 and have pqmin equal to 41. Thus, Algorithm 3 will
use K = 2 · 5 · blog41 60, 000c = 20 and set s0 = 41, . . . , s20 = 137. In this case it turns out that the r0,l-integers
will be 8, 9, 5, and 7 for all the s j-integers. The resulting total number of samples will therefore be 30 · (41 + 43 +
· · · + 137) = 30 · 1791 = 53, 730. All told, we can see that for this example Algorithm 3 decreases the sampling
requirements of Algorithm 2 to about half of what they are when Section 5 methods are employed.

Finally, note that one must be able to obtain lists of prime numbers in order to employ Algorithm 3. Sieving
algorithms for generating the first n primes exist (see [47]), and have been widely implemented (e.g., MATLAB’s
PRIMES function). In addition, previously computed lists of primes can be found online (e.g., the first 50 million
primes can be downloaded at [1]).

Given that a standard FFT can determine the Fourier transform of an N-bandwidth signal f by taking N samples
from f , it is important for us to determine when Algorithm 2 enables us to utilize less than N samples to recover f̂ .
Figure 1 addresses this issue by plotting, for each bandwidth value N, the maximum number of nonzero frequencies
f may contain while still allowing Algorithm 2 to determine f̂ using less than N f -samples. The number of samples
required by Algorithm 1 is also included for reference (see Theorem 2). In both cases the s j-integers (and r j,l-integers
in the case of Algorithm 2) were generated using Algorithm 3. All bandwidth values, N, are powers of two.

Looking at Figure 1 we can see that Algorithm 1 can use a sublinear number of samples to recover signals contain-
ing roughly an order of magnitude more frequencies than can be recovered by Algorithm 2 using sublinear sampling.
For example, Algorithm 2 can recover signals containing at most 9 nonzero frequencies at bandwidth 218 using fewer
than 218 samples, whereas Algorithm 1 can recover signals containing over 100 nonzero frequencies. Generally,
Algorithm 2 pays for its better runtime complexity by using more signal samples.

Figure 2 contains the number of function evaluations used by Algorithm 2 to recover signals with B nonzero fre-
quencies at five different bandwidth values. As before, the s j and r j,l integers utilized by Algorithm 2 were generated by
Algorithm 3. The vertical axis of Figure 2 is in terms of bandwidth-fraction sampled

(
i.e., samples

bandwidth N for each curve
)
.

Thus, for example, we can see that Algorithm 2 can recover any 10-frequency function with bandwidth 220 by sampling
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Figure 1: Maximal Fourier Sparsity a Signal May Have and Be Recovered Deterministically Via Sublinear-Sampling

Figure 2: Number of Samples Required by Algorithm 2 to Deterministically Reconstruct Signals

it less than 219 times (i.e., by using less than half the samples a full FFT requires).
We conclude this section with an empirical verification of the sampling complexity for Algorithm 2 stated in Theo-

rem 3. When N is fixed, we expect the number of samples produced by both the methods of Section 5 and Algorithm 3
to scale quadratically in B. See Figure 3 for an empirical verification of the quadratic behavior of Algorithm 2 when
N = 222. Figure 3 graphs both the number of samples used by Algorithm 2 and the best fit quadratic function for
number of samples used by Algorithm 2 for various Fourier sparsity levels B. The absolute error between the sam-
ple usage of Algorithm 2 and its best fit quadratic function is also graphed. As we can see from the figure, the best
fit quadratic agrees quite well with Algorithm 2’s sampling data for larger B. Indeed, the relative error between the
number of samples used by Algorithm 2 and its best fit quadratic function was less than 0.01 for all B ≥ 10.

7.2 Runtime Performance
Both Algorithm 1 and 2 were implemented in C in order to empirically evaluate their runtime characteristics. More
specifically, each line 7/8 Algorithm 1/2 discrete Fourier transform was performed using FFTW 3.2 [23] with an
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Figure 3: Quadratic Behavior of the Number of Samples Used by Algorithm 2 with Fixed N = 222

FFTW MEASURE plan. All line 10 and 11 (as well as line 26 and 27) medians, together with all sorting steps in
both Algorithm 1 and 2, were implemented with C code for Quick Sort (see [10]). Algorithm 3 was also coded in C
and used to find the s j (and r j,l) integers for Algorithm 1 (and 2). Finally, the reconstruction of each frequency from its
remainders in line 19 of Algorithm 2 was implemented using standard CRT-related reconstruction techniques based
on the Euclidean algorithm (see [47]).

All experiments were run on a QuadCore2 2.4 Ghz Ubuntu Linux machine with 3 GB of RAM. We used FFTW
3.2 with an FFTW MEASURE plan as our FFT for runtime comparisons in Figures 4 and 5. All bandwidth val-
ues (i.e., array lengths) used for generating our graphs were powers of two. FFTW 3.2 is a highly optimized FFT
implementation which adapts itself to the computer on which it is executed. Under these conditions (i.e., using an
FFTW MEASURE plan with the known bandwidth, N, increased to the nearest power of two) one can expect FFTW
3.2 to run near its fastest capabilities for each signal on the given machine.

All N-bandwidth B nonzero frequency signals used for tests below where constructed as follows: First, B fre-
quencies were selected uniformly at random from

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
. Next, each randomly selected frequency was given a

uniformly random phase. Their coefficient magnitudes were left as 1. Despite the fact that both Algorithm 1 and 2 are
guaranteed to deterministically recover any such signal, every data point in both Figure 4 and 5 is the result of 1000
runs on randomly generated signals. During all runs the errors of both algorithms were monitored. Their precisions
were within an order of magnitude of FFTW’s for all recovered frequency coefficients in all tests reported on below.

Figure 4 contains graphs of both Algorithm 1 and 2’s runtimes (averaged over 1000 runs per data point) for 1024-
bandwidth signals containing various numbers of nonzero frequencies. FFTW’s runtime is included for reference. As
we can see, Algorithm 2 is indeed faster than Algorithm 1 for all sparsity levels despite the modest bandwidth value.
Both Algorithms required less than 5 ms for all recorded runs. However, FFTW 3 is by far the fastest DFT method for
smaller bandwidth values.

Figure 5 plots the runtimes of both Algorithm 1 and 2 for signals containing 8 nonzero frequencies hidden in
various bandwidths. Looking at Figure 5 we can see that Algorithm 2 is faster than Algorithm 1 for all bandwidth
values greater than 128. Likewise, Algorithm 2 is faster than FFTW for all bandwidth values greater than 218. More
generally, Algorithm 2 will be faster than FFTW for all highly-sparse wideband signals.

It is worth mentioning that Algorithm 2 appears to be naturally suited to parallel implementation. Indeed, all the
discrete Fourier transforms computed in line 8, sorts performed in line 12, and line 19 frequency reconstructions can
be performed in parallel. In addition, the medians in lines 26 and 27 can also be done in parallel once all frequently
occurring frequencies have been identified. Once the function samples have been provided, the only real barrier to a
straightforward parallel implementation appears to be the compilation of recovered frequencies in line 22. It would be
interesting to pursue a parallel implementation as part of a more thorough empirical evaluation of the sparse Fourier
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Figure 4: Runtime Comparison at Fixed Bandwidth, N = 210

Figure 5: Runtime Comparison at Fixed Fourier Sparsity, B = 8

methods presented herein.
Finally, the s j and r j,l integers selected for Algorithm 2 also impact its runtime. It could prove fruitful to explore

alternative methods to Algorithm 3 for minimizing Equation 30. In particular, it would be interesting to determine
theoretically whether minimizing Equation 30 subject to the given constraints is truly as difficult as it appears at first
glance.

8 Conclusion
In this paper the first known deterministic Fourier algorithm with both sublinear-time sampling and runtime com-
plexity was developed. Hence, we have established the first deterministic algorithm which can exactly reconstruct a
k-frequency superposition using time polynomial in the superposition’s information content. When viewed from this
perspective the following open problem presents itself.

Open Problem 1. Construct (or show the impossibility of constructing) a deterministic Fourier algorithm guaranteed
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to exactly recover k-frequency superpositions in k · logO(1) N time.

The status of current methods with respect to Problem 1 is as follows: Gilbert, Muthukrishnan, and Strauss’
randomized Fourier algorithm [25] achieves a near optimal runtime, but is neither deterministic nor exact. Similarly,
our Section 5 Monte Carlo algorithm achieves exact reconstruction and a near optimal runtime, but is not deterministic.
Linear programming [15, 5] and OMP-based [46] methods achieve universal sampling sets of acceptable size [49, 16],
but both the verification of the sampling sets universal properties and the associated reconstruction procedures are
computationally taxing. Finally, Indyk’s fast deterministic CS procedure [29] obtains a promising reconstruction
runtime, but does not allow fast Fourier measurement acquisition.

In terms of applications, there are two compelling motivations for developing fast sparse Fourier transform methods
along the lines of [24, 25] and Algorithm 2: runtime and sample usage. In numerical applications such as [13] where
runtime is the dominant concern we must assume that our input function f exhibits some multiscale behavior. If f̂
contains no unpredictably energetic and large (relative to the number of desired Fourier coefficients) frequencies then it
is more computationally efficient to simply use standard FFT/NUFFT methods [9, 37, 2, 18, 21]. In other applications
[36, 34, 38, 39] where sampling costs are of greater concern than reconstruction runtime, even mild oversampling for
the sake of faster reconstruction may be unacceptable. In such cases the runtime/sampling tradeoff must be carefully
weighed.

Acknowledgments
I would like to thank the anonymous reviewers and Tsvetanka Sendova for suggesting many helpful improvements to
the preliminary drafts of this paper.

References
[1] The Prime Pages. http://primes.utm.edu/.

[2] C. Anderson and M. D. Dahleh. Rapid computation of the discrete Fourier transform. SIAM J. Sci. Comput.,
17:913–919, 1996.

[3] L. I. Bluestein. A Linear Filtering Approach to the Computation of Discrete Fourier Transform. IEEE Transac-
tions on Audio and Electroacoustics, 18:451–455, 1970.

[4] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc., 2001.

[5] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information. IEEE Trans. Inform. Theory, 52:489–509, 2006.

[6] E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements.
Communications on Pure and Applied Mathematics, 59(8):1207–1223, 2006.

[7] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Brooks/Cole Publishing Company, 1992.

[8] A. Cohen, W. Dahmen, and R. DeVore. Compressed Sensing and Best k-term Approximation. Journal of the
American Mathematical Society, 22(1):211–231, January 2008.

[9] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comput.,
19:297–301, 1965.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press and McGraw-
Hill, 1990.

[11] G. Cormode and S. Muthukrishnan. Combinatorial Algorithms for Compressed Sensing. Technical Report
DIMACS TR 2005-40, 2005.

26



[12] G. Cormode and S. Muthukrishnan. Combinatorial Algorithms for Compressed Sensing. Conference on Infor-
mation Sciences and Systems, March 2006.

[13] I. Daubechies, O. Runborg, and J. Zou. A sparse spectral method for homogenization multiscale problems.
Multiscale Model. Sim., 2007.

[14] R. A. DeVore. Deterministic constructions of compressed sensing matrices. Journal of Complexity, 23, August
2007.

[15] D. Donoho. Compressed Sensing. IEEE Trans. on Information Theory, 52:1289–1306, 2006.

[16] D. L. Donoho and J. Tanner. Thresholds for the recovery of sparse solutions via l1 minimization. In 40th Annual
Conference on Information Sciences and Systems (CISS), 2006.

[17] D. Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Applications. World Scientific, 1993.

[18] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14:1368–1383,
1993.

[19] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg. Improved combinatorial group testing algorithms for real-
world problem sizes. http://arxiv.org/abs/cs.DS/0505048, May 2005.

[20] L. Y. Erich Kaltofen. Improved sparse multivariate polynomial interpolation algorithms. International Sympo-
sium on Symbolic and Algebraic Computation, 1988.

[21] J. A. Fessler and B. P. Sutton. Nonuniform Fast fourier transforms using min-max interpolation. IEEE Trans.
Signal Proc., 51:560–574, 2003.

[22] G. B. Folland. Fourier Analysis and Its Applications. Brooks/Cole Publishing Company, 1992.

[23] M. Frigo and S. Johnson. The design and implementation of fftw3. Proceedings of IEEE 93 (2), pages 216–231,
2005.

[24] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse Fourier estimation via
sampling. ACM STOC, pages 152–161, 2002.

[25] A. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal sparse Fourier represen-
tations. Proceedings of SPIE Wavelets XI, 2005.

[26] A. C. Gilbert and M. J. Strauss. Group testing in statistical signal recovery. preprint, 2006.

[27] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic linear dimension reduction in the l1
norm for sparse vectors. preprint, 2006.

[28] P. Indyk. Explicit constructions of selectors and related combinatorial structures, with applications. In SODA ’02:
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 697–704, Philadel-
phia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[29] P. Indyk. Explicit constructions for compressed sensing of sparse signals. In Proc. of ACM-SIAM symposium on
Discrete algorithms (SODA’08), 2008.

[30] M. A. Iwen. A deterministic sub-linear time sparse fourier algorithm via non-adaptive compressed sensing
methods. In Proc. of ACM-SIAM symposium on Discrete algorithms (SODA’08), 2008.

[31] M. A. Iwen, A. C. Gilbert, and M. J. Strauss. Empirical evaluation of a sub-linear time sparse DFT algorithm.
Communications in Mathematical Sciences, 5(4), 2007.

[32] M. A. Iwen and C. V. Spencer. Improved bounds for a deterministic sublinear-time sparse fourier algorithm. In
Conference on Information Sciences and Systems (CISS), 2008.

27



[33] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific Computing. China Machine Press,
2003.

[34] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk. Analog-to-
information conversion via random demodulation. Proc. IEEE Dallas Circuits and Systems Conference, 2006.

[35] S. Kunis and H. Rauhut. Random Sampling of Sparse Trigonometric Polynomials II - Orthogonal Matching
Pursuit versus Basis Pursuit. Foundations of Computational Mathematics, 8(6):737–763, 2008.

[36] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss. Random sampling for
analog-to-information conversion of wideband signals. Proc. IEEE Dallas Circuits and Systems Conference,
2006.

[37] J.-Y. Lee and L. Greengard. The type 3 nonuniform FFT and its applications. J Comput. Phys., 206:1–5, 2005.

[38] M. Lustig, D. Donoho, and J. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magnetic Resonance in Medicine, 58(6):1182–1195, Dec. 2007.

[39] R. Maleh, A. C. Gilbert, and M. J. Strauss. Signal recovery from partial information via orthogonal matching
pursuit. IEEE Int. Conf. on Image Processing, 2007.

[40] S. Mallet. A Wavelet Tour of Signal Processing. China Machine Press, 2003.

[41] Y. Mansour. Learning boolean functions via the fourier transform. Theoretical Advances in Neural Computation
and Learning, pages 391–424, 1994.

[42] Y. Mansour. Randomized approxmation and interpolation of sparse polynomials. SIAM Journal on Computing,
24:2, 1995.

[43] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[44] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical Com-
puter Science, 1, 2005.

[45] S. Muthukrishnan. Some Algorithmic Problems and Results in Compressed Sensing. Allerton Conference, 2006.

[46] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal
matching pursuit. Foundations of Computational Mathematics, 9:317–334, 2009.

[47] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An Introduction to The Theory of Numbers. John Wiley &
Sons, Inc., 1991.

[48] L. Rabiner, R. Schafer, and C. Rader. The Chirp z-Transform Algorithm. IEEE Transactions on Audio and
Electroacoustics, AU-17(2):86–92, June 1969.

[49] M. Rudelson and R. Vershynin. Sparse reconstruction by convex relaxation: Fourier and gaussian measurements.
In 40th Annual Conference on Information Sciences and Systems (CISS), 2006.

[50] J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans.
Info. Theory, 53(12):4655–4666, Dec. 2007.

28


