
APPROXIMATION OF POINTS ON LOW-DIMENSIONAL MANIFOLDS VIA R ANDOM LINEAR
PROJECTIONS

MARK A. IWEN MAURO MAGGIONI
DUKE UNIVERSITY, BOX 90320

DURHAM, NC 27708-0320

ABSTRACT. This paper considers the approximate reconstruction of points, ~x ∈ RD, which are close to a given compact
d-dimensional submanifold,M, of RD using a small number of linear measurements of~x. In particular, it is shown that a
number of measurements of~x which is independent of the extrinsic dimension,D, suffices for highly accurate reconstruction
of ~x. Furthermore, it is also proven that all vectors,~x, which are sufficiently close toM can be reconstructed with uniform
approximation guarantees when the number of linear measurements of~x depends logarithmically onD. Finally, the proofs of
these facts are constructive: A practical algorithm for manifold-based signal recovery is presented in the process of proving
the two main results mentioned above.

1. INTRODUCTION

In this paper we present a simple reconstruction technique which facilitates compressive sensing for general classes
of high-dimensional signals with low intrinsic dimension.Two types of models are often considered: sparse models
and low-dimensional/manifold models. The former type of model assumes that each data point has a sparse represen-
tation in terms of a (typically known) dictionaryΦ, which geometrically means that data points lie on unions ofa small
number of planes spanned by the elements of the dictionary [27]. The latter type of model assumes that data possesses
an intrinsically low-dimensional geometrical structure,for example that of a manifold (see e.g. [46, 7, 22, 26], among
many others) or a union of planes (see e.g. [48, 18, 36, 31]), motivated by many applications, for example in image
processing [32], computer vision [45], and pattern recognition [36].

Given the low-intrinsic dimension of these models, it is natural to ask whether a small number of linear projec-
tions (“measurements”) of a data point, together with knowledge of the low-dimensional model, suffices to encode
and reconstruct a data point. In the setting of sparsity, compressed sensing [24, 42] not only says that, under suit-
able assumptions [27], this is indeed possible, but a convexoptimization problem leads to the stable recovery of the
original data point. In the setting where data lies on a low-dimensional manifold, the work of Wakin et al. [6, 49] on
manifold-based signal recovery shows that low-dimensional (random) projections provide small distortion embeddings
for manifolds, but leave open the question of reconstructing a data point.

Standard compressed sensing [24, 42] deals with the approximation of vectors,~x ∈ RD, which can be sparsely
represented in terms of a givenD × n dictionary matrix,Φ. Note that suchΦ-sparse vectors can be compactly stored
in a compressed form which is easy to transmit and store. Moreover, they can be recovered from their compressed
representations when necessary. This compression/recovery problem has been well studied when~x is available in
its entirety before compression (see, e.g., [37]). However, in situations where~x is costly to observe one may only
have the ability to collect a very small set of measurements of ~x to begin with, thus making standard compression
techniques inapplicable (see, e.g., [2, 1] and references therein). This is thecompressed sensing regime, where loss-
less compression must occurbeforeone determines which vector components or transform coefficients are actually
important. Hence, the goal of standard compressed sensing becomes to design anm×D measurement matrixM, with
m as small as absolutely possible, subject to the constraint that a computationally efficient reconstruction algorithm,
A : Rm → RD, exists such thatA (

M~x
) ≈ ~x anytime~x ∈ RD is sufficiently compressible with respect to a given

dictionary matrixΦ.
More precisely, given an integerd≪ n suppose that

~x = Φ
(
~fd + ~ǫ

)
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where~ǫ ∈ Rn is in the row space ofΦ ∈ RD×n and

~fd = arg min
~y∈Rn with ‖~y‖0≤d

∥∥∥~x −Φ~y
∥∥∥ .

The goal of a compressed sensing method is to approximate~x as well as possible by approximating the at mostd

nonzero elements of~fd ∈ Rn. Furthermore, compressed sensing techniques aim to accomplish this task using as few
linear measurements of~x ∈ RD,

(1)
〈
~m j, ~x

〉
=

〈
~m j,Φ ~fd

〉
+

〈
~m j,Φ~ǫ

〉
,

as absolutely possible.
Let M ∈ Rm×D be the matrix whosejth-row is the measurement vector~m j ∈ RD from Equation 1 above. A

compressed sensing method consists of both a choice ofM ∈ Rm×D, and a recovery algorithm,A : Rm → RD, such
that

(2)
∥∥∥~x −A (

M~x
)∥∥∥

p
=

∥∥∥∥~x −A
(
MΦ ~fd +MΦ~ǫ

)∥∥∥∥
p
≤ Cp,q · d

1
p− 1

q

∥∥∥ ~ǫ
∥∥∥

q

in fixed ℓp,ℓq norms,1 ≤ q ≤ p ≤ 2, for an absolute constantCp,q ∈ R. Note thatM ∈ Rm×D forms a compressed
representation of~x ∈ RD wheneverm < D, which is then stably inverted byA. Many recovery algorithms,A,
have been developed for solving this problem whenΦ is a squareD × (n = D) orthonormal matrix, andMΦ has
either restricted isometry [14] or incoherence [25, 30] properties (e.g., see [13, 11, 12, 47, 39, 40, 38, 9]). Perhaps the
best such results are achieved by

(
m = O(d log(D/d))

)×D measurement matrices,M, whose entries are independent
and identically distributed standard Gaussian random variables. These Gaussian matrices allow for near optimal
compression (i.e., a near minimal size form) while still allowing for the existence of recovery algorithms,A, which
achieve Equation 2 for an arbitrarily given square orthonormal matrixΦ. Furthermore, ifM is Gaussian thenΦ need
not be known when the measurements,M~x, are computed: It suffices to knowΦ only during reconstruction withA.

One strand of work in compressed sensing has dealt with extending the results mentioned above concerning square
orthonormal matrices to include settings whereΦ is a more general (i.e., rectangular)D × n matrix. The first of these
results extended compressed sensing to includeD×n dictionaries,Φ, whose columns are all nearly pairwise orthogonal
[43]. This work shares all of the advantages of the aforementioned results concerning compressed sensing whenΦ is
square orthonormal matrix (e.g., nearly orthogonalΦ also do not need to be known until reconstruction viaA) when
M is a random matrix exhibiting concentration of measure properties (e.g., ifM is Gaussian as above). These results
were later generalized further to allow recovery along the lines of Equation 2 whenΦ has columns with less limited
forms of coherence and redundancy [15] (e.g., ifΦ is a tight frame). In this paper we consider a geometric variant of
standard compressed sensing results for signals which are sparsely representable with respect to a square orthonormal
matrix,Φ, by focussing instead on signals which are well representedby manifold models. More specifically, herein
theD × n dictionary matrixΦ utilized in standard compressed sensing models will be replaced by a piecewise linear
approximation to a given submanifold ofRD.

The work herein utilizes ideas introduced by Baranuik and Wakin which demonstrate the existence of simple lin-
ear operators capable of (nearly) isometrically embeddinga given compactd-dimensional submanifold ofRD intoRO(d log D) without utilizing detailed knowledge regarding the submanifold’s structure [6]. In some sense, this work
immediately yields measurement matrices,M ∈ Rm×D, for manifold-based compressed sensing. However, a complete
compressed sensing strategy also requires an associated reconstruction algorithm,A : Rm → RD, capable of accu-
rately approximating points near the given manifold in a computationally efficient fashion. Algorithms of this kind
were first considered by Wakin in [49]. Therein, Wakin showedthat approximating a given point,~x, near a compact
d-dimensional submanifold ofRD via anO(d log D) linear measurements (i.e., see Equation 1) was possible with
high probability if the measurements were randomly regenerated for each new~x. Furthermore, [49] concluded that
achieving strong reconstruction guarantees using one fixedset of linear measurements for all possible points,~x, near a
given compact submanifold ofRD was difficult. However, it is important to mention that the results presented in [49]
were derived independently of any particular numerical reconstruction algorithm,A. As a consequence, this line of
work did not result an implementable recovery algorithm with accompanying approximation guarantees.

In this paper we propose a computationally efficient reconstruction algorithm for manifold-based compressed sens-
ing and prove accompanying approximation guarantees. In the process, we prove that a given point,~x, near a compact
d-dimensional submanifold ofRD can be accurately approximated usingO(d log d) linear measurements with high
probability when the measurements are randomly regenerated for each new~x. This improves on previous results [49]
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by removing all dependence on the extrinsic dimension of thesubmanifold,D, from the number of linear measure-
ments required for accurate approximation. Furthermore, we provide stability guarantees for the algorithm when one
fixed set ofO(d log D) linear measurements are used for all possible points,~x, near a given compact submanifold ofRD. Finally, an empirical evaluation of our method indicates that it also works well in practice.

Before moving on to discuss our methods and results in more detail we hasten to add that other techniques have
also been proposed for manifold-based compressed sensing since the initial work of Baranuik and Wakin. Perhaps
most notable among these are the statistical methods proposed by Chen et al. [19]. Chen et al. use training data from a
compactd-dimensional submanifold ofRD in order to estimate the manifold data’s distribution via a Gaussian mixture
model composed of Gaussians whose covariance matrices are all rank O(d). They then use the probability density
resulting from their low-rank Gaussian mixture model to approximate points on the manifold,~x, with a maximum
likelihood estimator when given only linear measurements,M~x ∈ Rm. In contrast, we utilize geometric and analytic
techniques herein and make no attempt to estimate the statistical properties of any observed manifold data.

Other related manifold-based compressed sensing methods include those recently proposed by Shah et al. [44].
The method in [44] assumes that a black-box manifold projector, which takes an input point and then outputs its
nearest neighbor on a given submanifold ofRD, is given. Given access to such a projector, the authors present an
iterative projection method for approximately recoveringa point,~x, on the given manifold using compressive linear
measurementsM~x ∈ Rm. Similar to the recovery algorithm presented herein, the recovery algorithm in [44] is shown
to be accurate whenever(i) the given black-box manifold projector is accurate, and(ii) the measurement matrixM
(nearly) isometrically embeds the given manifold intoRm. However, unlike [44], we analyze (approximate) manifold
projectors that can be explicitly and efficiently computed using noisy training data sampled from a general manifold
of interest (e.g., the manifold projectors resulting from Geometric Multi-Resolution Analysis [3]). Thus, we obtain
implementable recovery algorithms that are applicable to ageneral class of smooth and compact submanifolds ofRD. Furthermore, we are able to improve the computational efficiency of our recovery algorithm by calculating our
manifold projections using computations that are performed in the smaller embedding space,Rm, whenever possible.

1.1. Methods and Results.As discussed above, the standard compressed sensing setup assumes that the signal to
be approximated has a compressible representation with respect to an orthonormal basis (or frame [15], or incoherent
dictionary [43]). Although this is certainly a useful setting, there are many applications where signals might be better
approximated via more geometrical considerations. For example, consider the setting where the class of potential
input signals varies continuously as a function of a small number of parameters (e.g., see [50, 6, 49]). In this case it
makes more sense to consider the approximate reconstruction of signals,~x ∈ RD, which are close to a given compact
d-dimensional submanifold,M, ofRD. The optimal approximation for~x ∈ RD is then defined to be

~xopt = arg min
~y∈M

∥∥∥~x − ~y
∥∥∥

2
.

In effect,~xopt is the best approximation to~x onM. Our objective is to approximate~xopt ∈ M ⊂ RD given only
a small number of linear measurements,M~x ∈ Rm, whereM is anm × D measurement matrix as above. Hence,
in this paper we seek to design a measurement matrixM ∈ Rm×D with m as small as absolutely possible, together
with a computationally efficient reconstruction algorithmA : Rm → RD, so thatA (

M~x
) ≈ ~x whenever~x ∈ RD is

sufficiently close to a given compactd-dimensional submanifold ofRD,M.1

Note that a manifold,M, is now taking the place of the dictionary matrix,Φ ∈ RD×n, in the standard compressed
sensing setup discussed above. Of course, it is unreasonable to expect that we can always have an exact representation
of the signal manifold at our disposal. Instead, we assume that we have a set of locally linear approximations to
the given manifold which capture the local geometric structure of the manifold’s tangent spaces. In fact, such piece-
wise linear manifold representations are exactly the type of approximations produced by existing manifold learning
algorithms like LTSA [52] and Geometric Multi-Resolution Analysis [3]. Thus, we assume that the signal manifold,
M, is approximated by such a method at some point. However, as in standard compressed sensing methods, the
manifold-based compressed sensing strategies developed below do not require that these piecewise linear manifold
representations are known when the compressed measurements,M~x ∈ Rm, are collected. Approximation of the signal
manifold can be put off until later when signal reconstruction takes place (i.e., one does not need a piecewise linear
manifold approximation untilA (

M~x
)

is actually computed).

1Put another way, we require thatA (
M~x

) ≈ ~xopt which implies thatA (
M~x

) ≈ ~x whenever~x ≈ ~xopt.
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Although the manifold-based compressed sensing methods developed herein will work with any locally linear ap-
proximation to the given signal manifold,M, we will focus onmultiscalepiecewise linear manifold approximations
toM in particular. As opposed to fixed-scale locally linear approximations, multiscale representations better approx-
imate non-smooth manifolds, and manifolds contaminated with noise [17, 3]. For example, multiscale locally linear
approximation is particularly beneficial for signal processing tasks involving image manifolds, which tend to be non-
differentiable in many realistic settings [50]. Hence, we formulate our compressed sensing methods below with respect
to general multiscale piecewise linear manifold approximations of the type produced by Geometric Multi-Resolution
Analysis (GMRA) [3].

As mentioned above, the manifold embeddings of Baraniuk andWakin [6, 49] can be considered as manifold-
based compressed sensing matrices, for which however no associated recovery algorithms were explicitly defined.
Indeed, the measurement matrices,M ∈ Rm×D, used in the manifold-based compressed sensing methods developed
below are modifications of their embedding matrices. However, unlike the embedding matrices considered in [6], the
measurement matrices considered herein (nearly) isometrically embedboth the underlying signal manifold,M, and
the multiscale piecewise linear approximation toM intoRm in a way which preserves the fidelity of the embedded
multiscale locally linear approximation to the embedded image ofM. Accomplishing this requires us to reengineer
the arguments from [6] using Johnson-Lindenstrauss embedding [34] techniques similar to those utilized in [5]. The
resulting measurement matrices,M, ultimately justify this complication by allowing us to develop reconstruction
algorithms which work exclusively with locally linear approximations toM while still preserving approximation
accuracy with respect to the true manifold,M.

The reconstruction algorithm,A : Rm → RD, proposed below consists of two well-studied computational sub-
routines: a method for solving approximate nearest neighbor problems (e.g., [33, 8, 4]) in a space of dimension
comparable to the intrinsic dimension of the data, and a method for solving an overdetermined least squares problem
(e.g., via the singular value decomposition of the associated matrix). The algorithm works by first using the com-
pressed measurements,M~x, of ~x to locate the best local linear approximation toM at ~x. This is accomplished by
running a nearest neighbor algorithm on a set of “center points” from near the manifold, each of which represents a
particular linear approximation toM in a neighborhood of the center point. BecauseM has low intrinsic dimension,
and the center points are arranged in a multiscale hierarchyas per [3], this search can be carried out relatively quickly.
To finish, the algorithm then approximates~xopt, the best approximation to~x onM, by solving an overdetermined least
squares problem using the linear approximation to the manifold located in the first step.

In this paper we prove two compressed sensing results for theproposed reconstruction algorithm, each of which
utilizes randomly generated measurement matrices,M ∈ Rm×D, satisfying a different set of properties. Roughly
speaking, the first result indicates thatm = O

(
d log(d/δ)

)
linear measurements of a given~x ∈ RD suffice to create

a compact representation,M~x ∈ Rm, from which the reconstruction algorithm,A, discussed above will recover an
approximation to~xopt ∈ M satisfying

∥∥∥~x −A(M~x)
∥∥∥ < C

∥∥∥~x − ~xopt

∥∥∥ + δ.
HereC ∈ R+ represents a fixed universal constant,δ ∈ R+ can be freely chosen, andM is the givend-dimensional
submanifold ofRD. This result provides what is commonly referred to as anonuniform recovery result, by which we
mean that the upper bound on

∥∥∥~x −A(M~x)
∥∥∥ holds with high probabilityfor each~x ∈ RD over the choice of random

measurement matrix.
The second theorem proven below provides a type ofuniform recovery resultwhich holds with high probabilityfor

all vectors,~x ∈ RD, of a particular class. Simply put, it asserts the existenceof aD-dimensional tube around the given
manifold,T ⊃ M, within which accurate approximation will always take place with high probability over the choice
of random measurement matrixM ∈ Rm×D. More specifically, the second theorem says thatm = O

(
d log(D/δ)

)

linear measurements of any~x ∈ T ⊂ RD suffice to create a compact representation,M~x ∈ Rm, from which the
reconstruction algorithm discussed above,A, will recover an approximation to~xopt ∈ M satisfying

∥∥∥~x −A (
M~x

)∥∥∥ < C
∥∥∥~x − ~xopt

∥∥∥
2
+

C√
d

∥∥∥~x − ~xopt

∥∥∥
1
+ δ.

Here, as above,C ∈ R+ represents a fixed universal constant andδ ∈ R+ can be freely chosen.
The reminder of this paper is organized as follows: In the next section we begin by fixing terminology and reviewing

relevant definitions and theorems. Having established the necessary notation, we then give precise statements of the
two main results proven in this paper in Section 2.4. Finally, in Section 2.5, we conclude Section 2 with a discussion
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of the different types of measurement matrices,M ∈ Rm×D, associated with each of our two main results. In Section 3
the recovery algorithm,A, is presented and analyzed. In particular, the approximation error ofA for a given~x,∥∥∥~x −A (

M~x
)∥∥∥, is bounded for each of the two possible types of measurementmatrices,M, considered herein. The

runtime complexity ofA is also determined. Next, in Section 4, the number of rows,m, required for each type of
measurement matrix defined in Section 2.5 is upper bounded. This formally establishes the amount of compression
possible in our manifold-based compressed sensing schemes. To finish, the compressed sensing methods developed
herein are evaluated empirically in Section 5.

2. NOTATION AND SETUP

Given n ∈ N we will define [n] to be the set{0, 1, 2, . . . , n} ⊂ Z. All norms, ‖ · ‖, will refer to the standard
Euclidean norm unless otherwise stated. We will denote an open ball of radiusδ ∈ R+ centered at~y ∈ RD byBδ

(
~y
)
.

Our real valuedm × D measurement matrix will always be denoted byM. Furthermore,M will always be linear
Johnson-Lindenstrauss embedding [34, 29, 23, 35] of a finitesetS ⊂ RD intoRm.

Definition 1. Letǫ ∈ (0, 1/2), andS ⊂ RD be finite. Anm×D matrixM is a linear Johnson-Lindenstrauss embedding
of S intoRm if

(1 − ǫ)‖~u − ~v‖2 ≤ ‖M~u −M~v‖2 ≤ (1 + ǫ)‖~u − ~v‖2
for all ~u, ~v ∈ S. In this case we will say thatM embedsS intoRm with ǫ-distortion.

The following theorem is proven by showing that anm×D matrix with randomized entries will satisfy Definition 1
for a given setS ⊂ RD with high probability wheneverm is sufficiently large (e.g., see [23]).

Theorem 1. (See [34, 23].) Letǫ ∈ (0, 1/2), andS ⊂ RD be finite. Letm = O(ǫ−2 log |S|) be a natural number. Then,
there exists anm ×D linear Johnson-Lindenstrauss embedding ofS intoRm with ǫ-distortion.

For the remainder of this paperM will denote a compactd-dimensional submanifold ofRD with d-dimensional
volumeV. We will characterize results concerning any such manifoldM via its reach [28], denotedreach (M), which
is defined as follows: Let

D (M) =
{
~x ∈ RD

∣∣∣ ∃ a unique~y ∈ M with ‖~x − ~y‖ = d
(
~x,M)}

and
tuber (M) =

{
~x ∈ RD

∣∣∣ d
(
~x,M)

< r
}
,

whered(~x,M) is the standard Hausdorff distance. We then define

(3) reach (M) = sup{r ≥ 0 | tuber (M) ⊂ D (M)}.
Intuitively, reach (M) is the radius of the largest possible non-self-intersecting tube aroundM. For example, ifM is a
d-sphere of radiusr, thenreach (M) = r. More generally, any compact and non-self-intersecting smooth submanifold
of RD will have nonzero reach. The reach of a manifold is particularly useful because it allows the development of
concise bounds for many manifold properties of interest (e.g., curvature, self-avoidance, packing numbers, etcetera).
See [28, 41, 6, 20] for more details.

Given a compact setS ⊂ RD we define aδ-cover ofS to be any finite setS ⊂ RD with the following property:

∀~x ∈ S, ∃~y ∈ S such that~x ∈ Bδ
(
~y
)
.

We will refer to aδ-cover ofS, S, asminimalif |S| ≤ |S̃| for all otherδ-covers ofS, S̃. Hereafter,Cδ (S) will denote a
minimalδ-cover of a given compact setS inRD. The following lemma, easily proven using results from [41], bounds
|Cδ (M)| for any compactd-dimensional Riemannian manifold,M, in terms ofδ andreach (M).

Lemma 1. (See [41].) LetM ⊂ RD be a compactd-dimensional Riemannian manifold withd-dimensional volume
V, and suppose thatδ ∈ R+ is less thanreach (M). Then, any minimalδ-cover ofM, Cδ (M), will have

∣∣∣Cδ (M)
∣∣∣ <

V
(

d
2 + 1

) d
2+1

2
d
2 δd

.

We will now briefly summarize one means of constructing the type of piecewise linear manifold approximations
required by our manifold-based compressed sensing algorithm.
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2.1. Geometric Multi-Resolution Analysis (GMRA). The manifold-based compressed sensing strategies developed
herein will utilize manifold-approximations of the type produced by the GMRA framework [3]. GMRA is a dictionary
learning technique that aims to concisely summarize data sets inRD in a multiscale fashion. When a given data set
lies near a low dimensional smooth and compact submanifold of RD, GMRA produces small dictionaries with accom-
panying guarantees on the dictionary size/approximation error trade-off. GMRA also has computationally efficient
algorithms for both sparsifying, and subsequently reconstructing, data points via its multiscale dictionary.

The construction of a GMRA dictionary proceeds as follows: First, GMRA produces a set ofJ + 1 partitions of the
input data set,X ⊂ RD, organized in a tree structure. Denote theseJ + 1 partitions by

C j :=
{
C j,k ⊂ RD

∣∣∣ k ∈ [K j]
}
, j ∈ [J]

whereK0 = 0 andK1, . . . ,KJ ∈ N. Here j represents the scale of the partition (i.e, there exists a constantC for all

j ∈ [J] andk ∈ [K j] such thatC j,k ⊂ BC·2− j

(
~y j,k

)
for some~y j,k ∈ C j,k). Furthermore,C j+1 is a refinement ofC j for each

j ∈ [J − 1]. Thus, we can organize the partitions in a tree structure in anatural fashion (i.e., each subsetC j,k ⊂ RD

corresponds to a node in the tree at depthj, the root of the tree corresponding to the coarsest scalej = 0). Every
C j,k-node has a uniqueparent nodecorresponding toC j−1,k ⊃ C j,k, and, conversely,C j,k ⊂ C j−1,k implies that the node
associated withC j,k is achild nodeof the node associated withC j−1,k. Finally, a node with no children is called aleaf
node. Note that the covering numbers bounded by Lemma 1 above can be used to bound the number of nodes at depth
j of our tree when the input data,X, is sampled from a compactd-dimensional submanifold ofRD.

Next, GMRA processes the data points contained in eachC j,k-subset to produce a local approximation forX∩C j,k.
The local approximation associated with each non-rootC j,k-node of the partition tree consists of:

(1) The mean of the points inX ∩ C j,k, denotedc j,k.
(2) An orthogonal matrix,Φ j,k, whose rows are the top principal components of the data points inX∩C j,k. If, for

example,X is sampled from a smooth submanifold ofRD,M, then the rows ofΦ j,k will form a basis for an
approximate tangent space toM at c j,k.

(3) A wavelet constant,
w j,k =

(
I −ΦT

j−1,k′Φ j−1,k′

)
·
(
c j,k − c j−1,k′

)
,

where theC j−1,k′ -node is the parent of theC j,k-node.
(4) An orthogonal matrix,Ψ j,k, whose rows form a basis for the projection ofrow span{Φ j,k} onto

column span
{
I −ΦT

j−1,k′Φ j−1,k′

}
,

where theC j−1,k′ -node is the parent of theC j,k-node. Note that

row span
{
Φ j,k

}
⊆ column span

{[
Φ

T
j−1,k′ ,Ψ

T
j,k

]}
.

The rows of the orthogonal matricesΦ j,k,Ψ j,k are called the geometric scaling and wavelet bases, respectively. The
information above collectively defines the GMRA dictionaryfor X. Note that the root node associated withC0,0 stores
only items(1) and(2) above.

For j > 0 we can approximate anyx ∈
(
C j,k ∩ X

)
⊂ C j−1,k′ at scalej by

x j = Φ
T
j,kΦ j,k(x − c j,k) + c j,k.

Note that the difference between the approximations tox at scalesj − 1 and j can be compactly represented using the
geometric wavelet basis/constant. In particular,

(4) x j − x j−1 =

[
Φ

T
j−1,k′ ,Ψ

T
j,k

] (e j,k

q j,k

)
+ w j,k,

wheree j,k = Φ j−1,k′(x− x j) andq j,k = Ψ j,k(x j − c j,k). Iterating Equation 4 yields a multiscale transform ofx in terms of
the differencesx j − x j−1, each of which belongs to a low-dimensional subspace storedin the GMRA dictionary.

In the next section we will list several properties which GMRA dictionaries are guaranteed to have whenever they
are built using a sufficiently dense set of points,X, sampled from a compact and smooth submanifold ofRD. As
we shall see, these properties will be critical to the development of our manifold-based compressed sensing scheme.
However, it is important to note thatit is only these properties which matter. That is, the use ofanypiecewise linear
manifold approximation satisfying the properties listed in Section 2.2 will suffice for the purposes of proving our
main results. Furthermore, it is worth noting that the multiscale structure of the manifold approximations we consider

6



herein is not strictly necessary (i.e., a sufficiently fine fixed scale approximation will also satisfy Propositions 1 and2
below). In fact, only the finest scale,J, matters in our main results’ approximation guarantees. Inprinciple, all
other scales can be ignored. That is, any fixed-scale piecewise linear approximation of a given manifold that satisfies
Properties 1, 2b, 3a, and 3b from Section 2.2 (e.g., withj = J > j0) will also satisfy both Propositions 1 and 2 below.
Hence, in principle, GMRA can be replaced herein by any othermethod that (implicitly) computes a piecewise linear
approximation to a given manifold (e.g., [10, 52, 16, 19]). As long as the manifold approximation we utilize has the
properties we consider in the next section, our main resultswill still hold as stated.

2.2. The Manifold Approximation. In order to help us develop a practical recovery algorithm wewill assume we
have a multiscale piecewise linear approximation ofM of the type yielded by GMRA. LetJ ∈ N andK0,K1, . . . ,KJ ∈N. For eachj ∈ [J] we assume that we have a set of affine projectors,P j =

{P j,k : RD → RD
∣∣∣ k ∈ [K j]

}
,

which approximateM at scalej. More precisely, these affine projectors will collectivelysatisfy the three following
properties:

(1) Affine Projections: EveryP j,k has both an associated vector,~c j,k ∈ RD, and an associated orthogonald × D
matrix,Φ j,k, so that P j,k

(
~x
)
= Φ

T
j,kΦ j,k

(
~x − ~c j,k

)
+ ~c j,k.

(2) Dyadic Structure: There exist two universal constants,C1 ∈ R+ andC2 ∈ (0, 1], so that the following
conditions are satisfied:
(a) K j ≤ K j+1 for all j ∈ [J − 1].
(b) ‖~c j,k1

− ~c j,k2
‖ > C1 · 2− j for all j ∈ [J] andk1, k2 ∈ [K j] with k1 , k2. In other words, the~c j,k-vectors at

each scalej ∈ [J] are well separated from one another.
(c) For eachj ∈ [J] − {0} there is exactly one well defined parent function,p j : [K j] → [K j−1], with the

property that ∥∥∥~c j,k − ~c j−1,p j(k)

∥∥∥ < C2 min
k′∈[K j−1]−{p j(k)}

∥∥∥~c j,k − ~c j−1,k′
∥∥∥ .

Together theseJ parent functions collectively define a tree structure on the~c j,k-vectors. In particular,
each~c0,k with k ∈ [K0] is a root node while each~cJ,k with k ∈ [KJ] is a leaf.

(3) Multiscale Approximation : WhenM is sufficiently smooth the affine projectors at each scalej ∈ [J],{P j,k

∣∣∣ k ∈ [K j]
}
, approximateM pointwise with errorO

(
2−2 j

)
.

(a) There exists a constantj0 ∈ [J − 1] so that~c j,k ∈ tubeC1·2− j−2 (M) for all j ∈ [J] − [ j0] andk ∈ [K j]. Note
that j0 is a function of the constantC1 from Property 2b. We will generally assume that aj0 ∈ [J − 1]
satisfying this condition exists whenC1 is chosen to be as large as possible above.

(b) For eachj ∈ [J] and~x ∈ RD let k j
(
~x
) ∈ [K j] be such that~c j,k j(~x) is one of the nearest neighbors of~x in the

set
{
~c j′,k

∣∣∣ j′ = j, k ∈ [K j]
}
. That is, for eachj ∈ [J], let

k j
(
~x
)
= arg min

k∈[K j]

‖~x − ~c j,k‖.

Then, for each~x ∈ M there exists a constantC ∈ R+ such that∥∥∥∥~x −P j,k j(~x)
(
~x
)∥∥∥∥ ≤ C · 2−2 j

for all j ∈ [J]. In addition, affine projectors associated with~c j,k-vectors that are nearly as close to any
~x ∈ M as~c j,k j(~x) can also accurately represent~x. In particular, their exists a constantC̃ ∈ R+ such that

∥∥∥~x −P j,k′
(
~x
)∥∥∥ ≤ C̃ · 2− j

for all ~x ∈ M, j ∈ [J], andk′ ∈ [K j] satisfying

(5)
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 16 ·max
{∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ , C1 · 2− j−1
}
.2

2Note thatC̃ is a uniform constant overM for all scalesj. To see why GMRA will produce a piecewise linear approximation with this property
given sufficiently representative training data fromM, recall that GMRA builds a sequence of refined partitions of the dataset it approximates (one
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Note that the affine projectors approximateMmore accurately as the scalej ∈ [J] increases. The finest scale
resolution is obtained whenj = J. See [3] for details.

The remainder of this paper is devoted to analyzing the number of measurements required in order to approximately
reconstruct an arbitrary point~x ∈ RD which is nearly on a compactd-dimensional submanifoldM ⊂ RD. In order
to yield substantive progress we must first assume some knowledge ofM (i.e., our manifold-based signal dictionary).
Thus, we will assume below that we have a set of affine projectors,

{P j,k

∣∣∣ j ∈ [J], k ∈ [K j]
}
, forM as discussed above,

and will primarily focus our analysis on bounding the numberof measurements,m, sufficient to accurately computeP j,k j(~x)
(
~x
)

for any given input vector~x ∈ RD and scalej ∈ [J].

2.3. The Goal: Approximating Manifold Data via Compressive Measurements. LetP = {P j

∣∣∣ j ∈ [J]
}

be a mul-
tiscale piecewise linear approximation toM as discussed above. Given such aP we can accurately approximate any
~x ∈ M ⊂ RD (e.g., see Property 3b). However, herein we are primarily interested in approximating arbitrary vectors,
~x ∈ RD \M, as well as they can be approximated by a nearest neighbor on the manifold,~xopt ∈ M. As we shall see,P can be utilized for this task. The following lemma demonstrates thatP j,k j(~x)

(
~x
)

approximates any vector~x ∈ RD

nearly as well as~xopt ∈ M does.

Lemma 2. LetM ⊂ RD be a compactd-dimensional Riemannian submanifold ofRD, and~x ∈ RD. Furthermore, letP j =

{P j,k | k ∈ [K j]
}

be a scalej ∈ [J] GMRA approximation toM. Then,
∥∥∥~x −P j,k′

(
~x
)∥∥∥ ≤ 17

∥∥∥~x − ~xopt

∥∥∥ +O
(
2− j

)

for all k′ ∈ [K j] satisfying
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 8 ·max
{∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ , C1 · 2− j−1
}
.

Proof: Let δ = max
{∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ , C1 · 2− j−1
}
, whereC1 ∈ R is defined as in Property 2b above. Furthermore,

let k′ ∈ [K j] be such that
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 8δ. To begin, suppose that
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 17
∥∥∥~x − ~xopt

∥∥∥. In this case we are
essentially finished since

∥∥∥~x −P j,k′
(
~x
)∥∥∥ =

∥∥∥∥
[
I −ΦT

j,k′Φ j,k′

] (
~x − ~c j,k′

)∥∥∥∥ ≤
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 17
∥∥∥~x − ~xopt

∥∥∥ .

Thus, we will hereafter assume that
∥∥∥~x − ~c j,k′

∥∥∥ > 17
∥∥∥~x − ~xopt

∥∥∥ without loss of generality.

Repeatedly applying the triangle inequality we see that
∥∥∥~x −P j,k′

(
~x
)∥∥∥ is bounded above by

∥∥∥~x − ~xopt

∥∥∥ +
∥∥∥∥~xopt −P j,k′

(
~xopt

)∥∥∥∥ +
∥∥∥∥P j,k′

(
~xopt

)
−P j,k′

(
~x
)∥∥∥∥ .

The third term in the sum immediately above can be bounded by∥∥∥∥P j,k′

(
~xopt

)
−P j,k′

(
~x
)∥∥∥∥ =

∥∥∥∥ΦT
j,k′Φ j,k′

(
~x − ~xopt

)∥∥∥∥ ≤
∥∥∥~x − ~xopt

∥∥∥ .

To bound the second term we note that
∥∥∥~x − ~c j,k′

∥∥∥ > 17
∥∥∥~x − ~xopt

∥∥∥ implies that
∥∥∥∥~xopt − ~c j,k j(~xopt)

∥∥∥∥ > 9
∥∥∥~x − ~xopt

∥∥∥ /8.

Therefore,
∥∥∥~xopt − ~c j,k′

∥∥∥ ≤
∥∥∥~x − ~xopt

∥∥∥ +
∥∥∥~x − ~c j,k′

∥∥∥ ≤
∥∥∥~x − ~xopt

∥∥∥ + 8 ·max
{∥∥∥∥~x − ~c j,k j(~xopt)

∥∥∥∥ , C1 · 2− j−1
}

≤ 9
∥∥∥~x − ~xopt

∥∥∥ + 8 ·max
{∥∥∥∥~xopt − ~c j,k j(~xopt)

∥∥∥∥ , C1 · 2− j−1
}
< 16 ·max

{∥∥∥∥~xopt − ~c j,k j(~xopt)

∥∥∥∥ , C1 · 2− j−1
}
.

Property 3b now guarantees that
∥∥∥∥~xopt −P j,k′

(
~xopt

)∥∥∥∥ ≤ C̃ · 2− j. Hence, we now have
∥∥∥~x −P j,k′

(
~x
)∥∥∥ ≤ 2

∥∥∥~x − ~xopt

∥∥∥ + C̃ · 2− j.

partition per scale). The diameters of these partitions’ elements decrease uniformly with scale, and are therefore bounded above byC · 2− j for
some universalC ∈ R+. Hence, if~x ∈ M satisfies Equation 5, we know that

∥∥∥~x − ~c j,k′
∥∥∥ ≤ 16 · C′2− j for some universalC′ ∈ R+. Noting that∥∥∥~x −P j,k′

(
~x
)∥∥∥ ≤

∥∥∥~x − ~c j,k′
∥∥∥ establishes the desired uniformity ofC̃ for full (i.e., undecimated) GMRA manifold approximations.
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The result follows.✷

In this paper we are primarily concerned with achieving approximation results akin to Lemma 2 utilizingcom-
pressive measurements. This will allow us to extend the successful sparse approximation techniques and results of
compressive sensing to the recovery of signals which belongto low dimensional submanifolds ofRD. In order to
accomplish this goal we must first propose and then subsequently analyze both a measurement operator and an asso-
ciated recovery algorithm. Furthermore, in order for it to be of practical value, we must demonstrate that the proposed
recovery algorithm is computationally efficient, easy to implement, and provably accurate. We begin this process
by considering our measurement matrices in Section 2.5. We then develop a practical reconstruction algorithm in
Section 3. Before we begin, however, we will first state the main results proven herein.

2.4. Main Results. In the statements of the two propositions below,C ∈ R+ is an absolute universal constant which
is independent of~x,M,M’s GMRA approximation, etcetera. Note that the upper boundsprovided for this constant
in Section 3 are almost surely quite loose. We state our first result.

Proposition 1. Fix precision parameterδ ∈ R+ and let~x ∈ RD. In addition, letPJ, J = O
(
log [1/(δ reach (M))]

)
, be

a GMRA approximation to a given compactd-dimensional Riemannian manifold,M ⊂ RD, with volumeV. Finally,
let

m = O

(
d log

(
d

δ reach (M)

)
+ log V

)

be a natural number3, and defineA : Rm → RD to be Algorithm 1 from Section 3 below. Then, there exists anm×D
matrix,M, such that ∥∥∥~x −A (

M~x
)∥∥∥ < C ·

∥∥∥~x − ~xopt

∥∥∥ + δ.

Furthermore,A (
M~x

)
can be evaluated in

(
mO(1) +O(dD)

)
-time.

Proof: The result follows from Theorem 3, the first part of Theorem 2,and the discussion in Section 3.1.✷

Proposition 1 provides a nonuniform recovery guarantee foreach given~x ∈ RD. The measurement matrices,
M, referred to by the proposition can be any standard Johnson-Lindenstrauss embedding matrix (e.g., a Gaussian
random matrix [23]). Hence, they are well understood.4 The worst case theoretical runtime complexity of the recovery
algorithm is polynomial inm. We refer the reader to Section 5 for an empirical evaluationof the recovery algorithm’s
computational efficiently in practice. Finally, we note that the number of required measurements,m, is entirely
independent of the extrinsic dimension,D. Next, we state a uniform approximation guarantee for Algorithm 1.

Proposition 2. Fix precision parameterδ ∈ R+. In addition, letPJ, J = O
(
log [1/(δ reach (M))]

)
, be a GMRA

approximation to a given compactd-dimensional Riemannian manifold,M ⊂ RD, with volumeV. Finally, let

m = O

(
d log

(
D

δ reach (M)

)
+ log V

)

be a natural number, and defineA : Rm → RD to be Algorithm 1 from Section 3 below. Then, there exists anm ×D
matrix,M, such that

∥∥∥~x −A (
M~x

)∥∥∥ < C
∥∥∥~x − ~xopt

∥∥∥
2
+

C√
d

∥∥∥~x − ~xopt

∥∥∥
1
+ δ

for all ~x ∈ RD with

2
∥∥∥~x − ~xopt

∥∥∥
2
+

6

5
√

d

∥∥∥~x − ~xopt

∥∥∥
1
≤ max

{∥∥∥∥~x − ~cJ,kJ(~x)

∥∥∥∥ , δ
}
.

Furthermore,A (
M~x

)
can be evaluated in worst case

(
2O(d) log V +O

(
md2 + dD

))
-time.

3Note that the upper bounds onm stated both here and in Proposition 2 assume that bothδ andreach (M) are small, i.e.,O(1).
4Most importantly, we note that many variants of both Propositions 1 and 2 can be easily obtained by using any of the embedding results from

[34, 29, 23, 5, 35] in order to define different measurement matrices,M.
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Proof: The result follows from Theorem 4, the second part of Theorem2, and the discussion in Section 3.1.✷

Proposition 2 is best interpreted as a general stability result. It guarantees that Algorithm 1 will uniformly approx-
imate all points which are sufficiently close to the manifoldM (i.e., the points need not be exactly onM). Thus,
Algorithm 1 has some limited robustness to arbitrary additive input noise. The examples in the experimental section
suggest that the constants involved in both the runtime and embedding dimension,m, are very mild in practice.

2.5. The Measurement Matrix. In the process of developing an algorithm to approximateP j,k j(~x)
(
~x
)
, and subse-

quently demonstrating its accuracy, we will require some knowledge regarding ourm × D measurement matrixM.
We shall consider two sets of assumptions regardingM’s interaction with both the manifoldM and our given set of
affine projectors forM at each scalej ∈ [J]. Each set of assumptions will ultimately result in both different approxi-
mation guarantees for our reconstruction algorithm, and different measurements bounds (i.e., sufficient upper bounds
on m) for M. We will postpone discussion of how to createM and how to bound the number of rows it must have
in order to satisfy each set of assumptions below until Section 4. In Section 3 below we will begin by presenting our
reconstruction algorithm together with approximation error bounds under each set of assumptions regardingM.

Let ~x ∈ RD andP = {P j

∣∣∣ j ∈ [J]
}

be a fixed set of affine projectors forM for each scalej ∈ [J]. Fix ǫ ∈
(
0, 1

2

)
. In

Sections 3 and 4 we will assume that ourm × D measurement matrixM satisfies each of these sets of assumptions in
turn.

(1) Assumption Set 1: Required for Nonuniform Recovery of a Given ~x ∈ RD (see Proposition 1)
(a) LetS1 ⊂ RD be

S1 =

{
Φ

T
j,kΦ j,k

(
~x − ~c j,k

) ∣∣∣ j ∈ [J], k ∈ [K j]
}⋃{

~x − ~c j,k

∣∣∣ j ∈ [J], k ∈ [K j]
}⋃{

~0
}
.

We will assume that

(1 − ǫ)
∥∥∥~y − ~z

∥∥∥2 ≤
∥∥∥M~y −M~z

∥∥∥2 ≤ (1 + ǫ)
∥∥∥~y − ~z

∥∥∥2

for all ~y,~z ∈ S1.
(b) Furthermore, we will assume that

(1 − ǫ)
∥∥∥∥ΦT

j,kΦ j,k~y
∥∥∥∥ ≤

∥∥∥∥MΦT
j,kΦ j,k~y

∥∥∥∥ ≤ (1 + ǫ)
∥∥∥∥ΦT

j,kΦ j,k~y
∥∥∥∥

for all j ∈ [J], k ∈ [K j], and~y ∈ RD.
(2) Assumption Set 2: Required for General Stability (see Proposition 2)

(a) LetS2 =M
⋃{
~c j,k

∣∣∣ j ∈ [J], k ∈ [K j]
}
⊂ RD. We will assume that

(1 − ǫ)
∥∥∥~y − ~z

∥∥∥2 ≤
∥∥∥M~y −M~z

∥∥∥2 ≤ (1 + ǫ)
∥∥∥~y − ~z

∥∥∥2

for all ~y,~z ∈ S2.
(b) Furthermore, we will assume that

∥∥∥M~y
∥∥∥ is bounded above byEM

(
~y
)

for all ~y ∈ RD, whereEM : RD →R+ is a continuous function withEM

(
~0
)
= 0. EM is discussed in detail in Section 4.2.

(c) As before, we will assume that

(1 − ǫ)
∥∥∥∥ΦT

j,kΦ j,k~y
∥∥∥∥ ≤

∥∥∥∥MΦT
j,kΦ j,k~y

∥∥∥∥ ≤ (1 + ǫ)
∥∥∥∥ΦT

j,kΦ j,k~y
∥∥∥∥

for all j ∈ [J], k ∈ [K j], and~y ∈ RD.
(d) Finally, we will also assume that

(1 − ǫ)
∥∥∥~y −P j,k

(
~y
)∥∥∥ − 2−J ≤

∥∥∥M~y −MP j,k
(
~y
)∥∥∥ ≤ (1 + ǫ)

∥∥∥~y −P j,k
(
~y
)∥∥∥ + 2−J

for all j ∈ [J], k ∈ [K j], and~y ∈ M.

Note that the critical difference between the two sets of assumptions above concerns the treatment of~x ∈ RD and
~xopt ∈ M ⊂ RD. If possible we would like to obtain measurement bounds which are independent of the ambient
dimension,D. Since an arbitrary vector~x ∈ RD \ M may contain a substantial portion of its energy in the subspace
orthogonal the tangent space toM at~xopt, results which are entirely independent ofD generally appear to be unattain-
able unless our measurement matrix happens to successfullypreserve information in the direction of~x − ~xopt. We
assume thatM preserves lengths of vectors in the general direction of~x−~xopt as part of our first set of assumptions. In
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Algorithm 1 APPROXIMATEP j,k j(~x)
(
~x
)

1: Input: MeasurementsM~x ∈ Rm, Scalej ∈ [J], Approximation P j =

{P j,k

∣∣∣ k ∈ [K j]
}

to manifoldM ⊂ RD

2: Output: A (
M~x

)
, an approximation toP j,k j(~x)

(
~x
) ≈ ~x

3: k′ ←− arg mink∈[K j]

∥∥∥M~x −M~c j,k

∥∥∥

4: ~u ′ ←− arg min~u∈Rd

∥∥∥∥ MΦT
j,k′
~u −M~x +M~c j,k′

∥∥∥∥

5: A (
M~x

) ←− ΦT
j,k′
~u ′ + ~c j,k′

6: OutputA (
M~x

)

the second set of assumptions we do not. It is primarily this difference which leads to different measurement bounds
and error guarantees in each case.

With respect to reducing the number of required measurements, note that the first set of assumptions allows us
to ignore the original manifold and focus on embedding piecewise linear approximations to the manifold instead.
Embedding these sets of approximating subspaces toM instead of directly embeddingM itself is ultimately what
allows us to use a number of linear measurements,m, that is independent of the ambient dimension,D. In the second
set of assumptions we must embedM itself. Hence, the number of linear measurements,m, obtained in this case
depends logarithmically on the ambient dimension,D.

3. THE RECONSTRUCTIONALGORITHM

We will ultimately upper bound the number of measurements required in order to approximate a given~x ∈ RD

which is close toM ⊂ RD via the simple reconstruction technique presented in this section. In doing so we will
require that the reconstruction algorithm approximates~x nearly as well as the vector onM closest to~x,

~xopt = arg min
~y∈M

‖~x − ~y‖,

approximates~x. Our first order of business, therefore, will be to derive explicit error guarantees for the reconstruction
technique considered herein which demonstrate that it is indeed “near-optimal” in the sense discussed in Section 1
above. LetA (

M~x
) ∈ RD denote the output of our reconstruction procedure for a given input~x ∈ RD. We wish to

bound the approximation error ∥∥∥~x −A (
M~x

)∥∥∥

in terms of the optimal approximation error,‖~x − ~xopt‖, and an additive error term of sizeO
(
2− j

)
whenever possible.

Before this task can be accomplished, however, we must first describe the recovery algorithm we will use to calculate
A (

M~x
)
.

Our reconstruction procedure uses compressive measurements of~x in order to approximateP j,k j(~x)
(
~x
)

in two steps

(see Algorithm 1 above). First, the compressive measurements of ~x are used to determine a “center” vector,~c j,k′,
which is nearly as close to~x as its nearest neighboring center,~c j,k j(~x), is. This step is guaranteed to work well as

long as our measurement matrix,M, preserves appropriate distances between~x and all the center vectors at scalej.
Next, an accurate projection of~x − ~c j,k′ onto thed-dimensional subspace associated with~c j,k′ is found by solving an
overdetermined least squares problem. This step will also work well as long as our measurement matrixM is well
conditioned on all of thed-dimensional subspaces associated with the scalej center vectors. As we demonstrate below,
the two sets of assumptions forM in Section 2.5 are sufficient to guarantee that both steps work well.

The following lemma guarantees that the center found in line3 of Algorithm 1 is nearly as close to~x as~x’s true
nearest center is.

Lemma 3. Fix ǫ ∈
(
0, 1

2

)
. LetM ⊂ RD be a compactd-dimensional Riemannian submanifold ofRD, and~x ∈ RD.

Furthermore, letP j =

{P j,k | k ∈ [K j]
}

be a scalej ∈ [J] GMRA approximation toM. Then, if ourm×D measurement
11



matrix M satisfies Assumption Set 1 in Section 2.5 above, line 3 of Algorithm 1 will select ak′ ∈ [K j] which has

∥∥∥~x − ~c j,k′

∥∥∥ ≤
√

1 + ǫ

1 − ǫ ·
∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ .

If our m × D measurement matrixM satisfies Assumption Set 2 in Section 2.5 above, then line 3 ofAlgorithm 1 will
select ak′ ∈ [K j] which has

(6)
∥∥∥~x − ~c j,k′

∥∥∥ ≤
√

1 + ǫ

1 − ǫ ·
∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ +

1 +

√
1 + ǫ

1 − ǫ



∥∥∥~x − ~xopt

∥∥∥ +
√

4

1 − ǫ · EM

(
~x − ~xopt

)
.

Proof: Using the first set of assumptions forM together with the definition ofk′ ∈ [K j] from Algorithm 1 we can see
that

∥∥∥~x − ~c j,k′
∥∥∥ ≤

√
1

1 − ǫ ·
∥∥∥M~x −M~c j,k′

∥∥∥ ≤
√

1

1 − ǫ ·
∥∥∥∥M~x −M~c j,k j(~x)

∥∥∥∥ ≤
√

1 + ǫ

1 − ǫ ·
∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ .

We now turn our attention to the case whereM satisfies the second set of assumptions. We have that

∥∥∥~x − ~c j,k′
∥∥∥ ≤

∥∥∥~x − ~xopt

∥∥∥ +
∥∥∥~xopt − ~c j,k′

∥∥∥ ≤
∥∥∥~x − ~xopt

∥∥∥ +
√

1

1 − ǫ ·
∥∥∥M~xopt −M~c j,k′

∥∥∥

≤
∥∥∥~x − ~xopt

∥∥∥ +
√

1

1 − ǫ

(∥∥∥∥M
(
~x − ~xopt

)∥∥∥∥ +
∥∥∥∥M~x −M~c j,k j(~x)

∥∥∥∥
)

≤
∥∥∥~x − ~xopt

∥∥∥ +
√

4

1 − ǫ ·
∥∥∥∥M

(
~x − ~xopt

)∥∥∥∥ +
√

1 + ǫ

1 − ǫ ·
∥∥∥∥~xopt − ~c j,k j(~x)

∥∥∥∥ .

Focusing on the first and third terms in the line immediately above, we note that

∥∥∥~x − ~xopt

∥∥∥ +
√

1 + ǫ

1 − ǫ ·
∥∥∥∥~xopt − ~c j,k j(~x)

∥∥∥∥ ≤
√

1 + ǫ

1 − ǫ ·
∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ +

1 +

√
1 + ǫ

1 − ǫ



∥∥∥~x − ~xopt

∥∥∥ .

The result follows.✷

Next, we prove a lemma which guarantees the accuracy of the solution of the overdetermined least squares problem
produced by line 4 of Algorithm 1.

Lemma 4. LetM ⊂ RD be a compactd-dimensional Riemannian submanifold ofRD, and~x ∈ RD. Furthermore, letP j =

{P j,k | k ∈ [K j]
}

be a scalej ∈ [J] GMRA approximation toM, andk′ ∈ [K j] be the value computed by line 3 of
Algorithm 1. Then, if ourm × D measurement matrixM satisfies either set of assumptions in Section 2.5 above, line
5 of Algorithm 1 will produce anA (

M~x
) ∈ RD which has

∥∥∥P j,k′
(
~x
) −A (

M~x
)∥∥∥ ≤ 2

1 − ǫ ·
∥∥∥∥M

[
~x −P j,k′

(
~x
)]∥∥∥∥ .

Proof: Let ~u ′ ∈ Rd be as defined in line 4 of Algorithm 1. Given either set of assumptions forM we will have
∥∥∥∥ΦT

j,k′
~u ′ −ΦT

j,k′Φ j,k′

(
~x − ~c j,k′

)∥∥∥∥ ≤
1

1 − ǫ

(∥∥∥∥MΦT
j,k′
~u ′ −M

(
~x − ~c j,k′

)∥∥∥∥ +
∥∥∥∥M

[
I −ΦT

j,k′Φ j,k′

] (
~x − ~c j,k′

)∥∥∥∥
)
,

whereI is theD ×D identity matrix. By the definition of~u ′ in Algorithm 1 we can now see that
∥∥∥∥ΦT

j,k′
~u ′ −ΦT

j,k′Φ j,k′

(
~x − ~c j,k′

)∥∥∥∥ ≤
2

1 − ǫ ·
∥∥∥∥M

[
I −ΦT

j,k′Φ j,k′

] (
~x − ~c j,k′

)∥∥∥∥ .

The stated result follows.✷

Finally, we demonstrate the accuracy of the output of Algorithm 1 as an approximation to~x.
12



Theorem 2. Fix ǫ ∈
(
0, 1

2

)
. LetM ⊂ RD be a compactd-dimensional Riemannian submanifold ofRD, and~x ∈ RD.

Furthermore, letP j =

{P j,k | k ∈ [K j]
}

be a scalej ∈ [J] GMRA approximation toM. Then, if ourm×D measurement

matrix M satisfies Assumption Set 1 in Section 2.5 above, Algorithm 1 will output a point,A (
M~x

) ∈ RD, which
satisfies ∥∥∥~x −A (

M~x
)∥∥∥ < 100.3

∥∥∥~x − ~xopt

∥∥∥ +O
(
2− j

)
.

Now suppose that ourm × D measurement matrixM satisfies Assumption Set 2 in Section 2.5 above, and thatP j

is a scalej GMRA approximation toM for somej > j0 (revisit Properties 3a and 3b in Section 2.2 for the definitions
of the constantsj0, C1, andC̃). Furthermore, suppose that~x ∈ RD −M has

(7) 2 · EM

(
~x − ~xopt

)
≤

(
8
√

1 − ǫ −
√

1 + ǫ
) ∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ −
(√

1 − ǫ +
√

1 + ǫ
) ∥∥∥~x − ~xopt

∥∥∥ .

Then, Algorithm 1 will output a point,A (
M~x

) ∈ RD, which satisfies

(8)
∥∥∥~x −A (

M~x
)∥∥∥ < 220

∥∥∥~x − ~xopt

∥∥∥ + 4 · EM

(
~x − ~xopt

)
+O

(
2− j

)
.

Proof: To begin we note that

(9)
∥∥∥~x −A (

M~x
)∥∥∥ ≤

∥∥∥~x −P j,k′
(
~x
)∥∥∥ +

∥∥∥P j,k′
(
~x
) −A (

M~x
)∥∥∥

wherek′ ∈ [K j] is defined as in line 3 of Algorithm 1. The first set of assumptions forM together with Lemmas 2
and 3 tells us that ∥∥∥~x −P j,k′

(
~x
)∥∥∥ ≤ 17

∥∥∥~x − ~xopt

∥∥∥ +O
(
2− j

)

sinceǫ ∈
(
0, 1

2

)
. Furthermore, the first set of assumptions forM together with Lemma 4 indicates that

∥∥∥P j,k′
(
~x
) −A (

M~x
)∥∥∥ ≤ 2

1 − ǫ ·
∥∥∥∥M

[
~x −P j,k′

(
~x
)]∥∥∥∥ ≤ 2

√
1 + ǫ

1 − ǫ ·
∥∥∥~x −P j,k′

(
~x
)∥∥∥ .

Hence, we obtain the stated bound in the first case.
Now assume thatM satisfies Assumption Set 2 in Section 2.5. We will begin by bounding the

∥∥∥P j,k′
(
~x
) −A (

M~x
)∥∥∥

term in Equation 9. Applying Lemma 4 and then utilizing our second set of assumptions regardingM we can see that
∥∥∥P j,k′

(
~x
) −A (

M~x
)∥∥∥ ≤ 2

1 − ǫ ·
∥∥∥∥M

[
~x −P j,k′

(
~x
)]∥∥∥∥ ≤

2

1 − ǫ
(∥∥∥Mx −M~xopt

∥∥∥ +
∥∥∥M~xopt −MP j,k′

(
~x
)∥∥∥

)

≤ 2

1 − ǫ

(∥∥∥Mx −M~xopt

∥∥∥ +
∥∥∥∥M~xopt −MP j,k′

(
~xopt

)∥∥∥∥ +
∥∥∥∥MP j,k′

(
~xopt

)
−MP j,k′

(
~x
)∥∥∥∥

)

≤ 2 · 1 + ǫ

1 − ǫ ·
∥∥∥~x − ~xopt

∥∥∥ + 2

1 − ǫ

(∥∥∥Mx −M~xopt

∥∥∥ +
∥∥∥∥M~xopt −MP j,k′

(
~xopt

)∥∥∥∥
)
.(10)

In order to bound the last term in Equation 10 above, we note that
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 8
∥∥∥∥~x − ~c j,k j(~x)

∥∥∥∥ wheneverEM

(
~x − ~xopt

)

satisfies Equation 7. Therefore, we will have
∥∥∥~xopt − ~c j,k′

∥∥∥ < 16
∥∥∥∥~xopt − ~c j,k j(~xopt)

∥∥∥∥ whenever
∥∥∥~x − ~c j,k′

∥∥∥ > 17
∥∥∥~x − ~xopt

∥∥∥
by an argument identical to that presented in the second paragraph of the proof of Lemma 2. Hence, Property 3b in Sec-

tion 2 guarantees that
∥∥∥∥~xopt −P j,k′

(
~xopt

)∥∥∥∥ ≤ C̃ ·2− j whenever
∥∥∥~x − ~c j,k′

∥∥∥ > 17
∥∥∥~x − ~xopt

∥∥∥. Item (d) of Assumption Set

2 in Section 2.5 now guarantees that
∥∥∥∥M~xopt −MP j,k′

(
~xopt

)∥∥∥∥ will also beO
(
2− j

)
whenever

∥∥∥~x − ~c j,k′

∥∥∥ > 17
∥∥∥~x − ~xopt

∥∥∥.

To finish, suppose that
∥∥∥~x − ~c j,k′

∥∥∥ ≤ 17
∥∥∥~x − ~xopt

∥∥∥. Continuing to bound the last term of Equation 10 in this casewe
obtain

2

1 − ǫ

∥∥∥∥M~xopt −MP j,k′

(
~xopt

)∥∥∥∥ ≤
2

1 − ǫ

(∥∥∥M~xopt −M~c j,k′
∥∥∥ +

∥∥∥∥MΦT
j,k′Φ j,k′

(
~xopt − ~c j,k′

)∥∥∥∥
)

≤ 2 ·
√

1 + ǫ

1 − ǫ
∥∥∥~xopt − ~c j,k′

∥∥∥ + 2 · 1 + ǫ

1 − ǫ
∥∥∥~xopt − ~c j,k′

∥∥∥

≤ 36 ·
√

1 + ǫ

1 − ǫ
(
1 +
√

1 + ǫ
) ∥∥∥~x − ~xopt

∥∥∥ .
13



Combining this bound with the previous paragraph concludesthe proof.✷

Theorem 2 demonstrates that Algorithm 1 can stably approximate vectors~x ∈ RD \M as long as the measurement
matrix,M, satisfies one of the two sets of assumptions detailed in Section 2.5. However, the strength of the approxima-
tion guarantee depends on which set of assumptionsM satisfies. WhenM possess the attributes listed in Assumption
Set 1 (most notably, attribute (a)) the vector returned by Algorithm 1 will always provide an approximation to~x whose
error is a within a constant multiple of the optimal approximation error. WhenM satisfies Assumption Set 2, on the
other hand, Algorithm 1 is only guaranteed to provide near optimal approximations for vectors,~x, which are relatively
close to the manifoldM.

3.1. Practical Implementation of Algorithm 1. In line 3 of Algorithm 1 we want to locate the nearest neighbor
of M~x ∈ Rm from the set

{
M~c j,k

∣∣∣ k ∈ [K j]
}
⊂ Rm. This can be accomplished naively inO(mK j)-time. However,

K j is potentially large in the worst case (see Lemma 6 below). Therefore, it is important to note that the runtime’s
dependence onK j can be greatly reduced in practice with the aid of standard space partitioning techniques (e.g., by
building a k-d tree to solve the nearest neighbor problem). Alternatively, other fast nearest neighbor methods could
also be utilized (e.g., see [33, 8, 4] and the references therein). Due to the dyadic structure of our~c j,k-vectors, the worst

case theoretical runtime complexity of line 3 can be improved slightly to
(
2O(d) log V

)
-time by using cover trees [8].5

Alternatively, when it suffices to find a(1+ δ)-nearest neighbor ofM~x with high probability, we can utilize even faster
algorithms which run inmO(1)-time (see Proposition 3 in [33] together with the bound form in Theorem 3 below).

Line 4 of Algorithm 1 requires the solution of an overdetermined least squares problem. This can be accomplished
in O(md2)-time via the singular value decomposition ofMΦT

j,k′
. Furthermore, the solution can be computed accurately

since both sets of assumptions in Section 2.5 guarantee thatMΦT
j,k′

is well conditioned. Finally, explicitly forming

A (
M~x

)
in line 5 of Algorithm 1 can be accomplished inO(Dd)-time. The total runtime of Algorithm 1 will therefore

beO (d(md +D) + TNN), whereTNN bounds the runtime of the nearest neighbor algorithm used inline 3.

4. UPPERBOUNDS ON THENUMBER OF REQUIRED MEASUREMENTS

In this section we will bound the number of rows,m, needed in order for ourm × D measurement matrix,M,
to satisfy each set of assumptions discussed in Section 2.5.In order to do so, it will suffice to letM be a linear
Johnson-Lindenstrauss embedding of a well chosen set of points inRD into Rm. Of course, this set of points will
vary depending on which set of assumptions from Section 2.5 we wantM to satisfy. Below we consider each set of
assumptions separately. However, we will first establish two lemmas which will be useful in both cases.

Lemma 5. Let ǫ ∈
(
0, 1

2

)
. Furthermore, letj ∈ [J] andk ∈ [K j] denote an affine projectorP j,k (see Property 1 in

Section 2). Then, there exists a finite set of vectors,Q j,k ⊂ X j,k =

{
ΦT

j,k
Φ j,k~y

∣∣∣ ~y ∈ RD
}

with
∣∣∣Q j,k

∣∣∣ ≤ (12/ǫ)d
+ 1, such

that

(1 − ǫ)
∥∥∥∥ΦT

j,kΦ j,k~y
∥∥∥∥ ≤

∥∥∥∥MΦT
j,kΦ j,k~y

∥∥∥∥ ≤ (1 + ǫ)
∥∥∥∥ΦT

j,kΦ j,k~y
∥∥∥∥

for all ~y ∈ RD wheneverM embedsQ j,k intoRm with ǫ/2-distortion.

Proof: We let Q′
j,k

be a minimalǫ/4-cover of thed-dimensional unit ball inX j,k centered at~0 ∈ X j,k. Now set

Q j,k = Q′
j,k

⋃{
~0
}
. The stated upper bound of

∣∣∣Q j,k

∣∣∣ follows from existing covering results (see [5] for references).
Furthermore, ifM embedsQ j,k intoRm with ǫ/2-distortion it is easy to see that

(1 − ǫ/2) ‖q‖ ≤ ‖Mq‖ ≤ (1 + ǫ/2) ‖q‖
for all q ∈ Q j,k. The remainder of the proof now directly parallels the proofof Lemma 5.1 in [5].✷

Lemma 6. Fix J ∈ N and letP j, j ∈ [J], be a GMRA approximation to a given compactd-dimensional Riemannian

manifold,M ⊂ RD, withd-dimensional volumeV. Furthermore, suppose thatj′ ∈ [J]−
[
max

{
j0, log2

(
C1

reach(M)

)
− 2

}]
,

5HereV is the volume of thed-dimensional manifoldM ⊂ RD.
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where j0 andC1 are defined as in Property 3a of Section 2. Then, the number of affine projectors at scalej′, K j′ , is

bounded above by2
d( j′+1.5)

Cd
1

· V ·
(

d
2 + 1

) d
2+1

.

Proof: We know thatBC1·2− j′−2

(
~c j′,k

)
∩ M is nonempty for allk ∈ [K j′ ] since j′ > j0. Now consider a minimal

C1 ·2− j′−2-cover ofM, CC1·2− j′−2 (M). It is not difficult to see that every~c j′,k will be contained inBC1·2− j′−1

(
~y
)

for some
~y ∈ CC1·2− j′−2 (M). Furthermore, there can be no~y ∈ CC1·2− j′−2 (M) such that two distinct~c j′,k are contained in the

same ball,BC1·2− j′−1

(
~y
)
, by Property 2b in Section 2. Hence,K j′ ≤

∣∣∣CC1·2− j′−2 (M)
∣∣∣. Applying Lemma 1 concludes the

proof.✷

We are now prepared to upper bound the number of rows requiredby ourm × N measurement matrix,M, in order
to satisfy each set of assumptions listed in Section 2.5.

4.1. Bounding the Number of Rows Required to Satisfy Assumption Set 1.

Theorem 3. Fix ǫ ∈
(
0, 1

2

)
, ~x ∈ RD, and J ∈ N sufficiently large. Furthermore, letP j, j ∈ [J], be a GMRA

approximation to a given compactd-dimensional Riemannian manifold,M ⊂ RD, with volumeV. Then, there exists
an m ×D matrix,M, which satisfies Assumption Set 1 in Section 2.5 withm = O

(
dǫ−2 (

J + log(d/ǫ)
)
+ ǫ−2 log V

)
.

Proof: The setS1 ⊂ RD defined in item (a) of Assumption Set 1 has|S1| ≤ 2(J + 1)KJ + 1. Furthermore, applying

Lemma 5 to all at most(J + 1)KJ affine projectors yields a set of size at most(J + 1)KJ

(
(12/ǫ)d

+ 1
)

for item (b) of
Assumption Set 1. Lemma 6 together with Theorem 1 now finishesthe proof.✷

It is important to recall that Theorem 1 is proven by showing that a random matrix will (nearly) isometrically embed
a given subset ofRD intoRm with high probability. In the proof of Theorem 3 above, Theorem 1 is applied to embed
a set which depends on the given~x ∈ RD we are ultimately interested in approximating (i.e., the set S1 defined in
Section 2.5 depends on~x). Thus, Theorem 3 provides us with a high probability recovery guarantee for each separate
~x ∈ RD on which we apply Algorithm 1.

4.2. Bounding the Number of Rows Required to Satisfy Assumption Set 2. We will begin this section by consider-
ing item (b) of Assumption Set 2. Among other things, this will allow us to finally define the functionEM : RD → R+.
However, we must first define the Restricted Isometry Property [13] on which the subsequent discussion relies.

Definition 2. Let D, d ∈ N, andǫ ∈ (0, 1). Anm ×D matrixM′ has the Restricted Isometry Property, RIP(D,d,ǫ), if

(11) (1 − ǫ)
∥∥∥~x

∥∥∥2 ≤
∥∥∥M′~x

∥∥∥2 ≤ (1 + ǫ)
∥∥∥~x

∥∥∥2

for all ~x ∈ RD containing at mostd nonzero coordinates.

We have the following lemma.

Lemma 7. Let ǫ ∈
(
0, 1

2

)
. There exists a finite set of vectors,Q ⊂ X =

{
~y
∣∣∣ ~y ∈ RD containsd nonzero coordinates

}

with
∣∣∣Q

∣∣∣ ≤ (D
d

) (
(12/ǫ)d

+ 1
)
, such that anm ×D matrix M′ has the RIP(D,d,ǫ) whenever it embedsQ intoRm with

ǫ/2-distortion. Furthermore, any such matrixM′ will have
∥∥∥M′~y

∥∥∥
2

bounded above by

EM′
(
~y
)
=

√
1 + ǫ ·

[∥∥∥~y
∥∥∥

2
+

1√
d

∥∥∥~y
∥∥∥

1

]

for all ~y ∈ RD.

Proof: To prove thatM′ has the RIP(D,d,ǫ) we employ an argument similar to the proof of Theorem 5.2 in [5]. To
begin, we define~e j, j ∈ [D] − {0}, to be thejth row of theD × D identity matrix. Then, for eachd-element subset
S =

{
j1, . . . , jd

} ⊂ [D] − {0}, we defineXS to be thed-dimensional subspace spanned by~e j1 , . . . ,~e jd . Next, we letQ′
S

be a minimalǫ/4-cover of thed-dimensional unit ball inXS centered at~0, and defineQS = Q′
S

⋃{
~0
}

as per Lemma 5.
Finally, we let

Q :=
⋃

S⊂[D]−{0}, |S|=d

QS.
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The upper bound on|Q| follows immediately.
Now suppose thatM′ embedsQ intoRm with ǫ/2-distortion. Every~x ∈ RD containing at mostd nonzero coor-

dinates belongs to some subspace,XS, whose associated set,QS ⊂ Q, is also embedded intoRm with ǫ/2-distortion
by M′. Hence, a trivial variant of Lemma 5 guarantees that every such~x will satisfy Equation 11. Therefore,M′ will
have the RIP(D,d,ǫ) as claimed. The equation forEM′ now follows from Proposition 3.5 in [38].✷

We are now sufficiently equipped to consider item (a) of Assumption Set 2 in Section 2.5. We have the following
lemma.

Lemma 8. Fix ǫ ∈
(
0, 1

2

)
and J ∈ N − [

max
{
j0, log2

(
C1

reach(M)

)
− 2

}]
, wherej0 andC1 are defined as in Property 3a

of Section 2. In addition, letP j, j ∈ [J], be a GMRA approximation to a given compactd-dimensional Riemannian
manifold,M ⊂ RD, with d-dimensional volumeV. Then, there exist absolute universal constants,C3,C4 ∈ R+, which
are independent of bothM and its GMRA approximation, together with a finite set of vectors, B̃ ⊂ RD, so that any
m ×D matrix M′ which embeds̃B intoRm with (C3 · ǫ)-distortion will satisfy

(1 − ǫ)
∥∥∥~y − ~z

∥∥∥2 ≤
∥∥∥M′~y −M′~z

∥∥∥2 ≤ (1 + ǫ)
∥∥∥~y − ~z

∥∥∥2

for all ~y,~z ∈ M
⋃{
~c j,k

∣∣∣ j ∈ [J], k ∈ [K j]
}
⊂ RD. Furthermore,B̃ ⊂ RD will have

∣∣∣B̃
∣∣∣ = O


2C4 J·dV2

(
D

ǫ ·min {1, reach (M)} ·min {1,C1}

)C4d .

Proof: See Appendix A.✷

Furthermore, a modification of the proof of Lemma 8 yeilds ourfinal lemma concerning Assumption Set 2 in
Section 2.5. We have the following result regarding item (d)of Assumption Set 2.

Lemma 9. Fix ǫ ∈
(
0, 1

2

)
and J ∈ N − [

max
{
j0, log2

(
C1

reach(M)

)
− 2

}]
, wherej0 andC1 are defined as in Property 3a

of Section 2. In addition, letP j, j ∈ [J], be a GMRA approximation to a given compactd-dimensional Riemannian
manifold,M ⊂ RD, with d-dimensional volumeV. Then, there exist absolute universal constants,C5,C6 ∈ R+, which
are independent of bothM and its GMRA approximation, together with a finite set of vectors, B′ ⊂ RD, so that any
m ×D matrix M′ which embedsB′ intoRm with (C5 · ǫ)-distortion will satisfy

(1 − ǫ)
∥∥∥~y −P j,k

(
~y
)∥∥∥ − 2−J ≤

∥∥∥M′~y −M′P j,k
(
~y
)∥∥∥ ≤ (1 + ǫ)

∥∥∥~y −P j,k
(
~y
)∥∥∥ + 2−J

for all j ∈ [J], k ∈ [K j], and~y ∈ M. Furthermore,B′ ⊂ RD will have

|B′| = O


2C6 J·dV2

(
D

ǫ ·min {1, reach (M)} ·min {1,C1}

)C6d .

Proof: See Appendix B.✷

We are finally ready to provide a useful upper bound for the number of rows required in any measurement matrix
satisfying Assumption Set 2 in Section 2.5. We have the following theorem.

Theorem 4. Fix ǫ ∈
(
0, 1

2

)
and J ∈ N− [

max
{
j0, log2

(
C1

reach(M)

)
− 2

}]
, wherej0 andC1 are defined as in Property 3a

of Section 2. In addition, letP j, j ∈ [J], be a GMRA approximation to a given compactd-dimensional Riemannian
manifold,M ⊂ RD, with d-dimensional volumeV. Then, there exists anm×D matrix,M, which satisfies Assumption
Set 2 in Section 2.5 with

m = O

(
dǫ−2 log

(
D

ǫ · reach (M)

)
+ dǫ−2J + ǫ−2 log V

)

and

EM
(
~y
)
=

√
1 + ǫ ·

[∥∥∥~y
∥∥∥

2
+

1√
d

∥∥∥~y
∥∥∥

1

]
.
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Proof: Any m × D matrix which embeds̃B ⊂ RD from Lemma 8 intoRm with (C3 · ǫ)-distortion will satisfy both
items (a) and (b) of Assumption Set 2 in Section 2.5 (see Lemmas 7 and 8). Similarly, any givenm ×D matrix which
embedsB′ ⊂ RD from Lemma 9 intoRm with (C5 · ǫ)-distortion will satisfy item (d) of Assumption Set 2. Finally,
just as in the proof of Theorem 3 above, Lemma 5 applied to all at most(J + 1)KJ affine projectors yields a subset ofRD of size at most(J + 1)KJ

(
(12/ǫ)d

+ 1
)

for item (c) of Assumption Set 2. Theorem 1 applied to the union of this

subset withB̃ ∪ B′ guarantees the existence of

O
(
ǫ−2 log

(∣∣∣B̃
∣∣∣ + |B′| + (J + 1)KJ

(
(12/ǫ)d

+ 1
)))
×D

Johnson-Lindenstrauss embedding matrices which satisfy Assumption Set 2 with high probability. Applying Lem-
mas 6, 8, and 9 to boundKJ,

∣∣∣B̃
∣∣∣, and|B′|, respectively, now finishes the proof.✷

In the proof of Theorem 4 above, Theorem 1 is applied to embed aset which only depends on the given manifold,
M, and its GMRA approximation. More specifically, no knowledge was assumed regarding any point~x ∈ RD \
M which we might be interested in approximating via Algorithm1. Thus, Theorem 4 provides us with a uniform
approximation guarantee for all~x ∈ RD on which we might apply Algorithm 1. However, we pay several penalties for
this uniformity. First, the number of rows in our measurement matrix,m, now depends on theextrinsic dimensionality,
D, of the given manifold. Second, the resulting uniform errorbounds are only nontrivial for input points,~x, which are
close to the given manifold. Hence, although Theorem 4 implies that Algorithm 1 enjoys a limited form of stability, it
does not provide very robust uniform error guarantees in practice.

5. EMPIRICAL EVALUATION

We implemented Algorithm 1 and present an empirical evaluation of the algorithm in this section.6 We consider
the following examples:

(i) M1: 20, 000 points sampled from a “swiss roll”, a2-dimensional manifoldS embedded intoR100;
(ii) M2: 40, 000 points sampled from a unit9-dimensional sphereS9 embedded intoR100;
(iii) M3: 5, 000 pictures of the digit ‘1’ from the MNIST data base of images,28 × 28 pixels, of handwritten

digits7, with each picture having pixel intensity normalized to have unitL2 norm.
(iii) M4: 15, 000 points from the MNIST data base, with5, 000 points sampled from each of the digits1, 3, 5, with

each picture having pixel intensity normalized to have unitL2 norm.
(iv) M5: the Science News text document data set, which comprises1163 text documents, modeled as vectors

in 1153 dimensions, whosei-th entry is the frequency of thei-th word in a dictionary (see [21] for detailed
information about this data set), normalized so that every document vector has unit Euclidean norm.

We construct the GMRA on these data sets in order to obtain thelinear approximations,P j for each scalej considered

below in the noiseless setting. For the noisy experiments weadd Gaussian noise,N(0, σ
2

D ID) whereD is the (ambient)
dimension of the data, to each data point forσ ∈ (0, 0.05, 0.1). We then use the noisy data to compute the GMRA
approximations of the noisy data, as well as the random projections utilized by the proposed reconstruction algorithm
A. We consider the following measures of approximation:

relMSE(A,M, j)2 :=
1

n

n∑

i=1

||~xi −A
(
M~xi

) ||2
||~xi||2

, relMSEj
2 :=

1

n

n∑

i=1

||~xi − P j
(
~xi
) ||2

||~xi||2
(12)

where{~xi}ni=1
are the data points,j is the level in the GMRA, ranging from0 to J (dependent on the data set),A

is Algorithm 1, andM is a fixed random (with respect to Haar measure) orthogonal projection at each scalej with
range of dimension(d j · m) ∧ D, where the “oversampling factor”m = 1, 2, 4, 16, and the “intrinsic dimension”
d j = maxk dim(range(P j,k)). Therefore,d j is the dimension of the manifold (2 and9, respectively) forM1 andM2.
The dimension parameter,d j, is adaptively chosen in a scale-dependent way forM3,M4,M5 as described in [3], with
actual values used in these examples reported in Figure 1.

6All GMRA and Algorithm 1 code is freely available athttp://www.math.duke.edu/ ˜ mauro/code.html as part of the GMRA
package. An example script for manifold-based compressed sensing,script_IGWT_CS_2.m , has been included here.

7Available athttp://yann.lecun.com/exdb/mnist/.
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In Figure 1 we also run SpaRSA [51], one of the leading algorithms, among many, for sparse reconstructions.
SpaRSA provides additional benchmarking by solving the basis pursuit denoising problem,

(13) ~yi = arg min

~z∈RO((dj+1)·(Kj+1))

1

2

∥∥∥M~xi −MW j~z
∥∥∥2

2
+ τ

∥∥∥~z
∥∥∥

1
,

for each data point~xi ∈ RD at scalej. Hereτ ∈ R+ was hand tuned as recommend in [51], andW j ∈ RD×O((d j+1)·(K j+1))

was the GWRA-based dictionary
W j =

[
Φ

T
j,0 ~c j,0 Φ

T
j,1 ~c j,1 · · · ΦT

j,K j
~c j,K j

]

for each scalej ∈ [J]. We then outputW j~yi ∈ RD as SpaRSA’s approximation to each~xi at scalej, where~yi is defined
as in Equation 13.

The dashed black line in each Figure 1 plot reports therelMSEj-error of the GMRA approximation computed with
no compression (see Equation 12). Looking at the Figure 1 plots we note that that our manifold-based compressed
sensing error,relMSE(A,M, j), is close to the uncompressed projector’s approximation error, relMSEj, at each scale
j. Hence, we appear able to achieve our stated goals from Section 2.3 computationally as well as theoretically. We also
note that: (a) for general real world data sets SpaRSA achieves comparable precision to our algorithm, suggesting that
the GMRA dictionaries,W j, may be used in concert with standard sparse approximation techniques for compressive
sensing; (b) for low-dimensional manifold synthetic data sets, which do not curve in many dimensions, SpaRSA
achieves higher accuracy, since the directions of a few tangent planes are sufficient to span a subspace containing the
entire manifold.

Finally, in Figure 2 we report running times, for the same data sets as in Figure 1, for both our algorithmA and
SpaRSA. These graphs suggest that our algorithm can performseveral orders of magnitude faster than SpaRSA. In the
examples shown it took a few seconds to run Algorithm 1 on all the points, with SpaRSA taking a significant fraction
of a second to run on a single point. In some sense this is entirely expected since Algorithm 1 was designed to take
advantage of the GMRA dictionary’s structure in order to be faster, while SpaRSA is using the GMRA dictionary
generically, without any knowledge of its structure.

6. CONCLUSION

In this paper we discussed the ability of random projectionsto embed an intrinsically lowd-dimensional sub-
manifold ofRD, together with a piecewise linear approximation to the submanifold, intoRO(d log d) in a way which
(approximately) preserves the fidelity of the embedded piecewise linear approximation. Although any collection of
approximating affine spaces suffice, we focussed on the type of multi-scale linear approximations provided by GMRA
[3]. It is worth mentioning that the entire Geometric Wavelet Transform (GWT) [3] of a point near a given manifold
can also be preserved by the type of random projections discussed herein.

Note that the GWT of a point on a given manifold will always be approximated by the sum of at mostJd vectors
(whereJ is the number of scales in the GWT). So, pessimistically, a random projection needs to preserve all distances
in a number ofO(Jd)-dimensional subspaces which is bounded above by Lemma 6 in order to approximately preserve
the entire geometric wavelet transform of each point on the manifold. Thus, the GWT of each point on a given
manifold should be preserved in compressed form by a random linear projection onto a subspace whose dimension,
m, satisfies a variant of Theorem 3 withd replaced everywhere byJd.
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FIGURE 1. In this matrix of Figures, entry(i, k) refers toMk +N(0,
σ2

i

D ID), with σ = (0, 0.05, 1) as
defined at the beginning of Section 5. Here the horizontal axis representing the scalej, the vertical
axis the relative mean square errorsrelMSE(A,M, j) defined in (12), and we vary the oversampling
parameterm = 2, 4, 16 (ForM3 we have(d j) j = (3, 3, 3, 3, 9, 37, 45, 45) , and forM4 we have
d j = (9, 7, 7, 7, 6, 6, 9, 36, 61, 66, 66), and forM5 andd j = (83, 51, 33, 21, 43, 50).). We also plot
(dashed black) therelMSEJ defined again (12). We report the average result of5 draws of the
random matrixM (we do not show the negligible standard deviation). Note: the maximum square
error (not shown) is about10 times larger than the mean square error in all cases (not shown). We
also run SpaRSA [51] (see comments in the text).
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FIGURE 2. WIth the grid of sub-figures referring to the same examplesas in Figure 1, we plot as a
function of the horizontal axis representing the scalej, the time (in milliseconds in the vertical axis)
per pointx needed to compute eitherA(x) or SpaRSA(x) [51] (with the matrices involved in the
latter algorithm, and their transposed, precomputed). Because of the long waiting time involved, we
ran SpaRSA only on50 randomly chosen points rather than all the points.
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APPENDIX A. PROOF OFLEMMA 8

To prove this lemma we will modify the proof of Theorem 3.1 in [6]. The proof of Theorem 3.1 proceeds in two
steps. First, a finite set,B ⊂ RD, of points on/near the given manifoldM is defined. The main body of the proof then
consists of demonstrating that anym ×D matrix,M′, which embedsB intoRm with Θ(ǫ)-distortion will also satisfy

(1 − ǫ)
∥∥∥~x − ~y

∥∥∥ ≤
∥∥∥M′~x −M′~y

∥∥∥ ≤ (1 + ǫ)
∥∥∥~x − ~y

∥∥∥
for all ~x, ~y ∈ M. Our proof will proceed along a similar path. We will begin byfirst defining a modified version of the
set,B, considered in [6]. We will call this set̃B. Then, we will prove that anym × D matrix which which embeds̃B
intoRm with Θ(ǫ)-distortion will also satisfy item (a) of Assumption Set 2 inSection 2.5.

Let dM
(
~x, ~y

)
denote the geodesic distance between~x, ~y ∈ M. Furthermore, letTan~x denote thed-dimensional

tangent space toM at each~x ∈ M. Finally, let

BM,δ
(
~x
)
=

{
~y ∈ M

∣∣∣ dM
(
~x, ~y

) ≤ δ
}

for eachδ ∈ R+ and~x ∈ M.
We are now ready to constructB ⊂ RD as per [6] as follows: SetT = O

(
ǫ2

D ·min {1, reach (M)}
)

and, for each

~x ∈ M, let Q2
(
~x
) ⊂ Tan~x denote a minimalΘ

(
ǫ · T/

√
D
)
-cover of thed-dimensional Euclidean ball of radiusT

centered at~0 ∈ Tan~x. Next, chooseA ⊂ M to be a minimal finite cover ofM satisfying

min
~a∈A

dM
(
~a, ~x

) ≤ T,

for all ~x ∈ M. Then,
B :=

⋃

~a∈A

{
~a
} ∪ (
~a +Q2

(
~a
))
.

In the next paragraph we will define our modified set,B̃ ⊂ RD, which is a superset of the setB defined above.
Fix j ∈ [J] andk ∈ [K j]. For each~a ∈ A above, let~a j,k ∈ BM,T

(
~a
)

be such that
∥∥∥~a j,k − ~c j,k

∥∥∥ ≤
∥∥∥~y − ~c j,k

∥∥∥ ∀~y ∈ BM,T
(
~a
)
.

Let A j,k =

{
~a j,k

∣∣∣ ~a ∈ A
}
. Furthermore, denote the(d + 1)-dimensional vector space spanned byTan~a j,k

⋃{
~c j,k − ~a j,k

}
by

Tan~a, j,k, and then letQ j,k
(
~a
) ⊂ Tan~a, j,k be a minimalΘ

(
ǫ · T/

√
D
)
-cover of the(d + 1)-dimensional Euclidean ball of

radiusT centered at~0. To finish, define

B j,k :=
⋃

~a∈A

{
~a j,k

}
∪

(
~a j,k +Q j,k

(
~a
))

and then set

B̃ :=




⋃

j∈[J], k∈[K j]

B j,k ∪
{
~c j,k

}

 ∪ B ∪Q,

whereQ ⊂ RD is as defined in Lemma 7.
21



Note that
∣∣∣B̃

∣∣∣ will be bounded above by

(J + 1) · KJ

(
1 + max

j∈[J], k∈[K j]

∣∣∣B j,k

∣∣∣
)
+ |B| + |Q| .

Applying Lemma 7 to bound|Q|, Lemma 6 to boundKJ, and appealing to Section 3.2.5 of [6] to bound|B|, the previous
line reveals that

(14)
∣∣∣B̃

∣∣∣ ≪ 2O(J·d) · V ·
(

d

min {1,C1}

)O(d) (
max

j∈[J], k∈[K j]

∣∣∣B j,k

∣∣∣
)
+ V

(
D

ǫ ·min {1, reach (M)}

)O(d)

.

We now finish bounding the cardinality ofB̃ by noting that
∣∣∣B j,k

∣∣∣ will always be bounded above by the upper bounds

for |B| in Section 3.2.5 of [6] after every occurrence ofK = d is replaced withd + 1.8 The stated upper bound on
∣∣∣B̃

∣∣∣
follows.

We will now complete the second portion of our proof by demonstrating that a sufficiently precise linear embedding
of B̃ will satisfy item (a) of Assumption Set 2. First, sinceB ⊂ B̃, Theorem 3.1 in [6] guarantees that a low-distortion
embedding of̃B will preserve all pairwise distances between points on the manifoldM. Furthermore, any embedding
of B̃ will also embed all~c j,k-vectors since they form a proper subset ofB̃. Hence, if suffices for us to show that a
sufficiently precise linear embedding ofB̃ will (approximately) preserve the distance from each~c j,k-vector to all points
on the manifoldM.

Fix j ∈ [J], k ∈ [K j], and~x ∈ M. Let~a ′ ∈ A be the closest element ofA to ~x,

~a ′ = arg min
~a∈A

dM
(
~a, ~x

)
.

Finally, let~x ′
j,k

denote the projection of~x onto the(d+ 1)-dimensional affine subspace~a ′
j,k
+Tan~a ′, j,k. By considering

the Taylor series expansion of the unit speed parameterization of the geodesic path from~a ′
j,k

to ~x onM, we find that

~x = ~x ′j,k + ~r, where
∥∥∥~r

∥∥∥ = O




d2
M

(
~x, ~a ′

j,k

)

reach (M)


 .

In fact, the magnitude of the remainder,~r, is alsoO
(∥∥∥∥~x − ~a ′j,k

∥∥∥∥
2)

sinceT < reach (M) /2 (see Corollary 2.1 in [6]).

Furthermore, the definition of~a ′
j,k
∈ M implies that

∥∥∥∥~x − ~a ′j,k
∥∥∥∥ = O

(∥∥∥~x − ~c j,k

∥∥∥
)
.

Continuing with the proof, suppose that anm × D matrix, M′, embeds̃B intoRm with Θ(ǫ)-distortion. A trivial
variant of Lemma 5 then implies that

∥∥∥M′~x −M′~c j,k

∥∥∥ ≤
∥∥∥∥M′~x −M′~x ′j,k

∥∥∥∥ +
∥∥∥∥M′~x ′j,k −M′~c j,k

∥∥∥∥ ≤
∥∥∥M′~r

∥∥∥ + (1 + Θ(ǫ))
∥∥∥∥~x ′j,k − ~c j,k

∥∥∥∥

≤ (1 + Θ(ǫ))
(∥∥∥~x − ~c j,k

∥∥∥ +
∥∥∥~r

∥∥∥
)
+

∥∥∥M′~r
∥∥∥ ≤ (1 + Θ(ǫ))

∥∥∥~x − ~c j,k

∥∥∥ +
∥∥∥M′~r

∥∥∥ +O
(∥∥∥∥~x − ~a ′j,k

∥∥∥∥
2)

sinceQ j,k
(
~a ′

) ⊂ Tan~a ′ , j,k is a proper subset of̃B, and
(
~x ′

j,k
− ~c j,k

)
∈ Tan~a ′, j,k. In addition, the fact thatQ ⊂ B̃ together

with Lemma 7 guarantees thatM′ will have the RIP(D,d,Θ(ǫ)). This fact combined with the Hölder inequality finally
reveals that

∥∥∥M′~x −M′~c j,k

∥∥∥ ≤ (1 + Θ(ǫ))
∥∥∥~x − ~c j,k

∥∥∥ +O




√
D

d
·
∥∥∥∥~x − ~a ′j,k

∥∥∥∥
2

 ≤


1 + Θ(ǫ) +O




√
D

d
· T





∥∥∥~x − ~c j,k

∥∥∥

≤ (1 +O (ǫ))
∥∥∥~x − ~c j,k

∥∥∥ .

The lower bound for
∥∥∥M′~x −M′~c j,k

∥∥∥ is established in an analogous fashion. We have the stated theorem.

8Intuitively, we are increasing the effective intrinsic dimensionality ofM from d to d + 1 in the process of creating ourB j,k-subsets.
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APPENDIX B. PROOF OFLEMMA 9

The proof of this Lemma borrows heavilly from the proof of Lemma 8. SetT = O
(

2−Jǫ2

D ·min {1, reach (M)}
)
.

We will begin by defining the setB′ ⊂ RD. Let A ⊂ M, B ⊂ RD, and A j,k =

{
~a j,k

∣∣∣ ~a ∈ A
}
⊂ M for each

j ∈ [J], k ∈ [K j] be defined as in Appendix A above (except now using the smallervalue ofT from the second sentence

of this appendix). Let̃Tan~a, j,k denote the(2d + 1)-dimensional vector space spanned by

Tan~a j,k

⋃{
~c j,k − ~a j,k

}⋃{
Φ

T
j,kΦ j,k~y

∣∣∣ ~y ∈ RD
}

for each~a j,k ∈ A j,k. Furthermore, for each~a j,k ∈ A j,k, let Q′
j,k

(
~a
) ⊂ T̃an~a, j,k be a minimalΘ

(
ǫ · T/

√
D
)
-cover of the

(2d + 1)-dimensional Euclidean ball of radiusT centered at~0 ∈ T̃an~a, j,k. To finish, define

B′j,k :=
⋃

~a∈A

{
~a j,k

}
∪

(
~a j,k +Q′j,k

(
~a
))

for eachj ∈ [J], k ∈ [K j], and then set

B′ :=




⋃

j∈[J], k∈[K j]

B′j,k ∪
{
~c j,k

}

 ∪ B ∪Q,

whereQ ⊂ RD is as defined in Lemma 7. It is not difficult to see that|B′| will be bounded above as per Equation 14
afterǫ is replaced everywhere by2−Jǫ. Simplifying yields the stated upper bound.

We will now complete our proof by demonstrating that a sufficiently precise linear embedding ofB′ will satisfy
item (d) of Assumption Set 2. Fixj ∈ [J], k ∈ [K j], and~x ∈ M. Let~a ′ ∈ A be the closest element ofA to ~x,

~a ′ = arg min
~a∈A

dM
(
~a, ~x

)
.

Finally, let~x ′
j,k

denote the projection of~x onto the(2d+ 1)-dimensional affine subspace~a ′
j,k
+ T̃an~a, j,k. By considering

the Taylor series expansion of the unit speed parameterization of the geodesic path from~a ′
j,k

to ~x onM, we find that

~x = ~x ′j,k + ~r, where
∥∥∥~r

∥∥∥ = O




d2
M

(
~x, ~a ′

j,k

)

reach (M)


 .

Furthermore, we recall that the magnitude of the remainder,~r, is alsoO
(∥∥∥∥~x − ~a ′j,k

∥∥∥∥
2)

sinceT is sufficiently small.

To finish, suppose that anm×D matrix,M′, embedsB′ intoRm withΘ(ǫ)-distortion. A trivial variant of Lemma 5
implies that

∥∥∥M′~x −M′P j,k
(
~x
)∥∥∥ ≤

∥∥∥∥M′~x −M′~x ′j,k

∥∥∥∥ +
∥∥∥∥M′~x ′j,k −M′P j,k

(
~x
)∥∥∥∥ ≤

∥∥∥M′~r
∥∥∥ + (1 + Θ(ǫ))

∥∥∥∥~x ′j,k −P j,k
(
~x
)∥∥∥∥

≤ (1 + Θ(ǫ))
(∥∥∥~x −P j,k

(
~x
)∥∥∥ +

∥∥∥~r
∥∥∥
)
+

∥∥∥M′~r
∥∥∥

≤ (1 + Θ(ǫ))
∥∥∥~x −P j,k

(
~x
)∥∥∥ +

∥∥∥M′~r
∥∥∥ +O

(∥∥∥∥~x − ~a ′j,k
∥∥∥∥

2)

sinceQ′
j,k

(
~a ′

) ⊂ T̃an~a, j,k is a subset ofB′, and
(
~x ′

j,k
−P j,k

(
~x
)) ∈ T̃an~a, j,k. In addition, the fact thatQ ⊂ B′ together

with Lemma 7 guarantees thatM′ will have the RIP(D,d,Θ(ǫ)). This fact combined with the Hölder inequality reveals
that
∥∥∥M′~x −M′P j,k

(
~x
)∥∥∥ ≤ (1 + Θ(ǫ))

∥∥∥~x −P j,k
(
~x
)∥∥∥ +O




√
D

d
·
∥∥∥∥~x − ~a ′j,k

∥∥∥∥
2

 ≤ (1 + Θ(ǫ))

∥∥∥~x −P j,k
(
~x
)∥∥∥ +O




√
D

d
· T2




≤ (1 + Θ(ǫ))
∥∥∥~x −P j,k

(
~x
)∥∥∥ + 2−J

wheneverT is weighted by a sufficiently small (universal) constant. The lower bound for
∥∥∥M′~x −M′P j,k

(
~x
)∥∥∥ is

established in an analogous fashion.
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