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ABSTRACT. In this paper modified variants of the sparse Fourier transform algorithms from [32] are presented which im-
prove on the approximation error bounds of the original algorithms. In addition, simple methods for extending the improved
sparse Fourier transforms to higher dimensional settings are developed. As a consequence, approximate Fourier transforms
are obtained which will identify a near-optimal k-term Fourier series for any given input function, f : [0, 2π]D

→ C, in
O

(
k2
·D4

)
time (neglecting logarithmic factors). Faster randomized Fourier algorithm variants with runtime complexities

that scale linearly in the sparsity parameter k are also presented.

1. INTRODUCTION

This paper develops fast methods for finding near-optimal nonlinear approximations to the Fourier transform of
a given continuous and periodic function f : [0, 2π]D

→ C.1 Suppose that f is a bandlimited so that its Fourier
transform, f̂ : ZD

→ C, is zero for all ω < (−N/2,N/2]D, where ND is large. An optimal k-term trigonometric
approximation to f is given by

(1) f opt
k (x) =

k∑
j=1

f̂
(
ω j

)
e
iω j·x

where ω1, . . . ,ωND ∈ (−N/2,N/2]D
∩ ZD are ordered by the magnitudes of their Fourier coefficients so that∣∣∣ f̂ (ω1)

∣∣∣ ≥ ∣∣∣ f̂ (ω2)
∣∣∣ ≥ · · · ≥ ∣∣∣ f̂ (ωND )

∣∣∣.
The optimal k-term approximation error is then ‖ f − f opt

k ‖2 = ‖ f̂ − f̂ opt
k ‖2.2 Suppose k ∈ N is given. The goal of this

paper is to develop Fourier approximation schemes that are guaranteed to always return a near-optimal trigonometric
polynomial, yk : [0, 2π]D

→ C, having ‖ f − yk‖2 ≈ ‖ f − f opt
k ‖2. Furthermore, we require that the developed schemes

are fast, with runtime complexities that scale polylogarithmically in ND and at most quadratically in k. Such Fourier
algorithms will then be able to approximate the Fourier series of a given function more quickly than traditional Fast
Fourier Transform (FFT) methods [18, 11] whenever ND >> k is large. More specifically, the developed schemes
will lead to Fourier approximation algorithms with runtime complexities that scale polynomially in D, as opposed to
exponentially.

The Fourier approximation techniques developed in this paper improve on previous Fourier methods developed in
[32]. As an example, suppose for simplicity that f : [0, 2π]→ C is a bandlimited function of only one variable so that
the sequence of its Fourier coefficients is effectively a vector in CN, f̂ ∈ CN (i.e., f is a trigonometric polynomial).
Furthermore, let k < N be given. The main theorem in [32] implicitly proves that O(k2 log4 N) function evaluations
and runtime are sufficient to produce a sparse approximation, ŷk ∈ C

N, to f̂ satisfying∥∥∥f̂ − ŷk

∥∥∥
2
≤

∥∥∥f̂ − f̂opt
k

∥∥∥
2

+ 3
√

k
∥∥∥f̂ − f̂opt

k

∥∥∥
1
,

where f̂opt
k ∈ CN is the truncated sequence of Fourier coefficients of the function defined in Equation 1 (with D = 1).

This error bound is unsatisfying for several reasons. Principally, if many of the Fourier coefficients of f are roughly

1Sometimes, for the sake of brevity, we will refer to the sequence of Fourier series coefficients of a function f : [0, 2π]D
→ C as the Fourier

transform of f , denoted by f̂ .
2Here we define f̂ opt

k to be the Fourier transform of the function f opt
k : [0, 2π]D

→ C defined in Equation 1. Note that f̂ opt
k will have at most k

nonzero coefficients.



the same magnitude, the approximation error bound above can actually increase with k, the number of nonzero terms
in the sparse approximation ŷk. If nothing else, we would like to improve these error guarantees so that additional
computational effort can always be counted on to yield better error bounds.

Let p, q ∈ [1,∞). We will say that y ∈ CN satisfies an lp, lq/k1/q−1/p error bound with respect to f̂ ∈ CN if

(2)
∥∥∥f̂ − y

∥∥∥
p ≤

∥∥∥f̂ − f̂opt
k

∥∥∥
p +

∥∥∥f̂ − f̂opt
k

∥∥∥
q

k1/q−1/p .

More generally, we will refer to any error bound of the form given in Equation 2 as an instance optimal error bound
for f̂ (e.g., see [17]). In this paper the sparse approximation result discussed in the previous paragraph is improved
by showing that O(k2 log4 N) function samples and runtime are sufficient to produce an approximation satisfying an
l2, l1/

√
k error bound with respect to the Fourier transform of any N-bandlimited function f : [0, 2π] → C. This

decreases the “
√

k
∥∥∥f̂ − f̂opt

k

∥∥∥
1
” term in the previous error bound [32] by a multiplicative factor of k. As a result, the

Fourier methods obtained herein have error bounds which decrease monotonically with k (i.e., more sample/runtime
usage always leads to better error guarantees).

In addition to improving on their counterparts in [32], the results developed herein allow us to improve on the
previously best known theoretical runtime bounds for Fourier algorithms capable of achieving instance optimal error
bounds along the lines of Equation 2. To the best of our knowledge, Theorem 7 and Corollary 4 represent improve-
ments over previously existing runtime complexity guarantees concerning instance optimal Fourier approximation in
the deterministic and Monte Carlo settings, respectively (see Section 1.2 below). These improvements in guarantees
concerning functions of a single variable are then extended to the problem of estimating instance optimal Fourier
approximations for functions of several variables (see Section 1.3 below).

1.1. Methods. The Fourier algorithms developed in [32] were obtained by utilizing modified combinatorial construc-
tions related to group testing matrices [24]. These combinatorial constructions where then combined with improved
variants of deterministic compressed sensing techniques due to Cormode et al. [19, 20, 39] which were then adapted
to the Fourier setting. In this paper we improve the algorithms developed in [32] by combining the approach of [32]
with techniques based on rectangular matrices with low coherence (see [22]). This results in sampling sets with a
stronger set of combinatorial properties (see [5] for more about these properties and their relationship to coherence,
unbalanced expander graphs, and restricted isometry properties). After modifying the algorithms (and, to a much
larger extent, their analysis) from [32] to take advantage of these improved properties, we are able to obtain instance
optimal l2, l1/

√
k error bounds. Finally, a more careful application of results from analytic number theory allows us

to also obtain explicit sampling bounds for all the algorithms presented herein. These, in turn, inform tighter bounds
on the runtime complexities of our algorithms. Ultimately, these considerations not only allow us to improve on the
results of [32], but also allow us to improve on previously established runtime complexity bounds [37, 28, 29, 15, 27]
for instance optimal sparse Fourier approximation of functions of a single variable.

After developing our Fourier approximation algorithms for functions of one variable in Sections 3 through 5 below,
we extend them to functions of several variables in Section 6 via techniques similar to those briefly outlined in [29]
(see also [25]). The resulting multidimensional Fourier transform methods automatically inherit the benefits of our
improved results concerning functions of a single variable. As a consequence, the Fourier methods for functions
of many variables obtained in Section 6 improve on the runtime complexity bounds of previous multidimensional
Fourier approximation algorithms having instance optimal error guarantees [37, 29, 36, 46]. Furthermore, we obtain
the first known (to the best knowledge of this author) deterministic multidimensional Fourier transform having both
(i) deterministic instance optimal error guarantees, and (ii) a subexponential runtime complexity in the number of
variables, D.

1.2. Results and Related Work: Functions of a Single Variable. Sparse Fourier approximation algorithms with
instance optimal error bounds were first developed by Mansour for function learning problems [37]. Similar Fourier
algorithms based on discrepancy methods [16] were then developed by Akavia et al. for cryptographic applications [3,
1, 2]. However, although related to the work of Mansour, these methods do not have associated instance optimal error
bounds.3 Later, Gilbert et al. optimized the runtime dependence of such fast sparse Fourier methods on the sparsity
parameter, k [28, 29]. For several years their Fourier algorithm [29] remained the only sublinear-time Fourier algorithm

3One can show that these methods can recover Fourier approximations, y ∈ CN , for f̂ which satisfy
∥∥∥f̂ − y

∥∥∥
2 ≤ C · ‖f̂‖1/

√
k (here C is a

universal constant). However, these methods appear to require runtime scaling like O(k≥3 log≥6 N) to guarantee such error bounds.
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with instance optimal error bounds that was guaranteed to use a number of samples/runtime that scaled linearly in the
sparsity parameter. In this paper we present another such algorithm which improves on the runtime/sampling bounds
of Gilbert et al.’s Fourier methods by log N factors (discussed more below).4

Other related work includes results concerning matrices with the Restricted Isometry Property (RIP) [15, 27]. RIP
results have spurred the development of many methods which can accurately approximate the Fourier transform of
a function despite being given access to only a very small number of samples. Informally, an m × N matrix M
has the RIP of order k ∈ N if it acts as a near isometry for all vectors, x ∈ CN, which contain at most k nonzero
entries. Particularly important for our purposes is that RIP matrices of order 2k serve as good measurement matrices
for sparsely approximating vectors in CN. SupposeM is an m × N matrix with the RIP of order 2k. Then, for any
x ∈ CN, a variety of computational methods including l1-minimization [13, 14, 15], Orthogonal Matching Pursuit
[51, 36], Regularized Orthogonal Matching Pursuit [41, 42], Iterative Hard Thresholding [10], etc., will take Mx
as input and subsequently output another vector, y ∈ CN, satisfying an instance optimal error bound with respect
to x (e.g., an l2, l1/

√
k error bound). Hence, matrices satisfying an appropriate RIP condition can serve as efficient

measurement operators capable of capturing enough information about any input vector in order to allow it to be
accurately approximated.

The most pertinent RIP result to approximate Fourier recovery as considered here states that a rectangular matrix
constructed by randomly selecting a small set of rows from an N × N inverse discrete Fourier transform matrix will
have the RIP with high probability.5 The following theorem was proven in [49] and subsequently generalized and
improved in [47].

Theorem 1. (See [49]). Suppose we select m rows uniformly at random from the rescaled N × N Inverse Discrete
Fourier Transform (IDFT) matrix 1

√
mN

Ψ−1, where(
Ψ−1

)
i, j

= e
2πi·i· j

N ,

and form the m × N submatrixM. If m is Ω
(
k · log N · log2 k · log(k log N)

)
thenM will have the RIP of order k

with high probability.

Let Ψ be the N × N Discrete Fourier Transform (DFT) matrix defined by Ψi, j = 1
N · e

−2πi·i· j
N , f : [0, 2π] → C be a

given N-bandlimited function (i.e., a trigonometric polynomial of degree N/2), and f ∈ CN be the vector of N equally
spaced samples from f on [0, 2π]. In this case Theorem 1 tells us that collecting the m function samples determined
byMΨf will be sufficient to accurately approximate the discrete Fourier transform of f with high probability. More
precisely, ifMf̂ =MΨf is input to a recovery algorithm known as CoSaMP [40] the following theorem holds.

Theorem 2. (See [40]). Suppose that M is a m × N measurement matrix formed by selecting m = Θ(k · log4 N)
rows from the N ×N IDFT matrix, Ψ−1, uniformly at random. Furthermore, assume thatM satisfies the RIP of order
2k.6 Fix precision parameter η ∈ R and let u =MΨf be measurements collected for any given f ∈ CN. Then, when
executed with u as input, CoSaMP will output a 2k-sparse vector, y ∈ CN, satisfying∥∥∥f̂ − y

∥∥∥
2
≤ Const ·max

{
η,

1
√

k
·

∥∥∥f̂ − f̂ opt
k

∥∥∥
1

}
,

where f̂ opt
k is a best possible k-term approximation for f̂ = Ψf. The required runtime is O

(
N log N · log

(
‖f ‖2 /η

))
.

In effect, Theorem 2 promises that CoSaMP will locate 2k of the dominant entries in f̂ if given access to Θ(k ·
log4 N) samples from f . If f̂ contains 2k significant frequencies whose Fourier coefficients collectively dominate
all others combined, then these most significant frequencies will be found and their Fourier coefficients will be well
approximated. If f̂ has no dominant set of 2k entries then CoSaMP will return a sparse representation which is
guaranteed only to be trivially bounded. However, in such cases sparse Fourier approximation is a generally hopeless
task anyways and a bounded, albeit poor, sparse representation is the best one can expect. In any case, as long as
the random function samples correspond to a matrix with the RIP, CoSaMP will output a vector satisfying an instance

4Recent empirical evaluations [50] of these two methods also indicate that the Fourier algorithms developed herein are faster in practice than
previous algorithms [33] based on the methods of Gilbert et al..

5It is also worth noting that entirely deterministic Fourier RIP matrices with weaker sampling complexity bounds also exist (see, e.g., [31, 4]).
6Note that this is true with high probability by Theorem 1.
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Fourier Result w.h.p./D Runtime Function Samples Error Guarantee
Theorem 6 D O(N · k · log2 N) O(k2

· log2 N) l2, l1/
√

k
CoSaMP [40] ≈D O(N · log N) O(k · log4 N) [49, 27] l2, l1/

√
k + η

Corollary 3 w.h.p. O
(
N · log N

)
O

(
k · log2 N

)
l2, l1/

√
k

Theorem 7 D O(k2
· log4 N) O(k2

· log4 N) l2, l1/
√

k
Random Sampling [29] w.h.p. O

(
k · logO(1)(N)

)
O

(
k · logO(1)(N)

)
l2, l2 + η

Corollary 4 w.h.p. O
(
k · log4 N

)
O

(
k · log4 N

)
l2, l1/

√
k

Optimal Algorithm D Ω (k) Ω (k) [17] l2, l1/
√

k
TABLE 1. Sparse Fourier Approximation Algorithms with Instance Optimal Error Guarantees

optimal error bound with respect to f̂. However, the required runtime will always be Ω(N). More generally, all existing
Fourier recovery methods based on RIP conditions have superlinear runtime complexity in N.

The previously mentioned Fourier algorithms of Gilbert et al. for approximating f̂ ∈ CN given sampling access to
f ∈ CN work by utilizing random sampling techniques [28, 29]. These approaches simultaneously obtain both instance
optimal error guarantees, and runtime complexities that scale sublinearly in N. However, they generally also require
more function samples than recovery algorithms which utilize matrices satisfying the RIP. A variant of the following
Fourier sampling theorem, concerning the sparse approximation of f̂ provided access to equally spaced samples from
a trigonometric polynomial f : [0, 2π]→ C, is proven in [29].

Theorem 3. (See [29]). Fix precision parameters η, τ ∈ R+ and probability parameter λ ∈ (0, 1). There exists a
randomized sampling algorithm which, when given sampling access to an input signal f ∈ CN, outputs a k-sparse
representation y for f̂ satisfying ∥∥∥f̂ − y

∥∥∥
2
≤

√

1 + τ ·max
{
η,

∥∥∥f̂ − f̂ opt
k

∥∥∥
2

}
with probability at least 1 − λ. Here f̂ opt

k is a best possible k-sparse representation for f̂. Both the runtime and
sampling complexities are bounded above by

k · polynomial
(
log

( 1
λ

)
, log

(
1
η

)
, log ‖A‖2, log N,

1
τ

)
.

It is important to note that the probabilistic guarantee of recovering an accurate sparse representation provided by
Theorem 3 is a nonuniform per signal guarantee. In contrast, Fourier approximation procedures which rely on RIP ma-
trices provide uniform probability guarantees for all possible input vectors. If a set of sample positions corresponds to
an N×N IDFT submatrix with the RIP property, those sample positions will allow the accurate Fourier approximation
of all possible input vectors f ∈ CN.

In this paper several Fourier algorithms are developed which obtain instance optimal approximation guarantees.
See Table 1 for a comparison of the results obtained herein with Theorems 2 and 3 when applied to the problem of
approximating the Fourier coefficients, f̂ ∈ CN, of a trigonometric polynomial of degree N/2, f . The first column of
Table 1 lists the Fourier results considered, while the second column lists whether the recovery algorithm in question
guarantees an instance optimal output Deterministically (D), or With High Probability (w.h.p.) per signal. Note
that CoSaMP7 has an “≈ D” listed in its second column. This denotes that the RIP results utilized in Theorem 2
provide a uniform probability guarantee, although no explicit constructions of RIP matrices satisfying these bounds
are currently known. The third and fourth columns of Table 1 contain the sampling and runtime complexities of the
algorithms, respectively. For simplicity some of the bounds were simplified by ignoring precision parameters, etc..8

Finally, the fifth column of Table 1 lists the instance optimal approximation guarantees achievable by each algorithm

7We used CoSaMP as a representative for all RIP based recovery algorithms because, for the purposes of Table 1 at least, it matches the currently
best achievable runtime, sampling, and error bound performance characteristics of all the other previously mentioned RIP-based methods in the
Fourier setting.

8The O(N · log N) runtime listed for Corollary 3 will hold if k is O(N/ log2 N). More generally, the runtime will always be O(N · log3 N).
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Fourier Result w.h.p./D Runtime Function Samples Error Guarantee
Basis Pursuit ≈D NO(D) O

(
k ·D · log4 N

)
[46] l2, l1/

√
k

Random Sampling [29] w.h.p. k ·
(
D log N

)O(1) k ·
(
D log N

)O(1) l2, l2 + η

Theorem 8 D O
(
k2
·D4
· log4(ND)

)
O

(
k2
·D4
· log4(ND)

)
l2, l1/

√
k

Theorem 8 w.h.p. O
(
k ·D4

· log4(ND)
)

O
(
k ·D4

· log4(ND)
)

l2, l1/
√

k
TABLE 2. Sparse Fourier Approximation Algorithms for Functions of Several Variables

when budgeted the number of samples and time listed in the third and fourth columns. The “+η” in the CoSaMP and
Random Sampling rows remind us that their theoretical error bounds are good up to an additive precision parameter.

The last row of Table 1 lists lower bounds for the runtime and sampling complexity of any algorithm guaranteed
to achieve an instance optimal l2, l1/

√
k Fourier approximation error (see [17]). Note that all six approaches have

sampling complexities containing additional multiplicative logarithmic factors of N beyond the stated lower sampling
bound.9 The lowest overall sampling complexity is achieved by Corollary 3, although, it is achieved at the expense
of a weak nonuniform “w.h.p.” approximation probability guarantee. Similarly, Corollary 4 improves on the previous
theoretical sampling/runtime complexity bounds of the sparse Fourier algorithm in [29].10 Finally, to the best of the
author’s knowledge, Theorem 7 obtains the best available runtime complexity of any existing deterministic Fourier
approximation algorithm which is guaranteed to achieve an instance optimal error guarantee.

1.3. Results and Related Work: Functions of Several Variables. Many existing methods (e.g., [6, 12, 8, 7]) for ap-
proximating functions of several variables, f : [0, 2π]D

→ R, aim to produce approximations of f , f̃ : [0, 2π]D
→ R,

which are ε-close to f in a given norm (e.g., ‖ f − f̃ ‖2 ≤ ε). Generally, the error guarantees associated with such
methods are of the min-max type over all functions f in a particular function space (i.e., over all functions of a par-
ticular smoothness). Examples of such methods include those based on sparse grids (e.g., see [6, 12]), and statistical
methods based on random sampling (e.g., see [8, 7]). Although these methods successfully limit the curse of dimen-
sionality for ε-close approximation problems over fairly general classes of functions, they still generally necessitate
O(2D) samples/runtime to do so. Furthermore, a substantial amount of work in information based complexity (see,
e.g., [44]) indicates that this exponential sampling/runtime dependence on D is unavoidable for many natural classes
of functions (e.g., for convex and monotone functions [30]).

In this paper we consider instance optimal approximation of functions of many variables (i.e., approximation along
the lines of Equations 1 and 2) instead of min-max approximation over classes of functions. In some sense, instance
optimal error bounds allow one to guarantee the best approximation results possible for any given function in terms of a
fixed function dictionary (e.g., in terms the Fourier basis in the case of this paper).11 This allows one to both (i) provide
a clear tradeoff between the sampling/runtime complexity of an approximation scheme and its resulting approximation
error, and (ii) derive better approximation error bounds in some cases by taking advantage of function sparsity in terms
of the given function dictionary (when such sparsity exists). Of course, if the function to be approximated does not
admit a sufficiently accurate sparse representation in terms of the function dictionary under consideration, the methods
developed herein will also suffer from the curse of dimensionality. However, as mentioned above, this is unavoidable
when one is interested in working over many natural classes of functions.

As mentioned above, several Fourier approximation methods with associated instance optimal error guarantees exist
for functions of many variables [37, 29, 36, 46]. These methods fall into two categories: methods based on random
sampling (e.g., [37, 29]), and methods based on restricted isometry properties [36, 46]. Both of these approaches result
from an extension of the associated sparse Fourier approximation techniques for functions of a single variable (see
Section 1.2 above) to the higher dimensional setting. Table 2 compares these existing Fourier approximation methods
for functions of several variables to those developed in Section 6 of this paper. The first column of Table 2 lists the

9The theoretical upper bound for the sampling complexity of the Sparse Fourier algorithm presented in [29] scales like Ω(k · log5 N). The actual
algorithm may require fewer samples, however.

10It must be remembered, however, that the algorithm presented in [29] enjoys a stronger approximation error guarantee up to its additive
precision parameter η.

11In fact, DeVore et al. have shown that the type of instance optimal Fourier error bounds we consider herein also produce near-optimal min-max
bounds over certain classes of functions [21].
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Fourier approximation results summarized in the table.12 As in Table 1, the second column of Table 2 lists whether the
recovery algorithm in question guarantees an instance optimal output Deterministically (D), or With High Probability
(w.h.p.) per signal. Note that Basis Pursuit has an “≈ D” listed in its second column. This indicates that [46] utilizes
sampling sets with associated RIP properties for which only randomized constructions are currently known. The third
and fourth columns of Table 1 contain simplified sampling and runtime complexities of the algorithms, respectively.
These bounds indicate the complexities associated with approximating a bandlimited function f : [0, 2π]D

→ C

having a Fourier transform, f̂ : ZD
→ C, that is zero for all ω < (−N/2,N/2]D. Finally, the fifth column of

Table 1 lists the instance optimal approximation guarantees achievable by each algorithm when budgeted the number
of samples and time listed in the third and fourth columns. The “+η” in the Random Sampling row indicates that these
theoretical error bounds are good up to an additive precision parameter.

Looking at the last row of Table 2 we can see that Theorem 8 obtains the best theoretical runtime complexity
guarantee of any existing method.13 Furthermore, to the best knowledge of this author, Theorem 8 represents the
first known deterministic Fourier approximation algorithm having both (i) an instance optimal error guarantee, and (i)
a o(ND) runtime complexity guarantee. It is worth noting, however, that the random sampling approaches [37, 29]
obtain stronger l2, l2 instance optimal error guarantees (up to their additive precision parameters). Furthermore, Basis
Pursuit has the smallest theoretical sampling complexity.

The remainder of this paper is organized as follows: In Section 2 the notation utilized throughout the remainder
of the paper is established. Next, in Section 3, a number theoretic matrix construction is presented and analyzed.
Section 3.1 explains how random submatrices of the presented number theoretic matrices can yield nonuniform prob-
abilistic approximation guarantees, while Section 3.2 outlines a useful relationship between these matrices and the
Fourier transform of a periodic function. In Section 4 the matrices defined in Section 3 are used to construct Fourier
approximation algorithms for functions of a single variable. Although these algorithms have runtime complexities that
scale superlinearly in N, their sampling complexities scale sublinearly (i.e., Theorem 6 and Corollary 3 are proven).
Next, in Section 5, the algorithms of Section 4 are modified into algorithms with runtime complexities that also scale
sublinearly in N (i.e., Theorem 7 and Corollary 4 are proven). In Section 6 a simple strategy is given for extending
the results of the previous two sections to higher dimensional Fourier transforms (i.e., Theorem 8 is proven). Finally,
a short conclusion is presented in Section 7.

2. NOTATION AND SETUP

Below we will consider any function whose domain, I, is both ordered and countable to be a vector. Let x : I→ C.
In this case we will say that x ∈ C|I|, and that xi = x(i) ∈ C for all i ∈ I. We will denote the lp norm of any such vector,
x, by

‖x‖p =

∑
i∈I

|xi|
p


1
p

, for p ∈ [1,∞).

If x is an infinite vector (i.e., if I is countably infinite), we will say that x ∈ lp if ‖x‖p is finite. Without loss of generality,
we will assume that a given x ∈ CN is indexed by I = [0,N)∩Z unless indicated otherwise. The vector 1N ∈ C

N will
always denote the vector of N ones, and 0N ∈ C

N with always denote the vector of N zeros.
For any given x ∈ C|I| and subset S ⊆ I, we will let xS ∈ C

|I| be equal to x on S and be zero everywhere else. Thus,

(xS)i =

{
xi if i ∈ S,
0 otherwise .

Furthermore, for a given integer k < |I|, we will let Sopt
k ⊂ I be the first k element subset of I in lexicographical order

with the property that |xs| ≥ |xt| for all s ∈ Sopt
k and t ∈ I \ Sopt

k . Thus, Sopt
k contains the indices of k of the largest

magnitude entries in x. Finally, we will define xopt
k to be xSopt

k
, a best k-term approximation to x.

In this paper we will be considering methods for approximating the sequence of Fourier coefficients of a given
periodic function, f : [0, 2π]D

→ C. We will denote the Fourier transform of f by f̂ : ZD
→ C, where

f̂ (ω) =
1

(2π)D

∫
x∈[0,2π]D

e
−iω·x f (x) dx for all ω ∈ ZD.

12We chose the result from each category which has the best theoretical runtime/sampling complexity guarantees.
13The constant power on the (D log N)-term in the analysis of the sampling/runtime complexity of the algorithm developed in [29] is at least 5.
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Note that f̂ is a sequence indexed by the elements of ZD. We also have the inverse relationship

f (x) =
∑
ω∈ZD

f̂ (ω) eiω·x for all x ∈ [0, 2π]D.

Thus, we learn f in the process of approximating its Fourier transform.
We call each ω ∈ ZD a Fourier mode or frequency, and f̂ (ω) its corresponding Fourier coefficient. Ultimately,

we will restrict our attention to the Fourier modes of f inside some finite bandwidth. We will do this by identifying,

and then estimating the Fourier coefficients of the most energetic Fourier modes in
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]D
∩ ZD for a given

bandwidth value N ∈ N. Toward this end, define the vector f̂ ∈ CND
by

f̂ω = f̂ (ω) for all ω ∈
(
−

⌈N
2

⌉
,
⌊N

2

⌋]D

∩ Z
D.

Similarly, define ¯̂f : ZD
→ C to be the Fourier transform of the related optimal bandlimited approximation to f . More

precisely, let

¯̂f (ω) = f̂(−d N
2 e,b

N
2 c]

D
∩ZD =

 f̂ (ω) if ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]D
∩ ZD,

0 otherwise

for all ω ∈ ZD. We will approximate f̂ by approximating f̂. However, in order to do so we must first construct a
special class of matrices.

3. A SPECIALIZED MEASUREMENT MATRIX CONSTRUCTION

We consider m × N measurement matrices, Ms1,K, constructed as follows. Select K pairwise relatively prime
integers beginning with a given s1 ∈ N and denote them by

(3) s1 < · · · < sK.

We will produce a row r j,h, where j ∈ [1,K] ∩N and h ∈ [0, s j) ∩N, inMs1,K for each possible residue, h, of each s j

integer. The nth entry of each r j,h row, n ∈ [0,N) ∩N, is given by

(r j,h)n = δ
(
(n − h) mod s j

)
=

{
1 if n ≡ h mod s j
0 otherwise .(4)

We then set

(5) Ms1,K =



r1,0
r1,1
...
r1,s1−1
...
rK,sK−1


.

The result is an
(
m =

∑K
j=1 s j

)
×N matrix with binary entries. See Figure 1 for an example measurement matrix.

The matrices constructed above using relatively prime integers have many useful properties. As we shall see later
in Section 4, these properties cumulatively allow the accurate recovery of Fourier sparse signals. We require two
additional definitions before we may continue. Let n ∈ [0,N) ∩N. We defineMs1,K,n to be the K ×N matrix created
by selecting the K rows ofMs1,K with nonzero entries in the nth column. Furthermore, we defineM′s1,K,n to be the
K × (N − 1) matrix created by deleting the nth column ofMs1,K,n. Thus, we have

(6) Ms1,K,n =


r1, n mod s1

r2, n mod s2

...
rK, n mod sK


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—————————————————————————
n ∈ [0,N) ∩N 0 1 2 3 4 5 6 . . .

n ≡ 0 mod 2
n ≡ 1 mod 2
n ≡ 0 mod 3
n ≡ 1 mod 3
n ≡ 2 mod 3
...
n ≡ 1 mod 5
...



1 0 1 0 1 0 1 . . .
0 1 0 1 0 1 0 . . .
1 0 0 1 0 0 1 . . .
0 1 0 0 1 0 0 . . .
0 0 1 0 0 1 0 . . .

...
0 1 0 0 0 0 1 . . .

...


FIGURE 1. An Example Matrix created using s1 = 2, s2 = 3, s3 = 5, . . .

—————————————————————————

and

(7) M
′
s1,K,n =


(r1,n mod s1 )0 (r1,n mod s1 )1 . . . (r1,n mod s1 )n−1 (r1,n mod s1 )n+1 . . . (r1,n mod s1 )N−1
(r2,n mod s2 )0 (r2,n mod s2 )1 . . . (r2,n mod s2 )n−1 (r2,n mod s2 )n+1 . . . (r2,n mod s2 )N−1

...
(rK,n mod sK )0 (rK,n mod sK )1 . . . (rK,n mod sK )n−1 (rK,n mod sK )n+1 . . . (rK,n mod sK )N−1

 .
We have the following two lemmas.

Lemma 1. Let n, k̄ ∈ [0,N) ∩N and x ∈ CN−1. Then, at most k̄
⌊
logs1

N
⌋

of the K entries ofM′s1,K,n · x will have
magnitude greater than or equal to ‖x‖1/k̄.

Proof:

We have that ∣∣∣∣∣{ j
∣∣∣∣∣ ∣∣∣∣(M′s1,K,n · x

)
j

∣∣∣∣ ≥ ‖x‖1
k̄

}∣∣∣∣∣ ≤ k̄
‖x‖1

∥∥∥M′s1,K,n · x
∥∥∥

1
≤ k̄ · ‖M′s1,K,n‖1

by the Markov Inequality. Focusing now onM′s1,K,n we can see that

(8)
∥∥∥M′s1,K,n

∥∥∥
1

= max
l∈[0,N−1)∩N

K∑
j=1

∣∣∣∣(M′s1,K,n
)

j,l

∣∣∣∣ = max
l∈[0,N−1)∩N

K∑
j=1

δ
(
(n − l) mod s j

)
≤

⌊
logs1

N
⌋

by the Chinese Remainder Theorem (see [43]). The result follows. 2

Lemma 2. Let n, k̃ ∈ [0,N)∩N, S ⊂ [0,N)∩N with |S| ≤ k̃, and x ∈ CN−1. Then,M′s1,K,n · x andM′s1,K,n · (x − xS)
will differ in at most k̃

⌊
logs1

N
⌋

of their K entries.

Proof:

We have that∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′
s1,K,n · x

)
j ,

(
M
′
s1,K,n · (x − xS)

)
j

}∣∣∣∣∣ =

∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′
s1,K,n · xS

)
j , 0

}∣∣∣∣∣ ≤ ∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′
s1,K,n · (1N−1)S

)
j ≥ 1

}∣∣∣∣∣
since all the entries ofM′s1,K,n are nonnegative integers. Applying Lemma 1 with x = (1N−1)S and k̄ =

∥∥∥(1N−1)S

∥∥∥
1

= |S|
finishes the proof. 2

Combining these two Lemmas we obtain a general theorem concerning the accuracy with which we can approxi-
mate any entry of an arbitrary complex vector x ∈ CN using only entries ofMs1,K · x.
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Theorem 4. Let n, k, s1 ∈ [0,N) ∩N, ε−1
∈ N+, c ∈ [2,∞) ∩N, and x ∈ CN. Set K = c · (k/ε)

⌊
logs1

N
⌋

+ 1. Then,

more than c−2
c · K of the K entries ofMs1,K,n · x will estimate xn to within

ε·
∥∥∥∥x−xopt

(k/ε)

∥∥∥∥
1

k accuracy.

Proof:

Define y ∈ CN−1 to be y = (x0, x1, . . . , xn−1, xn+1, . . . , xN−1). We have that

Ms1,K,n · x = xn · 1K +M′s1,K,n · y.

Applying Lemma 2 with k̃ = (k/ε) reveals that at most (k/ε)
⌊
logs1

N
⌋

entries of M′s1,K,n · y differ from M′s1,K,n ·(
y − yopt

(k/ε)

)
. Of the remaining K − (k/ε)

⌊
logs1

N
⌋

entries ofM′s1,K,n · y, at most (k/ε)
⌊
logs1

N
⌋

will have magnitudes

greater than or equal to ε
∥∥∥∥y − yopt

(k/ε)

∥∥∥∥
1
/k by Lemma 1. Hence, at least

K − 2(k/ε)
⌊
logs1

N
⌋
≥ (c − 2)(k/ε)

⌊
logs1

N
⌋

+ 1 >
c − 2

c
· K

entries ofM′s1,K,n · y will have a magnitude no greater than

ε ·
∥∥∥∥y − yopt

(k/ε)

∥∥∥∥
1

k
≤

ε ·
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1

k
.

The result follows. 2

We will now study the number of rows, m =
∑K

j=1 s j, in our measurement matrix under the Theorem 4 assumption

that K = c · (k/ε)
⌊
logs1

N
⌋

+ 1 for some constant integer c ∈ [2,∞) and given values of s1 = (k/ε),N ∈ N+. Given
this assumption concerning K, we wish to bound the smallest possible sum, m, resulting from all possible choices of
pairwise relatively prime s j values. We will do this by bounding m for one particular set of s j values.

Let pl be the lth prime natural number. Thus, we have

(9) p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . .

Next, define q ∈ N so that

(10) pq−1 < (k/ε) ≤ pq.

We will use the first K primes no smaller than (k/ε) to define our relatively prime s j values for the purposes of bounding
m. Hence, for the remainder of Section 3 we will have

(11) s1 =
k
ε
≤ pq < s2 = pq+1 < · · · < sK = pq+K−1.

It follows from results in [34] that

(12) m =

K∑
j=1

s j ≤

K−1∑
j=0

pq+ j =
p2

q+K

2 ln pq+K
·

(
1 + O

(
1

ln pq+K

))
−

p2
q

2 ln pq
·

(
1 + O

(
1

ln pq

))
.

Furthermore, the Prime Number Theorem (see [43]) tells us that

q =
k

ε · ln(k/ε)

(
1 + O

(
1

ln(k/ε)

))
and

pq =
k
ε

(
1 + O

(
ln ln(k/ε)

ln(k/ε)

))
.

Thus, if we use K = c · (k/ε)
⌊
log(k/ε) N

⌋
+ 1 in order to constructM(k/ε),K we will have

q + K =
c · k

⌊
log(k/ε) N

⌋
ε

(
1 + O

( 1
ln N

))
.

9



Here we have assumed that (k/ε) + K is less than N. Applying the Prime Number Theorem once more we have that

(13) pq+K =
c · k

⌊
log(k/ε) N

⌋
· ln

(
k·ln N
ε

)
ε

1 + O

 ln ln
(

k ln N
ε

)
ln

(
k ln N
ε

) 
 .

Utilizing Equation 12 now yields

(14) m ≤
K−1∑
j=0

pq+ j =
c2
· k2

⌊
log(k/ε) N

⌋2
· ln

(
k·ln N
ε

)
2ε2

1 + O

 ln ln
(

k ln N
ε

)
ln

(
k ln N
ε

) 
 .

Hence, we have an asymptotic upper bound for the number of rows inM(k/ε),K. The next theorem, proven in Appen-
dix A, provides a concrete upper bound.

Theorem 5. Suppose that N, k, ε−1
∈ N \ {1} with N > k ≥ 2. Then, if we set K = c · (k/ε)

⌊
logs1

N
⌋

+ 1 for some
constant integer c ∈ [2,∞), there exists an m ×N measurement matrix,Ms1,K, with a number of rows

m <
3(c + 1.89)2

· k2
⌊
log(k/ε) N

⌋2

4 · ε2 · ln

 (c + 1.89) · k
⌊
log(k/ε) N

⌋
ε

 .
Tighter upper bounds for the number of rows may be explicitly calculated using Equations 35 – 38 below.

Proof: See Appendix A. 2

Theorems 4 and 5 collectively provide bounds for the number of rows a measurement matrixMs1,K may contain

and still be able to estimate any entry of a vector x ∈ CN to within a precision proportional to
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1
. These

bounds are universal in that they pertain to measurement matrices which are guaranteed to provide accurate estimates
for all entries of all vectors x ∈ CN. In the next section we will prove the existence of a small number ofMs1,K rows
which are guaranteed to provide precise estimates for any sufficiently small set of vector entries. We will also briefly
consider a randomized matrix construction based on uniformly sampling rows of the deterministic Ms1,K matrices
considered above. These results will ultimately motivate the development of sparse Fourier transforms with reduced
sampling requirements.

3.1. Randomized Row Sampling and Existence Results. In this section we will consider submatrices of the m×N
measurement matrices,Ms1,K, discussed above. More specifically, we will be discussing matrices formed by selecting
a small number of rows from anMs1,K matrix as follows. Let S̃ =

{
s j1 , s j2 , . . . , s jl

}
be a subset of the s j values used to

formMs1,K (see Equations 3 – 5). We will then defineMS̃ to be the
(
m̃ =

∑l
h̃=1 s jh̃

)
×N matrix,

(15) MS̃ =



r j1,0
r j1,1
...
r j1,s j1−1
...
r jl,s jl−1


,

with each row defined as per Equation 4. Finally, for n ∈ [0,N) ∩N, we defineMS̃,n to be the l ×N matrix,

(16) MS̃,n =


r j1,n mod s j1

r j2,n mod s j2
...
r jl,n mod s jl

 ,
along the lines of Equation 6. The following corollary of Theorem 4 demonstrates the existence of small submatrices
ofMs1,K capable of providing accurate approximations to any given subset of a given vector x ∈ CN.
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Corollary 1. Let k,N, ε−1
∈ N, S ⊆ [0,N) ∩ N, and x ∈ CN. Set K = c · (k/ε)

⌊
logs1

N
⌋

+ 1 for s1 ∈ N and a
constant integer c ∈ [4,∞). Form an m × N measurement matrixMs1,K as per Section 3. Then, there exists a subset
of O

(
log |S|

)
s j values forMs1,K,

S̃ =
{
s j1 , s j2 , . . . , s j

dlog(c/2)(|S|+1)e

}
,

with the following property: For all n ∈ S we have

min
s jh∈S̃

∣∣∣∣∣(MS̃,nx − xn · 1⌈
log(c/2)(|S|+1)

⌉)
h

∣∣∣∣∣ ≤ ε ·
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1

k
.

Proof:

We proceed by induction on the size of S ⊆ [0,N) ∩N. For the base case we assume |S| = 1 and apply Theorem 4
with n set to the single element of S. We then define S̃ to be a singleton set containing any one of the s j rows of
Ms1,K,n which approximates xn to the guaranteed precision. Now, suppose that the statement of Corollary 1 holds for
all subsets S ⊆ [0,N) ∩N with |S| ≤ a ∈ N+. Let S′ ⊆ [0,N) ∩N have |S′| ≤ a·c

2 . We will prove that the statement of
Corollary 1 holds for S′.

For each n ∈ S′ and j ∈ [1,K] ∩N we will count a ‘failure’ if∣∣∣∣(Ms1,K,nx
)

j − xn

∣∣∣∣ > ε ·
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1

k
.

Theorem 4 tells us that there will be fewer than (2/c) · K ‘failures’ for each element of S′, for a total of fewer than
2·|S′ |

c ·K collective ‘failures’ for all elements of S′. Clearly, at least one of the K s j values used to constructMs1,K must
‘fail’ for fewer than 2·|S′ |

c elements of S′. Let s′j be the s j value which ‘fails’ for the smallest number of elements of S′,

and let S′′ ⊂ S′ contain all the elements of S′ for which s′j ‘fails’. We can see that |S′′| < 2·|S′ |
c ≤ a. Our induction

hypothesis applied to S′′ together with the presence of s′j yields the desired result. 2

Corollary 1 demonstrates the existence of a small number of s j values which allow us to estimate every entry
of a given vector. However, it is apparently difficult to locate these s j values efficiently. The following corollary
circumvents this difficulty by showing that a small set of randomly selected s j values will still allow us to estimate all
entries of any given vector with high probability. Thus, in practice it suffices to select a random subset of the rows
from aMs1,K matrix.

Corollary 2. Let k,N, ε−1
∈ N+, σ ∈ [2/3, 1), S ⊆ [0,N) ∩ N, and x ∈ CN. Set K = c · (k/ε)

⌊
logs1

N
⌋

+ 1 for
s1 ∈ N and a constant integer c ∈ [14,∞). Form an m ×N measurement matrixMs1,K as per Section 3. Finally, form
a multiset of the s j values forMs1,K by independently choosing

(17) l =
⌈
21 · ln

(
|S|

1 − σ

)⌉
s j values uniformly at random with replacement. Denote this multiset of s j values by

S̃ =
{
s j1 , s j2 , . . . , s jl

}
.

Then, with probability at least σ the resulting random matrix, MS̃, will have the following property: For all n ∈ S
more than l/2 of the s jh ∈ S̃ (counted with multiplicity) will have

∣∣∣∣(MS̃,nx − xn · 1l

)
h

∣∣∣∣ ≤ ε ·
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1

k
.

Proof: See Appendix B. 2

Notice that Corollary 2 considers selecting a multiset of rows from aMs1,K measurement matrix. In other words,
some rows of the measurement matrix may be selected multiple times. If this occurs in practice, one should consider
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Algorithm 1 FAST MULTIPLY

1: Input: Function f , integers k < K < N, relatively prime s1, . . . , sK
2: Output: Es1,K · Ψ̃ ·A
3: for j from 1 to K do

4: Asj ← f (0), f
(

2π
s j

)
, . . . , f

(
2π(s j−1)

s j

)
5: Âsj ← FFT

[
Asj

]
6: end for
7: Output

(
Âs1 , Âs2 , . . . , ÂsK

)T

any multiply selected rows to be chosen more than once for counting purposes only. For example, during matrix
multiplication a multiply selected row should be processed only once in order to avoid duplication of labor. However,
the results of these calculations should be considered multiple times for the purposes of estimation (e.g., in the median
operations of Algorithm 2).

We will now consider these m×N matrices,Ms1,K, with respect to the discrete Fourier transform. In particular, we
will consider usingMs1,K to estimate the Fourier transform of a periodic function along the lines of Theorem 4. As we
shall see, the special number theoretic nature of our matrix constructions will allow us to estimate Fourier coefficients
of any periodic function by using a small number of function samples.

3.2. The Fourier Case. Suppose f : [0, 2π] → C is a complex valued function with f̂ ∈ l1. Let P be the least
common multiple of

{
N, s1, . . . , sK

}
and form a set of samples from f , A ∈ CP, with

Ap = f
(
p ·

2π
P

)
for p ∈ [0,P) ∩N.

Ultimately, we want to useMs1,K f̂ in order to estimate the entries of the N-length vector f̂. However, we must first
calculateMs1,K f̂. In the remainder of this section we will discuss how to calculateMs1,K f̂ ∈ Cm while using as few
samples from f as possible in the process.

To solve this problem we will use an extended version of our m ×N matrixMs1,K. This extended matrix, Es1,K, is
the m×P matrix formed by extending each row r j,h ofMs1,K as per Equation 4 for all p ∈ [0,P). We now consider the

product of Es1,K and the P × P discrete Fourier transform matrix, Ψ̃, defined by Ψ̃ω,p = 1
P · e

−2πi·ω·p
P . For each row r j,h

of Es1,K and column p of Ψ̃ we have

(18)
(
Es1,K · Ψ̃

)
r j,h,p

=
1
P

P
sj
−1∑

l=0

e
−2πi·p·(h+l·sj)

P =
e
−2πi·p·h

P

P

P
sj
−1∑

l=0

e
−2πi·p·l

P/sj =

 e
−2πi·p·h

P

s j
if p ≡ 0 mod P

s j

0 otherwise
.

Thus, Es1,K · Ψ̃ is highly sparse. In fact, we can see that each r j,h row contains only s j nonzero entries. Better still,
all the rows associated with a given s j have nonzero column entries in a pattern consistent with a small fast Fourier
transform. This aliasing phenomena results in a fast algorithm for computing Es1,K ·Ψ̃ ·A (see Algorithm 1). Lemma 3
shows that Es1,KΨ̃A is a good approximation to Ms1,K f̂ ∈ Cm for all periodic functions whose Fourier transforms
decay quickly enough.

Lemma 3. Every entry of Es1,KΨ̃A approximates the associated entry ofMs1,K f̂ to within
∥∥∥∥ f̂ − ¯̂f

∥∥∥∥
1

accuracy.

Proof:

Suppose that N is odd (the case for N even is analogous). Then, for all j ∈ [1,K] ∩N and h ∈ [0, s j) ∩N, we have
that ∣∣∣∣∣(Ms1,K f̂ − Es1,KΨ̃A

)
r j,h

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

l, |h+l·s j |≤
N−1

2

f̂h+l·s j −

∑
ω≡h mod s j

f̂ (ω)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

l, |h+l·s j |≤
N−1

2

f̂
(
h + l · s j

)
−

∑
ω≡h mod s j

f̂ (ω)

∣∣∣∣∣∣∣∣ .
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Algorithm 2 FOURIER APPROXIMATE 1

1: Input: k,N, ε−1
∈ N \ {1}, Function f , Measurement matrixMs1,K with K = 4 · (k/ε)

⌊
logs1

N
⌋
+ 1 (see Section 3)

2: Output: xS, an approximation to f̂ opt
k

3: Initialize S← ∅, x← 0N
4: Es1,KΨ̃A← Algorithm 1( f , k, K, N, s j values forMs1,K)
5: for ω from 1 −

⌈
N
2

⌉
to

⌊
N
2

⌋
do

6: Re {xω} ← median of multiset
{
Re

{(
Es1,K,ωΨ̃A

)
j

} ∣∣∣ 1 ≤ j ≤ K
}

7: Im {xω} ← median of multiset
{
Im

{(
Es1,K,ωΨ̃A

)
j

} ∣∣∣ 1 ≤ j ≤ K
}

8: end for
9: Sort x entries by magnitude so that |xω1 | ≥ |xω2 | ≥ |xω3 | ≥ . . .

10: S← {ω1, ω2, . . . , ω2k}

11: Output xS

Cancelling all Fourier coefficients for frequencies in
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩N we get that

(19)
∣∣∣∣∣(Ms1,K f̂ − Es1,KΨ̃A

)
r j,h

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

ω≡h mod s j, |ω|≥
N+1

2

f̂ (ω)

∣∣∣∣∣∣∣∣ ≤
∑
|ω|≥ N+1

2

∣∣∣ f̂ (ω)
∣∣∣ =

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1
. 2

By inspecting Equation 18 it is not difficult to see that Algorithm 1 utilizes exactly m − (K − 1) samples from f .
Considering this in combination with Theorem 5 in Section 3 leads us to the conclusion that Algorithm 1 samples f

at O
(

k2
·

⌊
log(k/ε) N

⌋2
·ln( k·ln N

ε )
ε2

)
distinct values. Similarly, we can see that Algorithm 1 runs in time O

(∑K
j=1 s j log s j

)
if we

calculate the FFTs using a chirp z-transform [45]. Thus, for well chosen s j values the runtime will be

O

 K∑
j=1

s j log s j

 = O

K−1∑
j=0

pq+ j log pq+ j

 = O
(
p2

q+K

)
(see [34])

= O

k2
· blog(k/ε) Nc2 · ln2

(
k·ln N
ε

)
ε2

(20)

using Equation 13. We will now demonstrate how the specialized m × N matrices,Ms1,K, along with their extended
m×P counterpart matrices, Es1,K, considered throughout Sections 3 and 3.2 can be utilized to construct accurate sparse
Fourier transform methods.

4. FOURIER RECONSTRUCTION

In this section we develop a sparse Fourier transform based on the measurement matrices considered in the previous
section. This sparse Fourier method is entirely dependent on the ability of our developed measurement matrices to
accurately estimate any entry of a vector with which they have been multiplied (i.e., Theorem 4). The idea behind the
algorithm is simple. We first quickly approximate the product of a Section 3 measurement matrix with the Fourier
transform of an input function using Algorithm 1. We then use the this product to accurately estimate all Fourier
entries, keeping only the largest magnitude estimates for our final sparse Fourier approximation. See Algorithm 2 for
pseudo code. Theorem 6 provides error, sampling, and runtime bounds for Algorithm 2.

Theorem 6. Suppose f : [0, 2π]→ C has f̂ ∈ l1. Let N, k, ε−1
∈ N \ {1} with N > (k/ε) ≥ 2. Then, Algorithm 2 will

output an xS ∈ C
N satisfying

(21)
∥∥∥f̂ − xS

∥∥∥
2
≤

∥∥∥f̂ − f̂ opt
k

∥∥∥
2

+
22ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

√
k

+ 22
√

k ·
∥∥∥∥ f̂ − ¯̂f

∥∥∥∥
1
.
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In the process f will be evaluated at less than

26.02 ·
k2

⌊
log(k/ε) N

⌋2

ε2 · ln

5.89 · k
⌊
log(k/ε) N

⌋
ε


points in [0, 2π]. The runtime of lines 5 through 11 is O

(
N · (k/ε) log(k/ε) N

)
.

Proof:

Fix ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z and let δ be set to

δ =
ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1
.

As a consequence of Theorem 4 and Lemma 3 we can see than more than half of the K = 4 · (k/ε)
⌊
logs1

N
⌋
+ 1 entries

of Es1,K,ωΨ̃A produced in line 4 will satisfy
∣∣∣∣(Es1,K,ωΨ̃A

)
j
− f̂ω

∣∣∣∣ ≤ δ. Therefore, the xω value produced by lines 6 and
7 will have

(22)
∣∣∣xω − f̂ω

∣∣∣ ≤ √2 · δ.

Since Equation 22 holds for all ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z we can begin to bound the approximation error by∥∥∥f̂ − xS

∥∥∥
2
≤

∥∥∥f̂ − f̂S

∥∥∥
2

+
∥∥∥f̂S − xS

∥∥∥
2
≤

∥∥∥f̂ − f̂S

∥∥∥
2

+ 2
√

k · δ

=

√√∥∥∥f̂ − f̂ opt
k

∥∥∥2

2
+

∑
ω∈Sopt

k \S

∣∣∣ f̂ω∣∣∣2 − ∑
ω̃∈S\Sopt

k

∣∣∣ f̂ω̃∣∣∣2 + 2
√

k · δ.(23)

In order to make additional progress on Equation 23 we must first consider the possible magnitudes of f̂ entries at
indices in S \ Sopt

k and Sopt
k \ S.

Suppose ω ∈ Sopt
k \ S , ∅ and let ω̃ ∈ S \ Sopt

k . Line 10 will only have placed ω̃ ∈ S instead of ω if |xω̃| ≥ |xω|.
However, this can only happen if∣∣∣ f̂ωk

∣∣∣ +
√

2 · δ ≥
∣∣∣ f̂ω̃∣∣∣ +

√

2 · δ ≥
∣∣∣ f̂ω∣∣∣ − √2 · δ ≥

∣∣∣ f̂ωk

∣∣∣ − √2 · δ.

In other words, all elements of S \ Sopt
k and Sopt

k \ S must index f̂ entries with roughly the same magnitude as the kth

largest magnitude entry of f̂ (up to a δ factor). Furthermore, since |S| = 2k we can see that |S \ Sopt
k | ≥ 2 · |Sopt

k \ S|. We
are now ready to give Equation 23 further consideration.

If Sopt
k \ S = ∅ we are finished. Otherwise, if Sopt

k \ S , ∅, we will have∑
ω̃∈S\Sopt

k

∣∣∣ f̂ω̃∣∣∣2 ≥ 2 · |Sopt
k \ S| ·

(∣∣∣ f̂ωk

∣∣∣ − 2
√

2 · δ
)2

= A,

and
B = |Sopt

k \ S| ·
(∣∣∣ f̂ωk

∣∣∣ + 2
√

2 · δ
)2
≥

∑
ω∈Sopt

k \S

∣∣∣ f̂ω∣∣∣2 .
If A ≥ B then we are again finished. If A < B then∣∣∣ f̂ωk

∣∣∣2 − 12
√

2δ ·
∣∣∣ f̂ωk

∣∣∣ + 8δ2 < 0

which can only happen if
∣∣∣ f̂ωk

∣∣∣ ∈ (
(6
√

2 − 8) · δ, (6
√

2 + 8) · δ
)
. Therefore, in the worse case we can continue to bound

Equation 23 by∥∥∥f̂ − xS

∥∥∥
2
≤

√∥∥∥f̂ − f̂ opt
k

∥∥∥2

2
+ k ·

(
8
√

2 + 8
)2
· δ2 + 2

√

k · δ ≤
∥∥∥f̂ − f̂ opt

k

∥∥∥
2

+ 22
√

k · δ.

The error bound in Equation 21 follows.
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The upper bound on the number of point evaluations of f follows directly from the application of Theorem 5 with
c = 4. Finding the largest 2k magnitude entries of x in lines 9 and 10 can be accomplished in O(N · log k) time by using
a binary search tree (see [35]). Therefore, the runtime of Algorithm 2 will be dominated by the median operations in
lines 6 and 7. Each of these medians can be accomplished in O(K) time using a median-of-medians algorithm (e.g.,
[23]). The stated O(N · K) runtime follows. 2

Note that the overall runtime behavior of Algorithm 2 will be dictated by both Equation 20 and the runtime stated
in Theorem 6. However, for most reasonable values of sublinear sparsity (i.e., whenever k/ε is O(N/ log3 N)) the total
runtime of Algorithm 2 will be O

(
N · (k/ε) log(k/ε) N

)
. One strategy for decreasing the runtime of Algorithm 2 is to

decrease the number of measurement matrix rows, K, required to accurately estimate each Fourier coefficient. Pursu-
ing this strategy also has the additional benefit of reducing the number of function evaluations required for approximate
Fourier reconstruction. However, in exchange for these improvements we will have to sacrifice approximation guar-
antees for a small probability of outputting a relatively inaccurate answer.

Following the strategy above we will improve the performance of Algorithm 2 by modifying its input measurement
matrix. Instead of inputing aMs1,K measurement matrix as constructed in Section 3 we will utilize a randomly con-
structedMS̃ measurement matrix as described in Section 3.1. Corollary 2 ensures that such a randomly constructed
MS̃ matrix will be likely to have all the properties ofMs1,K matrices that Algorithm 2 needs. Hence, with high proba-
bility we will achieve output from Algorithm 2 with the same approximation error bounds as derived for Theorem 6.
Formalizing these ideas we obtain the following Corollary proved in Appendix C.

Corollary 3. Suppose f : [0, 2π] → C has f̂ ∈ l1. Let σ ∈ [2/3, 1) and N, k, ε−1
∈ N \ {1} with N > (k/ε) ≥ 2.

Algorithm 2 may be executed using a matrix MS̃ from Section 3.1 in place of the matrix Ms1,K from Section 3 to
produce an output vector xS ∈ C

N which will satisfy Equation 21 with probability at least σ. In the process f will be
evaluated at less than

15.89 ·
⌈
21 · ln

( N
1 − σ

)⌉
·

k
⌊
log(k/ε) N

⌋
ε

·

ln

15.89 · k
⌊
log(k/ε) N

⌋
ε

 + ln ln

15.89 · k
⌊
log(k/ε) N

⌋
ε




points in [0, 2π]. The runtime of lines 5 through 11 will be O
(
N · log

(
N

1−σ

))
.

Proof: See Appendix C. 2

When executed with a random matrixMS̃ as input the overall runtime complexity of Algorithm 2 will be determined
by both the runtime stated in Corollary 3 and the runtime of Algorithm 1. Suppose S̃ is a subset of O

(
log

(
N

1−σ

))
s j

values defined as per Equations 9 – 11. Then, Algorithm 1 will have a runtime complexity of

O

∑
s j∈S̃

s j · log s j

 = O
(
pq+K · log pq+K · log

( N
1 − σ

))
(see Equation 13)

= O
(k · log(k/ε) N

ε
· log2

(
k · log N

ε

)
· log

( N
1 − σ

))
.(24)

Thus, Algorithm 2 executed with a random input matrix from Section 3.1 will have a total runtime complexity of
O

(
N · log

(
N

1−σ

))
whenever (k/ε) is O(N/ log3 N). If we now set the desired success probability, σ, to be 1 − 1/NO(1)

we obtain an overall O(N · log N) computational complexity for Algorithm 2. This matches the runtime behavior of a
standard fast Fourier transform while requiring asymptotically fewer function evaluations.

In the next section we will discuss methods for further decreasing the runtime requirements of Algorithm 2 while
maintaining its approximation guarantees (i.e., the error bound in Equation 21). As a result we will develop sublinear-
time Fourier algorithms that have both universal recovery guarantees and uniformly bounded runtime requirements.

5. DECREASING THE RUNTIME COMPLEXITY

LetA, B be m × N and m̃ × N complex valued matrixes, respectively. Then, their row tensor product,A ~ B, is
defined to be the (m · m̃)×N complex valued matrix created by performing component-wise multiplication of all rows
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ofA with all rows of B. More specifically,

(A ~B)i, j = Ai mod m, j · B i−i mod m
m , j.

In this section we will use the row tensor product of two types of specially constructed measurement matrices in order
to improve the runtime complexity of Algorithm 2. One of these matrix types will be theMs1,K measurement matrices
developed in Section 3. The other type of matrix is described in the next two paragraphs.

Suppose that an m × N measurement matrix,Ms1,K, is given. Furthermore, suppose that s1, . . . , sK ∈ N are such
that there exist λ integers, t1 < · · · < tλ < s1, with

λ∏
i=1

ti ≥
N
s1

that also have the property that the set

{t1, . . . , tλ, s1, . . . , sK}

is pairwise relatively prime. Note that such ti values can indeed be found if all the given s j values are prime numbers
and s1 ≥ log2 N ·

(
ln log2 N + ln ln log2 N

)
≥ pblog2 Nc for N ≥ 64 (see [26]). We will now demonstrate how to use

such ti values to create an m̃ ×N matrix,Nλ,s1 , along the lines of Section 3.
Create a row, r̃i,h, inNλ,s1 for each possible residue of each ti integer (i.e., r̃i,h has i ∈ [1, λ]∩N and h ∈ [0, ti)∩N).

The nth entry of each r̃i,h row, n ∈ [0,N) ∩N, will be

(r̃i,h)n = δ ((n − h) mod ti)

=

{
1 if n ≡ h mod ti
0 otherwise .(25)

We then define

(26) Nλ,s1 =



1N
r̃1,0
...
r̃1,t1−1
...
r̃λ,tλ−1


.

The result is an
(
m̃ = 1 +

∑λ
i=1 ti

)
×N matrix with binary entries. The following Lemma, proven in Appendix D, upper

bounds the smallest possible number of rows in any suchNλ,s1 matrix.

Lemma 4. Suppose that N, s1, . . . , sK ∈ N with

N
3
≥ s1 >

⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉
·

(
ln

⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉
+ ln ln

⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉)
,

and s1, . . . , sK containing no prime factors less than s1. Then, there exists a valid m̃ × N measurement matrix, Nλ,s1 ,
with a number of rows

m̃ <
3
4

(⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉
+ 1

)2

· ln
(⌈

3 ·
ln (N/s1)

ln ln (N/s1)

⌉
+ 1

)
+ 1.

The corresponding value of λ is d3 · ln(N/s1)/ ln ln(N/s1)e.

Proof: See Appendix D. 2

The (m · m̃)×N row tensor product matrix,Rλ,K =Ms1,K~Nλ,s1 , has several useful properties. First, the fact that the
first row ofNλ,s1 is the all-ones vector means thatRλ,K will contain a copy of every row ofMs1,K. Second, allRλ,K rows
that are not copies ofMs1,K rows will have the form r̄i, j,h = r j,h mod s j~ r̃i,h mod ti for some i ∈ [1, λ]∩N, j ∈ [1,K]∩N,
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and h ∈ [0, ti · s j)∩N. That is, the Chinese Remainder Theorem tells us that each such Rλ,K row will have its nth entry
given by

(r̄i, j,h)n = δ
(
(n − h) mod ti · s j

)
=

{
1 if n ≡ h mod ti · s j
0 otherwise .(27)

The end result is that Rλ,K maintains a rigid number theoretic structure. The following Lemma summarizes the most
important properties of Rλ,K =Ms1,K ~Nλ,s1 .

Lemma 5. Let k, ε−1, s1, λ,n ∈ [2,N) ∩ N, x ∈ CN, and K = 4 · (k/ε)
⌊
logs1

N
⌋

+ 1. Then, more than K
2 of the K

entries ofMs1,K,n · x will estimate xn to within δ̄ =
ε·
∥∥∥∥x−xopt

(k/ε)

∥∥∥∥
1

k precision. Furthermore, if r j′,n mod s j′ ∈ {0, 1}N is a row
ofMs1,K,n associated with one of these more than K

2 entries then it will have all of the following properties:

(1)
∣∣∣r j′,n mod s j′ · x − xn

∣∣∣ ≤ δ̄,

(2)
∣∣∣∣(r j′,n mod s j′ ~ r̃i,n mod ti

)
· x − xn

∣∣∣∣ =
∣∣∣r̄i, j′,n mod ti·s j′ · x − xn

∣∣∣ ≤ δ̄ for all i ∈ [1, λ] ∩N, and

(3)
∣∣∣∣(r j′,n mod s j′ ~ r̃i,h

)
· x

∣∣∣∣ =
∣∣∣∣r̄i, j′,h̄,n mod ti·s j′

· x
∣∣∣∣ ≤ δ̄ for all i ∈ [1, λ] ∩N and h ∈ [0, ti) ∩ (N − {n mod ti}).

Proof: See Appendix E. 2

Suppose f : [0, 2π] → C is a complex valued function with f̂ ∈ l1. It is not difficult to see that Rλ,K f̂ can be
approximated using Algorithm 1 from Section 3.2 since Rλ,K maintains the required number theoretic structure. We
will simply perform FFTs on arrays of function samples with sizes given by all possible ti · s j value products. The total
number of function samples taken will be at most m · m̃− (λ ·K + K− 1). For s j and ti values chosen as per Theorem 5
and Lemma 4, respectively, the runtime required by Algorithm 1 to approximate Rλ,K f̂ will be

O

 λ∑
i=1

K∑
j=1

ti · s j log s j

 = O

 λ∑
i=1

K−1∑
j=0

pi · pq+ j log pq+ j

 = O

p2
q+K · p

2
λ

ln pλ

 (see [34])

= O

k2
·

ln2 N · ln2
(

k·ln N
ε

)
· ln2

(
ε·N

k

)
ε2 · ln2

(
k
ε

)
· ln ln

(
ε·N

k

)  .(28)

The last equality follows from Equation 13 and the Prime Number Theorem. Finally, it is not difficult to see that the
precision guarantees of Lemma 3 will still hold for an Algorithm 1 approximation to Rλ,K f̂.

Perhaps most importantly, the number theoretic structure of Rλ,K also allows us to use methods analogous to those
outlined in Sections 1.1 and 5 of [32] to quickly identify frequencies with large magnitude Fourier coefficients in f̂ .
Suppose that

∣∣∣ f̂ω∣∣∣ is large relative to
∥∥∥ f̂

∥∥∥
1

(e.g., more than one tenth as large). In this case Lemma 5 above tells us that
f̂ω will also have a magnitude nearly as large as that of most entries ofMs1,K,ωf̂. Let r j,ω mod s j be the row ofMs1,K,ω

associated with one of theseMs1,K,ωf̂ entries dominated by f̂ω. By its construction we know that Rλ,K will not only
contain r j,ω mod s j , but also the related rows r̄1, j,ω mod t1·s j , . . . , r̄λ, j,ω mod tλ·s j . Furthermore, all λ + 1 entries of Rλ,K,ωf̂
associated with these rows will also be dominated by f̂ω (see Lemma 5). On the other hand, for each i ∈ [1, λ] ∩N
the

(
Rλ,K,ωf̂

)
r̄i, j,h,ω mod ti ·sj

entries will all be significantly smaller than f̂ω in magnitude. Hence, by comparing the relative

magnitudes of the entries in
(
r j,ω mod s j ~Nλ,s1

)
f̂ we can discern ω mod s j, ω mod t1 · s j, . . . , ω mod tλ · s j. The end

result is that ω can be recovered by inspecting Rλ,K,ωf̂. See [32] for a detailed discussion of a similar recovery
procedure. Utilizing these ideas we obtain Algorithm 3.

Note that Algorithms 2 and 3 are quite similar. The only significant difference between them is that Algorithm 2
estimates Fourier coefficients for all frequencies in the bandwidth specified by N whereas Algorithm 3 restricts itself
to estimating the Fourier coefficients for only a small number of frequencies it identifies as significant. Given these
similarities it should not be surprising that demonstrating the correctness of Algorithm 3 depends primarily on showing
that it can correctly identify all frequencies with coefficients that are sufficiently large in magnitude. This is established
in Lemma 6 below.
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Algorithm 3 FOURIER APPROXIMATE 2

1: Input: k,N, ε−1
∈ N \ {1}, Function f , An (m · m̃)×N measurement matrix Rλ,K with K = 4 · (k/ε)

⌊
logs1

N
⌋
+ 1

2: Output: xS, an approximation to f̂ opt
k

3: Initialize S← ∅, x← 0N
4: Gλ,KΨ̃A← Algorithm 1( f , k, K, N, s j and ti values for Rλ,K)
5: Es1,KΨ̃A← The m entries of Gλ,KΨ̃A that approximateMs1,K f̂

IDENTIFICATION OF FREQUENCIES WITH LARGE FOURIER COEFFICIENTS

6: for j from 1 to K do
7: for h from 0 to s j − 1 do
8: for i from 1 to λ do
9: bmin ← arg minb∈[0,ti)

∣∣∣∣∣(Es1,KΨ̃A
)

r j,h
−

(
Gλ,KΨ̃A

)
r̄i, j,h+b·sj

∣∣∣∣∣
10: a j,h,i ←

(
h + bmin · s j

)
mod ti

11: end for
12: Reconstruct ω j,h using that ω j,h ≡ h mod s j, ω j,h ≡ a j,h,1 mod t1, . . . , ω j,h ≡ a j,h,λ mod tλ
13: end for
14: end for

FOURIER COEFFICIENT ESTIMATION

15: for each ω j,h value reconstructed > K
2 times do

16: Re

{
xω j,h

}
← median of multiset

{
Re

{(
Gλ,K,ωj,hΨ̃A

)
j

} ∣∣∣ 1 ≤ j ≤ K · (λ + 1)
}

17: Im

{
xω j,h

}
← median of multiset

{
Im

{(
Gλ,K,ωj,hΨ̃A

)
j

} ∣∣∣ 1 ≤ j ≤ K · (λ + 1)
}

18: end for
19: Sort nonzero x entries by magnitude so that |xω1 | ≥ |xω2 | ≥ |xω3 | ≥ . . .
20: S← {ω1, ω2, . . . , ω2k}

21: Output xS

Lemma 6. Suppose that ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z is such that

∣∣∣ f̂ω∣∣∣ > 4 ·


ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1

 .
Then, lines 6 through 14 of Algorithm 3 will reconstruct ω more than K

2 times.

Proof:

Suppose that ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z has

∣∣∣ f̂ω∣∣∣ > 4δ where

δ =
ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1
.

Lemma 5 and Lemma 3 guarantee that
∣∣∣∣(Es1,K,ωΨ̃A

)
j
− f̂ω

∣∣∣∣ ≤ δ for more than K
2 entry indexes j. Furthermore, if

j′ ∈ [1,K] ∩ N is one of these more than K
2 indexes, then property (2) of Lemma 5 together with the preceding

discussion of Lemma 3 also ensures that

∣∣∣∣∣∣(Gλ,KΨ̃A
)

r̄i, j′ ,ω mod ti ·sj′
− f̂ω

∣∣∣∣∣∣ ≤ δ for all i ∈ [1, λ] ∩ N. Fix i ∈ [1, λ] ∩ N.

Thus, if b ∈ [0, ti) ∩N in line 9 of Algorithm 3 satisfies

(29) ω ≡
((
ω mod s j′

)
+ b · s j′

)
mod ti · s j′
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we can see that∣∣∣∣∣∣∣(Es1,KΨ̃A
)

r j′ ,ω mod sj′
−

(
Gλ,KΨ̃A

)
r̄

i, j′ ,(ω mod sj′ )+b·sj′

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣(Es1,KΨ̃A
)

r j′ ,ω mod sj′
− f̂ω + f̂ω −

(
Gλ,KΨ̃A

)
r̄i, j′ ,ω mod ti ·sj′

∣∣∣∣∣∣ ≤ 2δ.

Otherwise, if b ∈ [0, ti) ∩N does not satisfy Equation 29, property (3) from Lemma 5 in combination with Lemma 3
ensures that

2δ <
∣∣∣ f̂ω∣∣∣ − ∣∣∣∣∣∣(Es1,KΨ̃A

)
r j′ ,ω mod sj′

− f̂ω

∣∣∣∣∣∣ −
∣∣∣∣∣∣∣(Gλ,KΨ̃A

)
r̄

i, j′ ,(ω mod sj′ )+b·sj′

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣(Es1,KΨ̃A
)

r j′ ,ω mod sj′
− f̂ω + f̂ω −

(
Gλ,KΨ̃A

)
r̄

i, j′ ,(ω mod sj′ )+b·sj′

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣(Es1,KΨ̃A
)

r j′ ,ω mod sj′
−

(
Gλ,KΨ̃A

)
r̄

i, j′ ,(ω mod sj′ )+b·sj′

∣∣∣∣∣∣∣ .
Therefore, the b = bmin identified in line 9 of Algorithm 3 will be guaranteed to satisfy Equation 29 for all i ∈ [1, λ]∩N.

Once we have identified ωmod ti · s j′ in this fashion we can find ωmod ti in line 10 of Algorithm 3 by computing(
ω mod ti · s j′

)
mod ti. Finally, by construction, the set {t1, . . . , tλ, s j′ } both has a collective product larger than N,

and is pairwise relatively prime. Therefore, the Chinese Remainder Theorem guarantees that line 12 of Algorithm 3
will indeed correctly reconstruct ω when j = j′ and h = ω mod s j′ . 2

With Lemma 6 in hand we are now prepared to prove that Algorithm 3 can indeed recover near-optimal sparse
Fourier representations in sublinear-time. We begin by using Lemma 6 to show that all sufficiently energetic frequen-
cies are guaranteed to be identified. Hence, the only way Algorithm 3 will not include an optimal Fourier representation
frequency in its output is if the frequency is either (i) insufficiently energetic to be identified, or (ii) gets identified,
but is then mistakenly estimated to have a smaller magnitude Fourier coefficient than many other somewhat energetic
frequencies. In the case of (i) it is forgivable to exclude the frequency given that it must have a Fourier coefficient with
a relatively small magnitude. In the case of (ii) we make up for the exclusion of a truly energetic frequency term by
including many other less significant, but still fairly energetic, frequency terms in its place. Carefully combining these
ideas leads us to the error, sampling, and runtime bounds for Algorithm 3 stated in Theorem 7 below.

Theorem 7. Suppose f : [0, 2π]→ C has f̂ ∈ l1. Let N, k, ε−1
∈ N \ {1} with N > (k/ε) ≥ 2. Then, Algorithm 3 will

output an xS ∈ C
N satisfying

(30)
∥∥∥f̂ − xS

∥∥∥
2
≤

∥∥∥f̂ − f̂ opt
k

∥∥∥
2

+
22ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

√
k

+ 22
√

k ·
∥∥∥∥ f̂ − ¯̂f

∥∥∥∥
1
.

Under the conditions of Lemma 4, f will be evaluated at less than

19.52 ·
k2

⌊
log(k/ε) N

⌋2

ε2 · ln

5.89 · k
⌊
log(k/ε) N

⌋
ε

 ·

(⌈

3 ·
ln (εN/k)

ln ln (εN/k)

⌉
+ 1

)2

· ln
(⌈

3 ·
ln (εN/k)

ln ln (εN/k)

⌉
+ 1

)
+

4
3


points in [0, 2π]. The runtime of lines 6 through 21, as well as the number of f -evaluations, is O

(
k2
·log2 N·log( k·ln N

ε )·log2( εNk )
log2( k

ε )·ε2·log log( εNk )

)
.

Proof: See Appendix F. 2

The overall runtime behavior of Algorithm 3 is determined by both the runtime of Algorithm 1 as called in line
4 of Algorithm 3, and the runtime stated in Theorem 7. The overall runtime complexity of Algorithm 3 is therefore
given in Equation 28. As in Section 4 above, both this runtime and the number of function evaluations required for
approximate Fourier reconstruction can be decreased by reducing the number of measurement matrix rows (i.e., Rλ,K
rows) used to estimate each Fourier coefficient. This effectively replaces K in Algorithm 3 with a significantly smaller
value (e.g., the value l from Corollary 2). However, in exchange for the resulting runtime improvements we will once
again have to sacrifice approximation guarantees for a small probability of outputting a highly inaccurate answer.

Following the strategy above, we will improve the performance of Algorithm 3 by modifying its utilized measure-
ment matrix as follows: Instead of using aMs1,K matrix as constructed in Section 3 to build Rλ,K =Ms1,K ~Nλ,s1 , we
will instead use a randomly constructedMS̃ matrix as described in Section 3.1 to buildRλ,S̃ =MS̃~Nλ,s1 . Corollary 2
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combined with the proof of Lemma 5 ensures that such a randomly constructed measurement matrix, Rλ,S̃, will be
likely to have all the properties of Rλ,K matrices that Algorithm 3 needs to function correctly. Hence, with high prob-
ability we will receive output from Algorithm 3 with the same approximation error bounds as derived for Theorem 7.
Formalizing these ideas we obtain the following Corollary proven in Appendix G.

Corollary 4. Suppose f : [0, 2π] → C has f̂ ∈ l1. Let σ ∈ [2/3, 1) and N, k, ε−1
∈ N \ {1} with N > (k/ε) ≥ 2.

Algorithm 3 may be executed using a random matrix, Rλ,S̃ = MS̃ ~ Nλ,s1 , in place of the deterministic matrix,
Rλ,K = Ms1,K ~ Nλ,s1 , considered above. In this case Algorithm 3 will produce an output vector, xS ∈ C

N, that
satisfies Equation 30 with probability at least σ. Both the runtime of lines 6 through 21 and the number of points in
[0, 2π] at which f will be evaluated are

O
(

k
ε
· log3 N · log

( N
1 − σ

))
.

Explicit upper bounds on the number of point evaluations are easily obtained from the proof below.

Proof: See Appendix G. 2

When executed with a random matrix, Rλ,S̃, as input the overall runtime complexity of Algorithm 3 will be deter-
mined by both the runtime stated in Corollary 4 and the runtime of Algorithm 1. Suppose S̃ is a subset of O

(
log

(
N

1−σ

))
s j values defined as per Equations 9 – 11. Then, Algorithm 1 will have a runtime complexity of

O


λ∑

i=1

∑
s j∈S̃

ti · s j log s j

 = O

pq+K · log pq+K · p2
λ

log pλ
· log

( N
1 − σ

) (see [34], Corollary 2)

= O

k · log(k/ε) N · log2
( k·log N

ε

)
· ln2

(
ε·N

k

)
ε · ln ln

(
ε·N

k

) · log
( N

1 − σ

) (see Equation 13, Lemma 4).(31)

Thus, if we are willing to fail with probability at most 1 − σ = 1/NO(1), then Algorithm 3 executed with a random
input matrix will have a total runtime complexity of O

(
(k/ε) · log4 N · log

( k·log N
ε

))
.

6. HIGHER DIMENSIONAL FOURIER TRANSFORMS

In this section we will consider methods for approximating the Fourier transform of a periodic function of D vari-
ables, f : [0, 2π]D

→ C. To begin, we will demonstrate how to approximate the Fourier transform of f by calculating
the discrete Fourier transform of a related one-dimensional function, fnew : [0, 2π]→ C. This dimensionality reduc-
tion technique for multidimensional Fourier transforms will ultimately enable us to quickly approximate f̂ by applying
the methods of Section 5 to f ’s related one dimensional function fnew. The end result will be a set of algorithms for
approximating f̂ whose runtimes scale polynomially in the input dimension D.

Suppose that the Fourier transform of f above, f̂ : ZD
→ C, is near zero for all integer points outside of the

D-dimensional cubic lattice ([−M/2,M/2] ∩ Z)D. In order to help us approximately recover f̂ we will choose D
pairwise relatively prime integers, P1, . . . ,PD ∈ N, with the property that Pd > M · D for all d ∈ [1,D] ∩ N. Set
Ñ =

∏D
d=1 Pd. Furthermore, let y−1 mod p

∈ [0, p) ∩ N denote the multiplicative inverse of
(
y mod p

)
∈ Zp when it

exists. Note that y−1 mod p will exist whenever y is relatively prime to p.
We may now define the function fnew : [0, 2π]→ C to be

(32) fnew(x) = f
(

Ñ
P1

x,
Ñ
P2

x, . . . ,
Ñ
PD

x
)
.

Considering the Fourier transform of fnew we can see that

f̂new(ω) =
1

2π

∫ 2π

0
e
−iωx fnew(x) dx =

1
2π

∑
(ω1,...,ωD)∈ZD

f̂ (ω1, . . . , ωD)
∫ 2π

0
e
−ix

(
ω−

∑D
d=1

Ñ
Pd
ωd

)
dx

=
∑

(ω1,...,ωD)∈ZD s.t. ω=
∑D

d=1
Ñ
Pd
ωd

f̂ (ω1, . . . , ωD) .(33)
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Recall that we are primarily interested in capturing the information about f̂ inside ([−M/2,M/2] ∩ Z)D. Looking at
the ω ∈ Z for which f̂new can impacted by (ω1, . . . , ωD) ∈ ([−M/2,M/2] ∩ Z)D we can see that

|ω| ≤
D∑

d=1

∣∣∣∣∣∣ωdÑ
Pd

∣∣∣∣∣∣ ≤ D∑
d=1

MÑ
2Pd

<
D∑

d=1

Ñ
2D

=
Ñ
2
.

Hence, we may consider fnew to have an effective bandwidth of Ñ.
More importantly, there is a bijective correspondence between the integer lattice points, (ω1, . . . , ωD) ∈ ([−M/2,M/2] ∩ Z)D,

and their representative frequency, ω ∈ [−Ñ/2, Ñ/2] ∩ Z, in f̂new. Define the function

g :
(
−

P1

2
,

P1

2

]
∩N × · · · ×

(
−

PD

2
,

PD

2

]
∩N→

(
−

Ñ
2
,

Ñ
2

]
∩N

to be

g(x1, . . . , xD) =

 D∑
d=1

(
Ñ
Pd

)
· xd

 mod Ñ.

The Chinese Remainder Theorem tells us that g is a well-defined bijection. Furthermore, it is not difficult to see that

g−1(x) =
(
x ·

(
Ñ/P1

)−1 mod P1
mod P1, . . . , x ·

(
Ñ/PD

)−1 mod PD
mod PD

)
.

Thus, we have f̂new(ω) ≈ f̂
(
g−1(ω)

)
.

We now have a three-step algorithm for finding a sparse Fourier approximation for any function f : [0, 2π]D
→

C. All we must do is: (i) Implicitly create fnew as per Equation 32, (ii) Use the techniques from Section 5 to
approximate f̂new, and then (iii) Use the approximation for f̂new to approximate f̂ via Equation 33. The following
theorem summarizes some of the results one can achieve by utilizing this approach.

Theorem 8. Suppose f : [0, 2π]D
→ C is bandlimited so that f̂ (ω1, . . . , ωD) = 0 if (ω1, . . . , ωD) <

(
[−M

2 ,
M
2 ] ∩ Z

)D
.

Define Ñ as above and suppose that Ñ, k, ε−1
∈ N − {1} with Ñ > (k/ε)2

≥ 4. Then, Algorithm 3 combined with the
bijective mapping, g, above will output an xS ∈ C

Ñ satisfying

(34)
∥∥∥ f̂ −

(
xS ◦ g

)∥∥∥
2
≤

∥∥∥ f̂ − f̂ opt
k

∥∥∥
2

+
22ε ·

∥∥∥∥ f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

√
k

.

Both the runtime of lines 6 – 21, and the number of points in [0, 2π]D at which f will be evaluated, will be

O

k2
·D4
· log4(MD)

log
(

k
ε

)
· ε2

 .
If succeeding with probability σ ∈ [2/3, 1) is sufficient, and Ñ > (k/ε) ≥ 2, Algorithm 3 may instead be executed

using a random matrixRλ,S̃. In this case Algorithm 3 will produce an output vector, xS ∈ C
Ñ, that satisfies Equation 34

with probability at least σ. Both the runtime of lines 6 – 21, and the number of points in [0, 2π]D at which f will be
evaluated, will be

O
(

k ·D4

ε
· log3(MD) · log

( MD
1 − σ

))
.

Finally, if an exponential runtime of Ω
(
(DM)D

)
is acceptable, we note that both Theorem 6 and Corollary 3 can

also be adapted to recovering f : [0, 2π]D
→ C by substituting N with Θ

(
(MD)D

)
everywhere in their statements.

Proof: See Appendix H. 2

Note that traditional FFT algorithms (e.g., [18, 45, 9]) require Ω
(
MD

)
-time to calculate the Fourier transform of

a bandlimited function f : [0, 2π]D
→ C. In contrast, Theorem 8 allows us to approximate f̂ using exponentially

fewer (in D) operations. Hence, if f has a relatively sparse Fourier representation (e.g., if f̂ is dominated by k = Mo(D)

energetic frequencies), Theorem 8 allows f̂ to be accurately approximated much more quickly than possible using
standard techniques.

21



7. CONCLUSION

In conclusion, it is worth pointing out that the methods developed in this paper for approximating the Fourier
transforms of periodic functions are also applicable to the approximation of functions which have accurate sparse
representations in related bases. For example, all the theorems proven herein will also apply to functions with sparsely
representable Cosine or Chebyshev expansions (see [11] for an in depth discussion of the relationships between these
series expansions). Hence, we have also implicitly constructed sublinear-time algorithms for approximating these
related transforms.
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APPENDIX A. PROOF OF THEOREM 5

Let π(n) be the number of primes no greater than n. In [26] it is shown that

n
ln n

(
1 +

0.992
ln n

)
≤ π(n) ≤

n
ln n

(
1 +

1.2762
ln n

)
for all n ≥ 599. Using this result (in combination with numerical tests for n < 600) we obtain the following bounds
for q + K and q (see Equation 11).

(35) q+K ≤ π(k/ε)+K +1 ≤
k
⌊
log(k/ε) N

⌋
ε

c +
1

ln(k/ε) ·
⌊
log(k/ε) N

⌋ +
1.2762

ln2(k/ε) ·
⌊
log(k/ε) N

⌋ +
2 · ε

k ·
⌊
log(k/ε) N

⌋ .
and

(36) q ≥ π(k/ε) ≥ max
{

k
ε · ln(k/ε)

(
1 +

0.992
ln(k/ε)

−
8.85 · ε

k

)
, 1

}
.
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Continuing, we can bound m if our s j values are chosen to be primes as above by noting that

q−1∑
j=1

p j ≥

q−1∑
j=1

j · ln( j) (see [26])

≥

∫ q−1

1
x · ln x dx ≥

(q − 1)2

2

(
ln(q − 1) −

1
2

)
(37)

and
q+K−1∑

j=1

p j ≤ 10 +

q+K−1∑
j=4

j · ln(p j) (see [26])

≤ 10 + ln(pq+K) ·

q+K−1∑
j=4

j

 ≤ (q + K − 1)(q + K)
2

· ln
(
(q + K) ·

(
ln(q + K) + ln ln(q + K)

) )
(see [26])(38)

≤
3
4

(q + K)2
· ln(q + K).(39)

Using Equation 35 together with Equation 39 finishes the proof. More specifically, we have thatc +
1

ln(k/ε) ·
⌊
log(k/ε) N

⌋ +
1.2762

ln2(k/ε) ·
⌊
log(k/ε) N

⌋ +
2 · ε

k ·
⌊
log(k/ε) N

⌋ ≤
(
c +

1
ln 4

+
1.2762

ln2 4
+

1
2

)
≤ (c + 1.89).

Therefore, we can see that

m ≤
q+K−1∑

j=1

p j ≤
3(c + 1.89)2

· k2
⌊
log(k/ε) N

⌋2

4 · ε2 · ln

 (c + 1.89) · k
⌊
log(k/ε) N

⌋
ε


as we wished to prove.

APPENDIX B. PROOF OF COROLLARY 2

We prove the result via an argument similar to the one used to prove Lemma 2 in [32]. Fix n ∈ S. We will
select our multiset of s j values, S̃, by independently choosing l elements of {s1, s2, . . . , sK} uniformly at random with
replacement. The first element chosen for S̃ will be denoted s j1 , the second s j2 , and so forth. Let Qn

h be the random
variable indicating whether the s jh value selected for S̃ satisfies

(40)
∣∣∣∣(Ms1,K,nx

)
jh − xn

∣∣∣∣ ≤ ε ·
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1

k
.

Therefore,

Qn
h =

{
1 if s jh satisfies Property 40
0 otherwise .

Theorem 4 tells us that P
[
Qn

h = 1
]
> 6

7 . Furthermore, µ = E
[∑l

h=1 Qn
h

]
≥

6·l
7 .

Using the Chernoff bound (see [38]) we get that the probability of

l∑
h=1

Qn
h <

4 · l
7

is less than e−
µ
18 ≤ e−

l
21 ≤

1−σ
|S| . Since l > 21 we can see that

∑l
h=1 Qn

h will be less than l+1
2 with probability less than

1−σ
|S| . Hence, Property 40 will be satisfied by more than l/2 of the s jh ∈ S̃ with high probability. Applying the union

bound shows that the majority of the entries in S̃ will indeed satisfy Property 40 for all n ∈ S with probability at least
σ. The result follows.
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APPENDIX C. PROOF OF COROLLARY 3

Apply Corollary 2 with c = 14, x = f̂, and S =
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩Z to obtain S̃, a multiset of

⌈
21 · ln

(
N

1−σ

)⌉
s j values.

With probability at least σ more than half (with multiplicity) of the entries of MS̃, ωf̂ will estimate f̂ω to within

(ε/k) ·
∥∥∥∥f̂ − f̂ opt

(k/ε)

∥∥∥∥
1

precision for all ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z. Furthermore,MS̃f̂ can still be approximately computed

using Algorithm 1 if only the unique s j values in S̃ are given as the relatively prime inputs. In this case Lemma 3 will
also still hold. Taken all together we can see that with probability at least σ all N xω values produced by lines 6 and 7
of Algorithm 2 will have

∣∣∣xω − f̂ω
∣∣∣ ≤ √2 ·


ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1

 .
The Equation 21 error bound now follows from the proof of Theorem 6.

To upper bound the number of required function evaluations we will bound the number of rows for a particularMS̃

matrix constructed with primes as per Section 3. In particular, we will assume that S̃ contains at most
⌈
21 · ln

(
N

1−σ

)⌉
individual s j values defined as in Equations 9 – 11 with K = 14 · (k/ε)

⌊
logs1

N
⌋
+ 1. In this case Equation 35 together

with results from [26] tell us that sK is at most

(41) 15.89 ·
k
⌊
log(k/ε) N

⌋
ε

·

ln

15.89 · k
⌊
log(k/ε) N

⌋
ε

 + ln ln

15.89 · k
⌊
log(k/ε) N

⌋
ε


 .

The stated upper bound on the number of required function evaluations follows. The stated runtime follows from the
fact that each line 6 and 7 median now only involves O

(
log

(
N

1−σ

))
values.

APPENDIX D. PROOF OF LEMMA 4

We can always set t1 = p1 < · · · < tλ = pλ. In this case we require that pλ < s1 ≤ the smallest prime factor of
s1, . . . , sK. Secondly, we require that

∑λ
i=1 ln pi ≥ ln

(
N
s1

)
. Using results from [48] it is easily verified that

λ∑
i=1

ln pi ≥ λ · (lnλ − 1)

for all λ ∈ N+. Setting λ =
⌈
3 ln

(
N
s1

)
/ ln ln

(
N
s1

)⌉
in the equation above we can see that

λ∑
i=1

ln pi ≥ ln
(N

s1

)
· 3

1 −
ln ln ln

(
N
s1

)
ln ln

(
N
s1

)  ≥ ln
(N

s1

)
as long as N/s1 ≥ 3. Hence, if we choose our ti values to be the first λ primes the second requirement will be satisfied.

Results from [26] then tell us that

tλ = pλ ≤ pd3 ln(N/s1)/ ln ln(N/s1)e ≤

⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉
·

(
ln

⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉
+ ln ln

⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉)
< s1.

Therefore, the prime ti values we have selected will also satisfy the first requirement above. To bound the smallest
possible number of rows we note that

m̃ ≤ 1 +

⌈
3 ln

(
N
s1

)
/ ln ln

(
N
s1

)⌉∑
i=1

pi ≤
3
4

(⌈
3 ·

ln (N/s1)
ln ln (N/s1)

⌉
+ 1

)2

· ln
(⌈

3 ·
ln (N/s1)

ln ln (N/s1)

⌉
+ 1

)
+ 1 (see Equation 39).

The stated result follows.
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APPENDIX E. PROOF OF LEMMA 5

In addition to x we will also consider y ∈ CN defined by

yn′ = |xn′ | for all n′ ∈ [0,N) ∩N.

Note that y and x will not only share the same optimal (k/ε)-term support subset, Sopt
(k/ε) ⊂ [0,N) ∩ N, but will also

have
∥∥∥∥x − xopt

(k/ε)

∥∥∥∥
1

=
∥∥∥∥y − yopt

(k/ε)

∥∥∥∥
1
. Theorem 4 tells us that more than K

2 entries ofMs1,K,n · y will estimate yn to within

ε·
∥∥∥∥y−yopt

(k/ε)

∥∥∥∥
1

k = δ̄ =
ε·
∥∥∥∥x−xopt

(k/ε)

∥∥∥∥
1

k precision. Let
(
Ms1,K,n · y

)
j′ for j′ ∈ [1,K] ∩N be one of these K

2 entries. The proof of
Lemma 2 tells us that the row associated with this entry also has the property that∣∣∣∣(Ms1,K,n · x

)
j′ − xn

∣∣∣∣ ≤ ∑
n′≡n mod s j′ , n′<Sopt

(k/ε), n′,n

yn′ =
∣∣∣∣(Ms1,K,n · y

)
j′ − yn

∣∣∣∣ ≤ δ̄.
Therefore, we have established property (1).

Considering property (2) for this j′ we can see that for all i ∈ [1, λ] ∩N we will have

∣∣∣r̄i, j′,n mod ti·s j′ · x − xn

∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑

n′≡n mod ti·s j′ , n′<Sopt
(k/ε), n′,n

xn′

∣∣∣∣∣∣∣∣∣ ≤
∑

n′≡n mod ti·s j′ , n′<Sopt
(k/ε), n′,n

yn′

≤

∑
n′≡n mod s j′ , n′<Sopt

(k/ε), n′,n

yn′ =
∣∣∣∣(Ms1,K,n · y

)
j′ − yn

∣∣∣∣ ≤ δ̄.
Finally, to verify property (3) we can bound

∣∣∣∣(r j′,n mod s j′ ~ r̃i,h

)
· x

∣∣∣∣ from above for all i ∈ [1, λ] ∩N and h ∈ [0, ti) ∩
(N \ {n mod ti}) by∣∣∣∣∣∣∣∣∣

∑
n′≡n mod s j′ , n′≡h mod ti, n′<Sopt

(k/ε)

xn′

∣∣∣∣∣∣∣∣∣ ≤
∑

n′≡n mod s j′ , n′<Sopt
(k/ε), n′,n

yn′ =
∣∣∣∣(Ms1,K,n · y

)
j′ − yn

∣∣∣∣ ≤ δ̄.
Hence, we can see that all three properties will indeed hold for at least K

2 rows ofMs1,K,n.

APPENDIX F. PROOF OF THEOREM 7

Let δ be defined as

δ =
ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1
.

Furthermore, suppose j ∈ [1,K] ∩N and h ∈ [0, s j) correspond to an ω j,h ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z which is reconstructed

more than K
2 times by line 12 of Algorithm 3. As a consequence of Lemmas 3 and 5 we can see than more than half

of the entries of Gλ,K,ω j,hΨ̃A produced in line 4 will satisfy
∣∣∣∣(Gλ,K,ω j,hΨ̃A

)
j
− f̂ω j,h

∣∣∣∣ ≤ δ. Therefore, the xω j,h value
produced by lines 16 and 17 will have

(42)
∣∣∣xω j,h − f̂ω j,h

∣∣∣ ≤ √2 · δ.

Since Equation 42 will hold for all ω ∈
(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩Z reconstructed more than K

2 times, we can begin to bound
the approximation error by∥∥∥f̂ − xS

∥∥∥
2
≤

∥∥∥f̂ − f̂S

∥∥∥
2

+
∥∥∥f̂S − xS

∥∥∥
2
≤

∥∥∥f̂ − f̂S

∥∥∥
2

+ 2
√

k · δ

=

√√∥∥∥f̂ − f̂ opt
k

∥∥∥2

2
+

∑
ω∈Sopt

k \S

∣∣∣ f̂ω∣∣∣2 − ∑
ω̃∈S\Sopt

k

∣∣∣ f̂ω̃∣∣∣2 + 2
√

k · δ.(43)

In order to make additional progress on Equation 43 we must now consider the possible magnitudes of f̂ entries at
indices in S \ Sopt

k and Sopt
k \ S.
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Suppose ω ∈ Sopt
k \ S , ∅. In this case either (i)

∣∣∣ f̂ω∣∣∣ ≤ 4δ, or (ii)
∣∣∣ f̂ω∣∣∣ > 4δ in which case Lemma 6 guarantees

that ω will be identified by lines 6 through 14 of Algorithm 3. Once identified, an ω̄ ∈ Sopt
k will always be placed in S

unless at least k + 1 other distinct identified elements, ω̃ < Sopt
k , have the property that |xω̃| ≥ |xω̄|. Thus, if (ii) occurs

then

(44)
∣∣∣ f̂ωk

∣∣∣ +
√

2 · δ ≥
∣∣∣ f̂ω̃∣∣∣ +

√

2 · δ ≥
∣∣∣ f̂ω∣∣∣ − √2 · δ ≥

∣∣∣ f̂ωk

∣∣∣ − √2 · δ

will hold for all ω̃ ∈ S \ Sopt
k . The end result is that if ω ∈ Sopt

k \ S then either
∣∣∣ f̂ω∣∣∣ ≤ 4δ, or else f̂ω is roughly the same

magnitude as f̂ωk (up to a O(δ) tolerance). Furthermore, because line 20 chooses 2k elements for S whenever possible,
we can see that S \ Sopt

k must contain at least

2 ·
∣∣∣∣∣(Sopt

k ∩

{
ω

∣∣∣∣ ∣∣∣ f̂ω∣∣∣ > 4δ
})
\ S

∣∣∣∣∣
elements, ω̃, all of which satisfy Equation 44 for every ω ∈

(
Sopt

k ∩

{
ω

∣∣∣∣ ∣∣∣ f̂ω∣∣∣ > 4δ
})
\ S. We are now ready to give

Equation 43 further consideration.
If Sopt

k \ S = ∅ we are finished. Otherwise, if Sopt
k \ S , ∅, we can bound the squared l2-norm of f̂S\Sopt

k
from below

by ∑
ω̃∈S\Sopt

k

∣∣∣ f̂ω̃∣∣∣2 ≥ 2 ·
∣∣∣∣∣(Sopt

k ∩

{
ω

∣∣∣∣ ∣∣∣ f̂ω∣∣∣ > 4δ
})
\ S

∣∣∣∣∣ · (∣∣∣ f̂ωk

∣∣∣ − 2
√

2 · δ
)2

= A.

Furthermore, we can upper bound the squared l2-norm of f̂Sopt
k \S

by∣∣∣∣∣(Sopt
k ∩

{
ω

∣∣∣∣ ∣∣∣ f̂ω∣∣∣ > 4δ
})
\ S

∣∣∣∣∣ · (∣∣∣ f̂ωk

∣∣∣ + 2
√

2 · δ
)2

+

∣∣∣∣∣(Sopt
k ∩

{
ω

∣∣∣∣ ∣∣∣ f̂ω∣∣∣ ≤ 4δ
})
\ S

∣∣∣∣∣ · 16δ2
≥

∑
ω∈Sopt

k \S

∣∣∣ f̂ω∣∣∣2 .
Let B =

∣∣∣∣∣(Sopt
k ∩

{
ω

∣∣∣∣ ∣∣∣ f̂ω∣∣∣ > 4δ
})
\ S

∣∣∣∣∣ · (∣∣∣ f̂ωk

∣∣∣ + 2
√

2 · δ
)2

. We will now concentrate on bounding

C =
∑

ω∈Sopt
k \S

∣∣∣ f̂ω∣∣∣2 − ∑
ω̃∈S\Sopt

k

∣∣∣ f̂ω̃∣∣∣2 .
If A ≥ B then C ≤ 16k · δ2. Otherwise, if A < B then∣∣∣ f̂ωk

∣∣∣2 − 12
√

2δ ·
∣∣∣ f̂ωk

∣∣∣ + 8δ2 < 0

which can only happen if
∣∣∣ f̂ωk

∣∣∣ ∈ (
(6
√

2 − 8) · δ, (6
√

2 + 8) · δ
)
. Hence, A < B implies that C ≤ k ·

(
8
√

2 + 8
)2
· δ2.

Finishing our error analysis, we can see that in the worst possible case Equation 43 will remain bounded by∥∥∥f̂ − xS

∥∥∥
2
≤

√∥∥∥f̂ − f̂ opt
k

∥∥∥2

2
+ k ·

(
8
√

2 + 8
)2
· δ2 + 2

√

k · δ ≤
∥∥∥f̂ − f̂ opt

k

∥∥∥
2

+ 22
√

k · δ.

The error bound stated in Equation 30 follows. The upper bound on the number of point evaluations of f follows from
an application of Lemma 4 and Theorem 5 with c = 4.

We will begin bounding the runtime of Algorithm 3 by bounding the runtime of lines 15 through 21. Line 12 of

Algorithm 3 will be executed a total of O
(

k2
·log2

(k/ε) N·log( k·ln N
ε )

ε2

)
times (see Equation 14). Therefore, lines 16 and 17

will be executed O
(

k·log(k/ε) N·log( k·ln N
ε )

ε

)
times apiece. Each such median operation can be accomplished in O(K · λ)

time using a median-of-medians algorithm (e.g., see [23]). Therefore, the total runtime of lines 15 through 21 will

be O
(

k2
·log2

(k/ε) N·log( k·ln N
ε )·log(εN/k)

ε2·log log(εN/k)

)
. Turning our attention to lines 6 through 14, we note that their runtime will be

dominated by the O
(

k2
·log2

(k/ε) N·log( k·ln N
ε )·log(εN/k)

ε2·log log(εN/k)

)
executions of line 9. Therefore, the total runtime of lines 6 through

14 will be O
(

k2
·log2

(k/ε) N·log( k·ln N
ε )·log2(εN/k)

ε2·log log(εN/k)

)
(see [34] and Lemma 4). The stated overall runtime of lines 6 through 21

follows.
27



APPENDIX G. PROOF OF COROLLARY 4

Define |̂f| ∈ RN by (
|̂f|

)
ω

=
∣∣∣ f̂ω∣∣∣ for all ω ∈

(
−

⌈N
2

⌉
,
⌊N

2

⌋]
∩ Z.

Clearly f̂ and |̂f| will both have the same optimal (k/ε)-term support subset, Sopt
(k/ε) ⊂ [0,N)∩N. Similarly, it is easy to

see that
∥∥∥∥f̂ − f̂opt

(k/ε)

∥∥∥∥
1

=
∥∥∥∥|̂f| − (

|̂f|
)opt

(k/ε)

∥∥∥∥
1
. Apply Corollary 2 with c = 14, x = |̂f|, and S =

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
∩ Z to obtain

S̃, a multiset of
⌈
21 · ln

(
N

1−σ

)⌉
s j values. With probability at least σ more than half (with multiplicity) of the entries of

MS̃, ω · |̂f| will estimate the ωth entry of |̂f| to within (ε/k) ·
∥∥∥∥f̂ − f̂ opt

(k/ε)

∥∥∥∥
1

precision for all ω ∈ S.
Given the last paragraph, it is not difficult to see that with probability at least σ a result analogous to that of Lemma 5

will hold for Rλ,S̃ · f̂. That is, with probability at least σ the following will hold for all ω ∈ S: The majority (when
counted with multiplicity) ofMS̃, ω rows, r ∈ {0, 1}N, will have (r ~ s) · f̂ ≈ f̂ω for a given row, s, ofNλ,s1 if and only
if s is also a row of Nλ,s1,ω. Furthermore, Rλ,S̃ · f̂ can still be approximately computed using Algorithm 1 if only the
unique s j values in S̃ are given as relatively prime s j-inputs. In this case a result analogous to Lemma 3 will also still
hold since we will merely be computing a subset of the previously calculated vector entries. Finally, by inspecting the
proof of Lemma 6 we can see that an almost identical result (with K replaced by the l value from Corollary 2) will
hold any time Rλ,S̃ · f̂ satisfies the aforementioned variants of both Lemmas 5 and 3.

Taken all together, we can see that with probability at least σ both of the following statements will be true: First,
all at most N xω j,h values ever produced by lines 16 and 17 of Algorithm 3 will have

∣∣∣xω j,h − f̂ω j,h

∣∣∣ ≤ √2 ·


ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1

 .
Second, a variant of Lemma 6 will ensure that all ω ∈ S with

∣∣∣ f̂ω∣∣∣ > 4 ·


ε ·

∥∥∥∥f̂ − f̂ opt
(k/ε)

∥∥∥∥
1

k
+

∥∥∥∥ f̂ − ¯̂f
∥∥∥∥

1


are reconstructed by lines 6 through 14 of Algorithm 3 more than d

21·ln( N
1−σ )e

2 times. The Equation 30 error bound now
follows from the proof of Theorem 7.

We upper bound the number of required function evaluations by bounding the number of rows for a particular
Rλ,S̃ matrix constructed with

⌈
21 · ln

(
N

1−σ

)⌉
randomly chosen s j values defined as in Equations 9 – 11

(
with K =

14 · (k/ε)
⌊
logs1

N
⌋
+ 1

)
. In this case Equation 35 together with results from [26] tell us that sK is itself bounded above

by Equation 41. The final upper bound on the number of point evaluations of f then follows from an application of
Lemma 4. Note that the product of the Lemma 4 row bound with

⌈
21 · ln

(
N

1−σ

)⌉
and Equation 41 provides a concrete

upper bound for the number of point evaluations of f .
We will begin bounding the runtime of Algorithm 3 by bounding the runtime of lines 15 through 21. Line 12

of Algorithm 3 will be executed a total of O
(

k·log( N
1−σ )·log(k/ε) N·log

( k·log N
ε

)
ε

)
times (see Equation 41). Therefore, lines

16 and 17 will be executed O
(

k·log(k/ε) N·log( k·ln N
ε )

ε

)
times apiece. Each such median operation can be accomplished in

O
(
log

(
N

1−σ

)
· λ

)
time using a median-of-medians algorithm (e.g., see [23]). Therefore, the total runtime of lines 15

through 21 will be O
(

k·log( N
1−σ )·log(k/ε) N·log

( k·log N
ε

)
·log(εN/k)

ε·log log(εN/k)

)
. Turning our attention to lines 6 through 14, we note that

their runtime will be dominated by the O
(

k·log( N
1−σ )·log(k/ε) N·log

( k·log N
ε

)
·log(εN/k)

ε·log log(εN/k)

)
executions of line 9. Therefore, the total

runtime of lines 6 through 14 will be O
(

k·log( N
1−σ )·log(k/ε) N·log

( k·log N
ε

)
·log2(εN/k)

ε·log log(εN/k)

)
(see Lemma 4). The stated overall runtime

of lines 6 through 21 follows.
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Suppose we want to resolve at least M frequencies in each of D dimensions (i.e., we want to approximate the
MD-dimensional array f̂ ∈ CMD

). We begin by choosing the smallest D̃ ∈ N such that
D̃−D+1∏

j=1

p j > (MD)D .

The first paragraph of Appendix D reveals that

(45) D̃ < 3 ·
D · ln(MD)

ln(D · ln(MD))
+ D =

D · ln(MD)
ln(D · ln(MD))

· 3
(
1 +

ln D + ln ln(MD)
ln(MD)

)
= O

(
D · log(MD)

log(D · log(MD))

)
.

Furthermore, we can see from [26] that

(46) ln

 D̃∏
j=1

p j

 ≤ D · ln(MD) +

D̃∑
j=D̃−D+1

ln p j ≤ D ·
(
ln(MD) + ln pD̃

)
≤ D ·

(
ln(MD) + ln

(
D̃ · (ln D̃ + ln ln D̃

))
for D ≥ 2 and (MD)D

≥ 2, 310. Thus, log
(∏D̃

j=1 p j

)
is generally O(D · log(M ·D)). We will use these first D̃ primes

to help define our new one-dimensional function fnew (see Equation 32 above).
Set D̃0 = 0 and recursively define D̃d to be such that

D̃d−1∏
j=D̃d−1+1

p j ≤ MD <
D̃d∏

j=D̃d−1+1

p j

for all 1 ≤ d ≤ D. We then define the D pairwise relatively prime values required for approximating each Fourier
coefficient, f̂

(
g−1(ω)

)
∈ C, via Equation 33 to be

Pd =

D̃d∏
j=D̃d−1+1

p j

for 1 ≤ d ≤ D. Set Ñ =
∏D

d=1 Pd ≤
∏D̃

j=1 p j. The stated runtime and sampling bounds follow.
We are now in the position to apply any of Theorem 6, Corollary 3, Theorem 7, or Corollary 4 to approximate

f̂new ∈ C
Ñ. Upon applying any of these four results to fnew we will obtain (either deterministically, or randomly with

high probability) a 2k-sparse xS ∈ C
Ñ satisfying

∥∥∥f̂new − xS

∥∥∥
2
≤

∥∥∥f̂new − f̂ opt
new k

∥∥∥
2

+
22ε ·

∥∥∥∥f̂new − f̂ opt
new (k/ε)

∥∥∥∥
1

√
k

+ 22
√

k ·
∥∥∥∥ f̂new −

¯̂fnew

∥∥∥∥
1
.

Recall that we have only guaranteed that f̂ ’s Fourier coefficients for ((−M/2,M/2] ∩ Z)D map into f̂new’s Fourier co-
efficients for [−Ñ/2, Ñ/2]∩Z (although many others will as well). Thus, for simplicity, we assumed that f is bandlim-

ited when translating these error bounds back into terms of f̂ . Given this assumption we have
∥∥∥∥ f̂new −

¯̂fnew

∥∥∥∥
1

= 0.
The stated error bound now follows from the fact that g is a bijection.
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