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ABSTRACT. This paper considers the approximate reconstruction imtga € RP, which are close to a given compact
d-dimensional submanifoldM, of RP using a small number of linear measurements’.ofn particular, it is shown that a
number of measurements Bivhich is independent of the extrinsic dimensiéh,suffices for highly accurate reconstruction
of X. Furthermore, it is also proven that all vectarswhich are sufficiently close td can be reconstructed with uniform
approximation guarantees when the number of linear memsuns oft depends logarithmically oR. Finally, the proofs of
these facts are constructive: A practical algorithm for ifwdah-based signal recovery is presented in the processoving
the two main results mentioned above.

1. INTRODUCTION

In this paper we present a simple reconstruction techniduiehfacilitates compressive sensing for general classes
of high-dimensional signals with low intrinsic dimensiofwo types of models are often considered: sparse models
and low-dimensional/manifold models. The former type ofl@lcassumes that each data point has a sparse represen-
tation in terms of a (typically known) dictionady, which geometrically means that data points lie on unioressrhall
number of planes spanned by the elements of the dictiondty The latter type of model assumes that data possesses
an intrinsically low-dimensional geometrical structuiar,example that of a manifold (see e.g. [46, 7, 22, 26], among
many others) or a union of planes (see e.g. [48, 18, 36, 3W)ivated by many applications, for example in image
processing [32], computer vision [45], and pattern rectgmi36].

Given the low-intrinsic dimension of these models, it isunat to ask whether a small number of linear projec-
tions (“measurements”) of a data point, together with kremigle of the low-dimensional model, suffices to encode
and reconstruct a data point. In the setting of sparsity,pzessed sensing [24, 42] not only says that, under suit-
able assumptions [27], this is indeed possible, but a coopérization problem leads to the stable recovery of the
original data point. In the setting where data lies on a lamehsional manifold, the work of Wakin et al. [6, 49] on
manifold-based signal recovery shows that low-dimengi@aadom) projections provide small distortion embedding
for manifolds, but leave open the question of reconstrgaidata point.

Standard compressed sensing [24, 42] deals with the appatioin of vectorsy € RP, which can be sparsely
represented in terms of a givéhx n dictionary matrix,®. Note that sucld-sparse vectors can be compactly stored
in a compressed form which is easy to transmit and store. ddmrethey can be recovered from their compressed
representations when necessary. This compression/mgcpreblem has been well studied wheris available in
its entirety before compression (see, e.g., [37]). Howevesituations where’ is costly to observe one may only
have the ability to collect a very small set of measuremehtéto begin with, thus making standard compression
techniques inapplicable (see, e.g., [2, 1] and referem@¥ein). This is theompressed sensing reginvehere loss-
less compression must ocdoeforeone determines which vector components or transform caaffic are actually
important. Hence, the goal of standard compressed sensoaptes to design an x D measurement matrid, with
m as small as absolutely possible, subject to the constitatat computationally efficient reconstruction algorithm,
A : R™ — RP, exists such thafl (Mx) ~ ¥ anytimex € RP is sufficiently compressible with respect to a given
dictionary matrix®d.

More precisely, given an integdr< n suppose that

¥=o(f +
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where€ € R” is in the row space ab € RP*" and

fi = argmin |- 7.
JeRr with [|7lo<d

The goal of a compressed sensing method is to approximasewell as possible by approximating the at mbst

- . . . . . -
nonzero elements of; € R". Furthermore, compressed sensing techniques aim to adisbrtips task using as few
linear measurements @fe RP,

(1) <Tﬁ], f> = <H71)], (Dfd > + <Tﬁ], (Dg>,
as absolutely possible.
Let M € R™P be the matrix whosg"-row is the measurement vectar; € RP from Equation 1 above. A

compressed sensing method consists of both a choibe ®fR"*P, and a recovery algorithn#d : R” — RP, such
that

?) |- AwD), = |7~ A(mof +mod)| < c,,-ai7F] 2],

in fixed ¢,,£, norms,1 < g < p < 2, for an absolute constafl,, € R. Note thatM € R"™*P forms a compressed
representation of € RP whenevern < D, which is then stably inverted hyl. Many recovery algorithms#,
have been developed for solving this problem widers a squaréD X (n = D) orthonormal matrix, andI® has
either restricted isometry [14] or incoherence [25, 30]panties (e.g., see [13, 11, 12, 47, 39, 40, 38, 9]). Perhaps th
best such results are achieved(by= O(d log(D/d))) x D measurement matricelsf, whose entries are independent
and identically distributed standard Gaussian randomabées. These Gaussian matrices allow for near optimal
compression (i.e., a near minimal size foy while still allowing for the existence of recovery algdmis, A, which
achieve Equation 2 for an arbitrarily given square orthamdmatrixd. Furthermore, itV is Gaussian the® need

not be known when the measuremeM&, are computed: It suffices to kna®vonly during reconstruction wittl.

One strand of work in compressed sensing has dealt with éixtgthe results mentioned above concerning square
orthonormal matrices to include settings whérés a more general (i.e., rectangul@r)x n matrix. The first of these
results extended compressed sensing to indlude dictionaries®, whose columns are all nearly pairwise orthogonal
[43]. This work shares all of the advantages of the aforeforat results concerning compressed sensing whisn
square orthonormal matrix (e.g., nearly orthogahallso do not need to be known until reconstructionsiawhen
M is a random matrix exhibiting concentration of measure ertgs (e.g., itM is Gaussian as above). These results
were later generalized further to allow recovery along thed of Equation 2 whe@® has columns with less limited
forms of coherence and redundancy [15] (e.g® i§ a tight frame). In this paper we consider a geometric vaiGa
standard compressed sensing results for signals whiclparsedy representable with respect to a square orthonormal
matrix, @, by focussing instead on signals which are well represemyadanifold models. More specifically, herein
the D x n dictionary matrix® utilized in standard compressed sensing models will beaoegl by a piecewise linear
approximation to a given submanifold B .

The work herein utilizes ideas introduced by Baranuik andiwavhich demonstrate the existence of simple lin-
ear operators capable of (nearly) isometrically embeddigigven compact-dimensional submanifold dRP into
RO@esD) without utilizing detailed knowledge regarding the subif@d’s structure [6]. In some sense, this work
immediately yields measurement matrickse R"<P, for manifold-based compressed sensing. However, a caenple
compressed sensing strategy also requires an associatesstreiction algorithm#A : R” — RP, capable of accu-
rately approximating points near the given manifold in a patationally efficient fashion. Algorithms of this kind
were first considered by Wakin in [49]. Therein, Wakin shovleat approximating a given point, near a compact
d-dimensional submanifold dRP via an O(d log D) linear measurements (i.e., see Equation 1) was possibe wit
high probability if the measurements were randomly regatieerfor each new. Furthermore, [49] concluded that
achieving strong reconstruction guarantees using one $ixedf linear measurements for all possible poidtsiear a
given compact submanifold &P was difficult. However, it is important to mention that theuéts presented in [49]
were derived independently of any particular numericabnstruction algorithmA. As a consequence, this line of
work did not result an implementable recovery algorithmveitcompanying approximation guarantees.

In this paper we propose a computationally efficient reqoctibn algorithm for manifold-based compressed sens-
ing and prove accompanying approximation guaranteeselprbcess, we prove that a given poijtnear a compact
d-dimensional submanifold dRP can be accurately approximated usingf logd) linear measurements with high
probability when the measurements are randomly regenktf@t@ach new?. This improves on previous results [49]
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by removing all dependence on the extrinsic dimension ostii@manifold,D, from the number of linear measure-
ments required for accurate approximation. Furthermoespravide stability guarantees for the algorithm when one
fixed set ofO(d log D) linear measurements are used for all possible paiftsear a given compact submanifold of
RP. Finally, an empirical evaluation of our method indicatesttit also works well in practice.

Before moving on to discuss our methods and results in maeel dee hasten to add that other techniques have
also been proposed for manifold-based compressed sensagytke initial work of Baranuik and Wakin. Perhaps
most notable among these are the statistical methods prdpgsChen et al. [19]. Chen et al. use training data from a
compacti-dimensional submanifold dP in order to estimate the manifold data’s distribution viaguGsian mixture
model composed of Gaussians whose covariance matricedl aaalaO(d). They then use the probability density
resulting from their low-rank Gaussian mixture model to m@pmate points on the manifolc, with a maximum
likelihood estimator when given only linear measurememtsg,e R"™. In contrast, we utilize geometric and analytic
techniques herein and make no attempt to estimate thetist@tizroperties of any observed manifold data.

Other related manifold-based compressed sensing metholisié those recently proposed by Shah et al. [44].
The method in [44] assumes that a black-box manifold projeethich takes an input point and then outputs its
nearest neighbor on a given submanifoldR¥, is given. Given access to such a projector, the authoreptres
iterative projection method for approximately recoveringoint,¥, on the given manifold using compressive linear
measurementsl¥ € R™. Similar to the recovery algorithm presented herein, titevery algorithm in [44] is shown
to be accurate whenev@) the given black-box manifold projector is accurate, &idthe measurement matrid
(nearly) isometrically embeds the given manifold ifR&. However, unlike [44], we analyze (approximate) manifold
projectors that can be explicitly and efficiently computethg noisy training data sampled from a general manifold
of interest (e.g., the manifold projectors resulting fromdBetric Multi-Resolution Analysis [3]). Thus, we obtain
implementable recovery algorithms that are applicable ge@eral class of smooth and compact submanifolds of
RP. Furthermore, we are able to improve the computationalieffay of our recovery algorithm by calculating our
manifold projections using computations that are perfatinghe smaller embedding spa@”, whenever possible.

1.1. Methods and Results.As discussed above, the standard compressed sensing sstupes that the signal to
be approximated has a compressible representation witeecet an orthonormal basis (or frame [15], or incoherent
dictionary [43]). Although this is certainly a useful satii there are many applications where signals might berbette
approximated via more geometrical considerations. Fomgia, consider the setting where the class of potential
input signals varies continuously as a function of a smathber of parameters (e.g., see [50, 6, 49]). In this case it
makes more sense to consider the approximate reconstradtsignals,¥ € RP, which are close to a given compact
d-dimensional submanifoldyt, of RP. The optimal approximation for € RP is then defined to be

Zopt = arg min |7 - yﬂz .
JemM

In effect, X, is the best approximation td on M. Our objective is to approximaté,; € M c RP given only

a small number of linear measuremeni$y € R™, whereM is anm X D measurement matrix as above. Hence,
in this paper we seek to design a measurement matrik R"<P with m as small as absolutely possible, together
with a computationally efficient reconstruction algoritlsfh: R” — RP, so thatA (Mx) ~ ¥ whenever’ € RP is
sufficiently close to a given compadidimensional submanifold dR”, M.}

Note that a manifoldM, is now taking the place of the dictionary matriik,e R”*", in the standard compressed
sensing setup discussed above. Of course, it is unreasdoatpect that we can always have an exact representation
of the signal manifold at our disposal. Instead, we assuraewie have a set of locally linear approximations to
the given manifold which capture the local geometric stitebf the manifold’s tangent spaces. In fact, such piece-
wise linear manifold representations are exactly the tyfpgpproximations produced by existing manifold learning
algorithms like LTSA [52] and Geometric Multi-Resolutiomalysis [3]. Thus, we assume that the signal manifold,
M, is approximated by such a method at some point. Howeven atandard compressed sensing methods, the
manifold-based compressed sensing strategies develab@d do not require that these piecewise linear manifold
representations are known when the compressed measuseivigre IR, are collected. Approximation of the signal
manifold can be put off until later when signal reconstroictiakes place (i.e., one does not need a piecewise linear
manifold approximation untif (Mx) is actually computed).

Iput another way, we require that(Mz) ~ Xopt Which implies thatA (Mx) ~ X whenevery' ~ Xopt.
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Although the manifold-based compressed sensing methagsoged herein will work with any locally linear ap-
proximation to the given signal manifold/, we will focus onmultiscalepiecewise linear manifold approximations
to M in particular. As opposed to fixed-scale locally linear apg@mations, multiscale representations better approx-
imate non-smooth manifolds, and manifolds contaminated naise [17, 3]. For example, multiscale locally linear
approximation is particularly beneficial for signal prosieg tasks involving image manifolds, which tend to be non-
differentiable in many realistic settings [50]. Hence, weniulate our compressed sensing methods below with respect
to general multiscale piecewise linear manifold approsioms of the type produced by Geometric Multi-Resolution
Analysis (GMRA) [3].

As mentioned above, the manifold embeddings of Baraniuk\&akin [6, 49] can be considered as manifold-
based compressed sensing matrices, for which however oociatesl recovery algorithms were explicitly defined.
Indeed, the measurement matricks,€ R"*P, used in the manifold-based compressed sensing methodoged
below are modifications of their embedding matrices. Howawslike the embedding matrices considered in [6], the
measurement matrices considered herein (nearly) isarabiyrembedboththe underlying signal manifoldM, and
the multiscale piecewise linear approximation¥6into R™ in a way which preserves the fidelity of the embedded
multiscale locally linear approximation to the embeddedge of M. Accomplishing this requires us to reengineer
the arguments from [6] using Johnson-Lindenstrauss enibg{i84] techniques similar to those utilized in [5]. The
resulting measurement matriced, ultimately justify this complication by allowing us to delep reconstruction
algorithms which work exclusively with locally linear agpimations toM while still preserving approximation
accuracy with respect to the true manifole,

The reconstruction algorithnoAl : R — RRP, proposed below consists of two well-studied computatisnob-
routines: a method for solving approximate nearest neigpboblems (e.g., [33, 8, 4]) in a space of dimension
comparable to the intrinsic dimension of the data, and a oukstbr solving an overdetermined least squares problem
(e.g., via the singular value decomposition of the assediatatrix). The algorithm works by first using the com-
pressed measuremenidy, of X to locate the best local linear approximationAd at ¥. This is accomplished by
running a nearest neighbor algorithm on a set of “centertpbfrom near the manifold, each of which represents a
particular linear approximation td1 in a neighborhood of the center point. Becadehas low intrinsic dimension,
and the center points are arranged in a multiscale hieraglpgr [3], this search can be carried out relatively quickly
To finish, the algorithm then approximatés,, the best approximation téon M, by solving an overdetermined least
squares problem using the linear approximation to the rohibcated in the first step.

In this paper we prove two compressed sensing results fqoribygosed reconstruction algorithm, each of which
utilizes randomly generated measurement matridéss IR™*P, satisfying a different set of properties. Roughly
speaking, the first result indicates that= O (dlog(d/5)) linear measurements of a giveéne RP suffice to create
a compact representatioMX € R™, from which the reconstruction algorithrs, discussed above will recover an
approximation tod,,; € M satisfying

2= AMD| < C[[7 = Zap| + &

HereC € R* represents a fixed universal consténg R* can be freely chosen, antl is the giverd-dimensional
submanifold ofRP. This result provides what is commonly referred to aauniform recovery resylby which we
mean that the upper bound ﬁﬁ’— &Z{(MJZ’)” holds with high probabilitfor eachx € IRP over the choice of random
measurement matrix.

The second theorem proven below provides a typadfbrm recovery resulivhich holds with high probabilitjor
all vectors ¥ € RP, of a particular class. Simply put, it asserts the existarfi@eD-dimensional tube around the given
manifold, T > M, within which accurate approximation will always take @agith high probability over the choice
of random measurement matid € R™*P. More specifically, the second theorem says that O (dlog(D/0))
linear measurements of anye T c RP suffice to create a compact representatibit, € IR”, from which the
reconstruction algorithm discussed abak will recover an approximation t@,,; € M satisfying

R 5 N C - >
=A@ < CllF=Fopdl, + 5 ¥ = Fon, +

Here, as abové&, € R* represents a fixed universal constant ardR* can be freely chosen.

The reminder of this paper is organized as follows: In the segtion we begin by fixing terminology and reviewing
relevant definitions and theorems. Having established ¢ltessary notation, we then give precise statements of the
two main results proven in this paper in Section 2.4. Finallysection 2.5, we conclude Section 2 with a discussion
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of the different types of measurement matridese IR"*P, associated with each of our two main results. In Section 3
the recovery algorithmd, is presented and analyzed. In particular, the approxanatiror of A for a givenZ,

||# - A (M)|, is bounded for each of the two possible types of measurematrtces M, considered herein. The
runtime complexity ofA is also determined. Next, in Section 4, the number of romsrequired for each type of
measurement matrix defined in Section 2.5 is upper boundeid. fdrmally establishes the amount of compression
possible in our manifold-based compressed sensing scheéradaish, the compressed sensing methods developed
herein are evaluated empirically in Section 5.

2. NOTATION AND SETUP

Givenn € IN we will define[n] to be the sef0,1,2,...,n} € Z. All norms,|| - ||, will refer to the standard
Euclidean norm unless otherwise stated. We will denote @m bgll of radiu® € R* centered aff € RP by Bs (1)).
Our real valuedn x D measurement matrix will always be denotedMy FurthermoreM will always be linear
Johnson-Lindenstrauss embedding [34, 29, 23, 35] of a feité c R into R™.

Definition 1. Lete € (0,1/2), andS c RP be finite. Annx D matrixM is a linear Johnson-Lindenstrauss embedding
of S into R™ if

(1 = e)llid - 3 < IMiZ = MAP < (1 + e)llil - 3
for all 7,7 € S. In this case we will say thdl embedsS into R with e-distortion.

The following theorem is proven by showing thatrarx D matrix with randomized entries will satisfy Definition 1
for a given ses ¢ IRP with high probability wheneven is sufficiently large (e.g., see [23]).

Theorem 1. (See[34, 23]) Lete € (0,1/2), andS c RP be finite. Letn = O(e~%log|S|) be a natural number. Then,
there exists am x D linear Johnson-Lindenstrauss embedding @fito IR™ with e-distortion.

For the remainder of this papél will denote a compaaf-dimensional submanifold dRP with d-dimensional
volumeV. We will characterize results concerning any such manifdia its reach [28], denote@ach (M), which
is defined as follows: Let

D(M) = {fe RP ) J a uniquey € Mwith [|¥ - 7| = d(a?,M)}

and
tube, (M) = {¥ € R” | d (¥, M) < 1},

whered(¥, M) is the standard Hausdorff distance. We then define
(3) reach (M) = sup{r > 0 | tube, (M) c D (M)}.
Intuitively, reach (M) is the radius of the largest possible non-self-intersgatibe around\1. For example, ifM is a
d-sphere of radiug, thenreach (M) = r. More generally, any compact and non-self-intersectingatmsubmanifold
of RP will have nonzero reach. The reach of a manifold is partidylaseful because it allows the development of
concise bounds for many manifold properties of interest. (eurvature, self-avoidance, packing numbers, etcetera

See [28, 41, 6, 20] for more details.
Given a compact se8 ¢ RP we define a-cover ofS to be any finite se$ ¢ RP with the following property:

VX e S, Jij € S such that’ € B; (7)) .

We will refer to ad-cover ofS, S, asminimalif |S| < |S| for all otherd-covers ofS, S. HereafterCs (S) will denote a
minimal 5-cover of a given compact sé&tin RP. The following lemma, easily proven using results from [4&dunds
|Cs (M)| for any compact-dimensional Riemannian manifold/, in terms of6 andreach (M).

Lemma 1. (See[41].) Let M c RP be a compact-dimensional Riemannian manifold withdimensional volume
V, and suppose thdte R* is less tharreach (M). Then, any minimal-cover of M, Cs (M), will have

v(d+ 1)%+1

ICs M| <
2244
We will now briefly summarize one means of constructing theetef piecewise linear manifold approximations
required by our manifold-based compressed sensing aigorit
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2.1. Geometric Multi-Resolution Analysis (GMRA). The manifold-based compressed sensing strategies deekelop
herein will utilize manifold-approximations of the typeguluced by the GMRA framework [3]. GMRA is a dictionary
learning technique that aims to concisely summarize dasis@&” in a multiscale fashion. When a given data set
lies near a low dimensional smooth and compact submanifdRf’o GMRA produces small dictionaries with accom-
panying guarantees on the dictionary size/approximatioor ¢rade-off. GMRA also has computationally efficient
algorithms for both sparsifying, and subsequently regothg, data points via its multiscale dictionary.

The construction of a GMRA dictionary proceeds as followisst=-GMRA produces a set ¢f+ 1 partitions of the
input data setX c R”, organized in a tree structure. Denote thgsel partitions by

Cj={Ck cR” |ke[K]}, je ]
whereK, = 0 andKj, ..., K; € N. Herej represents the scale of the partition (i.e, there existsnataatC for all
j € [J1andk € [K;] such thaC;; C B, (]7]‘,]() for somey*j,k € Cjx). FurthermoreC;,; is a refinement of; for each
j € [J = 1]. Thus, we can organize the partitions in a tree structureriataral fashion (i.e., each sub€g} c RP
corresponds to a node in the tree at dejptthe root of the tree corresponding to the coarsest scale)). Every
Cjx-node has a uniquearent nodecorresponding t@;_ x > C;x, and, conversely;;x C C;_1x implies that the node
associated witl; is achild nodeof the node associated withy_; x. Finally, a node with no children is calledeaf
node Note that the covering numbers bounded by Lemma 1 aboveecasdu to bound the number of nodes at depth
j of our tree when the input datX, is sampled from a compagtdimensional submanifold dRP.

Next, GMRA processes the data points contained in €agfsubset to produce a local approximationon Cy.
The local approximation associated with each non-ggtnode of the partition tree consists of:

(1) The mean of the points iK N C;, denoted: .

(2) An orthogonal matrix;, whose rows are the top principal components of the datapmiX N C. If, for
example X is sampled from a smooth submanifold®P, M, then the rows ofd; ;. will form a basis for an
approximate tangent spaceAd atcjy.

(3) A wavelet constant,

Z/Uj,k = (I - Q?—l,k’¢j—1'k’) . (C]‘,k - Cj—l,k’) ,
where theC;_; r--node is the parent of th€;s-node.
(4) An orthogonal matrixi¥;x, whose rows form a basis for the projectionrofv span{®;} onto
column span {I - (D]‘T-l,k'q)j—l,k’} ,
where theC;_; r-node is the parent of th€;;-node. Note that
row span {qD]-,k} C column span { [CDjT_Lk,, ‘I’]Tk]} .
The rows of the orthogonal matricés,, W, are called the geometric scaling and wavelet bases, réaggctThe
information above collectively defines the GMRA diction&oy X. Note that the root node associated Wiy, stores
only items(1) and(2) above.
Forj > 0 we can approximate anye (Cj,k N X) C Cj_11 at scalej by

T
Xj = (Dj/kq)]‘,k(x — C]‘,k) + C]‘,k.

Note that the difference between the approximationsadscales — 1 and; can be compactly represented using the
geometric wavelet basis/constant. In particular,

— [®T T 1(Cik
(4) Xj—Xj-1= [q)j—l,k” \yj,k] (q;k) + Wiks

wheree;; = ®;_q 1 (x —x;) andg;x = Wi(x; — cjx). Iterating Equation 4 yields a multiscale transformaf terms of
the differences; — x;_1, each of which belongs to a low-dimensional subspace storé® GMRA dictionary.

In the next section we will list several properties which GMBictionaries are guaranteed to have whenever they
are built using a sufficiently dense set of poin%s, sampled from a compact and smooth submanifol(R6f As
we shall see, these properties will be critical to the dgualent of our manifold-based compressed sensing scheme.
However, it is important to note thétis only these properties which matteFhat is, the use adiny piecewise linear
manifold approximation satisfying the properties listedSection 2.2 will suffice for the purposes of proving our
main results. Furthermore, it is worth noting that the nsghile structure of the manifold approximations we consider
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herein is not strictly necessary (i.e., a sufficiently finefixscale approximation will also satisfy Propositions 1 2nd
below). In fact, only the finest scalg¢, matters in our main results’ approximation guaranteesprinciple, all
other scales can be ignored. That is, any fixed-scale pisedimiear approximation of a given manifold that satisfies
Properties 1, 2b, 3a, and 3b from Section 2.2 (e.g., yih] > j;) will also satisfy both Propositions 1 and 2 below.
Hence, in principle, GMRA can be replaced herein by any atiethod that (implicitly) computes a piecewise linear
approximation to a given manifold (e.g., [10, 52, 16, 19]k lAng as the manifold approximation we utilize has the
properties we consider in the next section, our main resuilkstill hold as stated.

2.2. The Manifold Approximation. In order to help us develop a practical recovery algorithmwileassume we
have a multiscale piecewise linear approximationddf the type yielded by GMRA. Let € N andKy, Kj, ..., Kj €
N. For eachj € []] we assume that we have a set of affine projectors,

IP]‘ = {]P]‘,k : ]RD - ]RD | ke [K]']},
which approximateM at scalej. More precisely, these affine projectors will collectivebtisfy the three following
properties:
(1) Affine Projections: EveryP;; has both an associated vectf;yo € RP, and an associated orthogodak D
matrix, ®;x, so that
]P]‘,k (J?) = q)}:kq)j,k (f— (?]k) + C_)]k

(2) Dyadic Structure: There exist two universal constants, € R* andC, € (0,1], so that the following

conditions are satisfied:

(@ Kj <Kjy forall je[]-1].

(b) IICjx, — Cijll > C1-27 for all j € [J] andky, k, € [K;] with k; # ko. In other words, the),-vectors at
each scalg € []] are well separated from one another.

(c) For eachj € []J] — {0} there is exactly one well defined parent functipp,: [K;] — [K;-1], with the
property that

e &asel-

[ = E-1pll < G2 min

Together thes¢ parent functions collectively define a tree structure onﬁg,me/ectors. In particular,
eachcy, with k € [Ky] is a root node while eadfj, with k € [K)] is a leaf.
(3) Multiscale Approximation: When M is sufficiently smooth the affine projectors at each sgate []],
{IPj,k | ke [Kj]}, approximateM pointwise with erroiO (Z‘Zf).
(a) There exists a constajgte [/ — 1] so thatE]-,k € tubec, ,-i» (M) for all j € [J] - [jo] andk € [K;]. Note
that j, is a function of the constart; from Property 2b. We will generally assume thapee [J — 1]

satisfying this condition exists whem is chosen to be as large as possible above.
(b) Foreach € [J] andx € R letk; (¥) € [K;] be such thaf}/kj(f) is one of the nearest neighborsiih the

set{Ej,,k j=j ke [Kj]}. That is, for eachj € []], let

ki (%) = arg min 1€ - Gl
kelK;]

Then, for eacl? € M there exists a constate R* such that
2 _ .0-2j
fr-r @] <c 2

for all j € [J]. In addition, affine projectors associated with-vectors that are nearly as close to any
reM asc*].,k/(f) can also accurately represahtin particular, their exists a constafite R* such that

7Py @ < -2
forall¥e M, j € [J], andk’ € [K;] satisfying

(5) Hf— C_)]k” < 16 - max {Hf— E)Jlk/(f) ,C1- 2‘]'—1} 2

2Note thatC is a uniform constant oveM for all scalesj. To see why GMRA will produce a piecewise linear approximativith this property

given sufficiently representative training data fravh, recall that GMRA builds a sequence of refined partitionshefdataset it approximates (one
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Note that the affine projectors approximaé€more accurately as the scgle []] increases. The finest scale
resolution is obtained whej= J. See [3] for details.

The remainder of this paper is devoted to analyzing the nuwftraeasurements required in order to approximately
reconstruct an arbitrary pointe RP which is nearly on a compagtdimensional submanifoldt c RP. In order
to yield substantive progress we must first assume some kdogelofM (i.e., our manifold-based signal dictionary).
Thus, we will assume below that we have a set of affine prajec{ﬂﬁj,k | jelll ke [Kj]}, for M as discussed above,
and will primarily focus our analysis on bounding the numbemeasurements;, sufficient to accurately compute
P @) (%) for any given input vectof € RP and scalg € []].

2.3. The Goal: Approximating Manifold Data via Compressive Measirements. LetIP = {IPj | jE []]} be a mul-

tiscale piecewise linear approximationAd as discussed above. Given sucR ave can accurately approximate any
¥ e M c RP (e.g., see Property 3b). However, herein we are primarigr@sted in approximating arbitrary vectors,
¥ € RP \ M, as well as they can be approximated by a nearest neighbbeananifold Yoo € M. As we shall see,
P can be utilized for this task. The following lemma demortslsahaﬂlekj(f) (%) approximates any vectaf € RP

nearly as well agi,p: € M does.

Lemma 2. Let M c RP be a compaat-dimensional Riemannian submanifoldR¥f, andx € RP. Furthermore, let
P;= {IP]-,k |k e [Kj]} be a scalg € [J] GMRA approximation toV1. Then,

7=y @] < 17t + 0 (27)
for all K’ € [K;] satisfying

HX—C]k'H<8 max{H _C]k()?) C1.2‘j—1}.

Proof: Letd = maX{Hf_E,‘,kj(f)

, G -2‘f‘1}, whereC; € R is defined as in Property 2b above. Furthermore,

letk’ € [K;] be such thal|¥ - ¢ || < 85. To begin, suppose thilf — &x|| < 177 % In this case we are
essentially finished since

7Py @l = 1= @heie] (2= e)]| < 2=l < 177~ Zond]

Thus, we will hereafter assume tlﬂa&— Cf/k’H > 17 ||f— fopt” without loss of generality.
Repeatedly applying the triangle inequality we see Nbi’at P (f)” is bounded above by

Hf_ fopt“ + ||¥opt = ]P]k’ Topt ” HIPJk’ xcpt Pjx (9?)”
The third term in the sum immediately above can be bounded by
H]P]k’ xOPt P (f)” Hq)jT,qu)J}k’ (f_ JZ)Olot)” < Hf_ J?OPtH :

To bound the second term we note th&t & || > 17 ||% - %,pe|| implies that
Therefore,

- - - -
Xopt = Cig () || > 9 ||x - xopt” /8.

IA

o d - o d o d o d > o d o d o d - —i—1
oo = el < 17 o]+ 11~ el < 12~ Zopd] + 8- max{ |2~ o] €1-27"}

IA

9||J?—J?Opt|| +8'max{ C 'Z‘j_l} < 16-max{

I d - 4 > —7i-1
xopt - erkj(fopt) , xopt - erkj(fopt) , Cl .27 } .

IA

Property 3b now guarantees tiHaiPt -Pjr (fopt)H C-27/. Hence, we now have

=P @l

partition per scale). The diameters of these partitionsineints decrease uniformly with scale, and are thereforadezliabove by - 277 for
some universal € R*. Hence, if¥ € M satisfies Equation 5, we know thl#f— E’j,k/ < 16 - C’277 for some universal’’ € R*. Noting that
[#-Pix @) < |- ¢ | establishes the desired uniformityGffor full (i.e., undecimated) GMRA manifold approximations

8
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2| = Zopel| + C- 27




The result followsOd

In this paper we are primarily concerned with achieving agpnation results akin to Lemma 2 utilizingpm-
pressive measurement$his will allow us to extend the successful sparse appration techniques and results of
compressive sensing to the recovery of signals which betorigw dimensional submanifolds @&P. In order to
accomplish this goal we must first propose and then substg@eralyze both a measurement operator and an asso-
ciated recovery algorithm. Furthermore, in order for it éodf practical value, we must demonstrate that the proposed
recovery algorithm is computationally efficient, easy tgplement, and provably accurate. We begin this process
by considering our measurement matrices in Section 2.5. H&e develop a practical reconstruction algorithm in
Section 3. Before we begin, however, we will first state thénmasults proven herein.

2.4. Main Results. In the statements of the two propositions bel@ R* is an absolute universal constant which
is independent of, M, M’s GMRA approximation, etcetera. Note that the upper boyrdsided for this constant
in Section 3 are almost surely quite loose. We state our éssilt.

Proposition 1. Fix precision parametes € R* and let¥ € RP. In addition, letP;, ] = O (log [1/(5 reach (M))]), be
a GMRA approximation to a given compaetlimensional Riemannian manifold{ c RP, with volumeV. Finally,
let

d
m = O(dlog(m) +10g V)

be a natural numbér and defineAl : R” — RRP to be Algorithm 1 from Section 3 below. Then, there exists anD
matrix, M, such that

= AMD)| < C- [} L] +o.
Furthermore, A (Mx) can be evaluated i(mo(l) + O(dD))-time.

Proof: The result follows from Theorem 3, the first part of Theorerar® the discussion in Section 301.

Proposition 1 provides a nonuniform recovery guaranteeefmh givenw’ € RP. The measurement matrices,
M, referred to by the proposition can be any standard Johhsatenstrauss embedding matrix (e.g., a Gaussian
random matrix [23]). Hence, they are well understdthe worst case theoretical runtime complexity of the recpve
algorithm is polynomial inn. We refer the reader to Section 5 for an empirical evaluaifcdhe recovery algorithm’s
computational efficiently in practice. Finally, we note tthe number of required measurements, is entirely
independent of the extrinsic dimensidn, Next, we state a uniform approximation guarantee for Atgar 1.

Proposition 2. Fix precision parameted € R*. In addition, letlP;, ] = O (log[1/(d reach (M))]), be a GMRA
approximation to a given compaétdimensional Riemannian manifold{ c RP, with volumeV. Finally, let

D
m = O(dlog(m) +10g V)

be a natural number, and defigé : R™ — RRP to be Algorithm 1 from Section 3 below. Then, there exists anD
matrix, M, such that

) L C s o
=A@ < Clle=Fond], + 2 ¥ = Zon], +
for all ¥ € RP with

6

=~ ,5}.

Furthermore, A (Mx) can be evaluated in worst ca(sbo(d) logV+0O (md2 + dD))—time.

2 Hf_ JE)Opt”z +

Hf— foptul < max {Hf— C_)],k,(:?)

SNote that the upper bounds anstated both here and in Proposition 2 assume thatdatidreach (M) are small, i.e.O(1).
Most importantly, we note that many variants of both Projmss 1 and 2 can be easily obtained by using any of the embgddsults from
[34, 29, 23, 5, 35] in order to define different measuremerttioes, M.
9



Proof: The result follows from Theorem 4, the second part of Theaeand the discussion in Section 3.

Proposition 2 is best interpreted as a general stabilitylt:els guarantees that Algorithm 1 will uniformly approx-
imate all points which are sufficiently close to the manifdidi (i.e., the points need not be exactly dr). Thus,
Algorithm 1 has some limited robustness to arbitrary additnput noise. The examples in the experimental section
suggest that the constants involved in both the runtime artibdding dimensiony, are very mild in practice.

2.5. The Measurement Matrix. In the process of developing an algorithm to approxin]%/gg(f) (%), and subse-
guently demonstrating its accuracy, we will require somevidedge regarding our X D measurement matri/.
We shall consider two sets of assumptions regardffgyinteraction with both the manifold1 and our given set of
affine projectors forM at each scal¢ € [J]. Each set of assumptions will ultimately result in both eliéint approxi-
mation guarantees for our reconstruction algorithm, affdréint measurements bounds (i.e., sufficient upper bounds
onm) for M. We will postpone discussion of how to creattand how to bound the number of rows it must have
in order to satisfy each set of assumptions below until $acti In Section 3 below we will begin by presenting our
reconstruction algorithm together with approximatioroebvounds under each set of assumptions regarding

Let¥ € RP andP = {IPj ) je []]} be a fixed set of affine projectors fdrl for each scalé € []]. Fixe € (O, %) In
Sections 3 and 4 we will assume that auix D measurement matri¥ satisfies each of these sets of assumptions in
turn.

(1) Assumption Set 1: Required for Nonuniform Recovery of a Give ¥ € RP (see Proposition 1)
() LetS; c RP be

S = {0l 0 (=) | je UL ke K| J{E -] j e U1 ke k)| {0}
We will assume that

a-elly-4f < [my-m" < a+oi-=

IA

forall 7,2 € S;.
(b) Furthermore, we will assume that

-aloLou] < st

forall j € [J], k € [Kj], andi/ € RP.
(2) Assumption Set 2: Required for General Stability (see Propsition 2)
(@) LetS, = MUJ {E]k ) jel ke [K,]} c RP. We will assume that

a-olg-4 < |my-ma" < a+oly-=

IA

a+)|of @

forall 7,Z € S,.

(b) Furthermore, we will assume th¥17|| is bounded above by (i) for all i € RP, whereEy : R —
R* is a continuous function withy, (6) = 0. Ep is discussed in detail in Section 4.2.

(c) As before, we will assume that

a-alotoud] < ot = @ ol

forall j € [J], k € [Kj], andi/ € RP.
(d) Finally, we will also assume that
- [[7-Pu @ -27 < [My-MPy @) < A+e)[[§ - P @] +27
forall j € []], k € [K;], andif € M.

Note that the critical difference between the two sets afimggions above concerns the treatment & R and
fopt € M c RP. If possible we would like to obtain measurement bounds hie independent of the ambient
dimensionD. Since an arbitrary vectaf € RP \ M may contain a substantial portion of its energy in the sutspa
orthogonal the tangent spaceid at ¥, results which are entirely independenidfienerally appear to be unattain-
able unless our measurement matrix happens to successfaigrve information in the direction @f— Xop. We

assume that! preserves lengths of vectors in the general direction-ef, as part of our first set of assumptions. In
10



Algorithm 1 APPROXIMATE Pjr(?) (%)

1: Input: Measurements Mx € R™, Scalej € []], Approximation P; = {IPj,k | ke [K,]} to manifold M c RP
2. Output: A (MX), an approximation to P @)~

3 k' « arg miny ) HM’? _Mgf'kH

> :
4: U" — arg mlnﬁeRd

MO, i — M7+ My |
. T 2/, 2
5. A(MX) «— D5 i+ T

6: OutputA (Mx)

the second set of assumptions we do not. It is primarily tlifer@nce which leads to different measurement bounds
and error guarantees in each case.

With respect to reducing the number of required measuresnante that the first set of assumptions allows us
to ignore the original manifold and focus on embedding piése linear approximations to the manifold instead.
Embedding these sets of approximating subspacédel tostead of directly embeddiny! itself is ultimately what
allows us to use a number of linear measurememtshat is independent of the ambient dimensibnJn the second
set of assumptions we must embad itself. Hence, the number of linear measurememtspbtained in this case
depends logarithmically on the ambient dimension,

3. THE RECONSTRUCTIONALGORITHM

We will ultimately upper bound the number of measuremergsired in order to approximate a givehe RP
which is close toM c RP via the simple reconstruction technique presented in #isian. In doing so we will
require that the reconstruction algorithm approximatasarly as well as the vector oWl closest tax,

Xopt = arg min ||X — 1|,
7em
approximateg’. Our first order of business, therefore, will be to derivelieiperror guarantees for the reconstruction
technique considered herein which demonstrate that itdead “near-optimal” in the sense discussed in Section 1

above. LetA (Mx) € RP denote the output of our reconstruction procedure for angimputx € RP. We wish to
bound the approximation error

- Az

in terms of the optimal approximation errgi — x|, and an additive error term of si@(Z‘f) whenever possible.
Before this task can be accomplished, however, we must égtribe the recovery algorithm we will use to calculate
A (MX).

Our reconstruction procedure uses compressive measuteofatin order to approximatEj,k/(f) (%) in two steps
(see Algorithm 1 above). First, the compressive measurtry’ are used to determine a “center” vectﬁ,{k/,
which is nearly as close 8 as its nearest neighboring centé]{k/(f), is. This step is guaranteed to work well as

long as our measurement matrix, preserves appropriate distances betwéand all the center vectors at scale
Next, an accurate projection of— E,k onto thed-dimensional subspace associated with is found by solving an
overdetermined least squares problem. This step will alsdkwell as long as our measurement matvixis well
conditioned on all of thé-dimensional subspaces associated with the sa@ater vectors. As we demonstrate below,
the two sets of assumptions fdf in Section 2.5 are sufficient to guarantee that both stepk well.

The following lemma guarantees that the center found in3iré Algorithm 1 is nearly as close tdasx’s true
nearest center is.

Lemma 3. Fix e € (0, %) Let M c RP be a compact-dimensional Riemannian submanifoldi&f, andx € RP.

Furthermore, lefP; = {IPj,k | k€ [K,]} be a scalg € [J]] GMRA approximation to\. Then, if ourn x D measurement
11



matrix M satisfies Assumption Set 1 in Section 2.5 above, line 3 ofifkigol will select &’ € [K;] which has

- < 1+e > o
=Gl < e -Gl

If our m X D measurement matrixl satisfies Assumption Set 2 in Section 2.5 above, then linéBjofithm 1 will

select &’ € [K;] which has
© el < VS -t +(1+ ,/?)”x o+ 1 Eue (- o).

Proof: Using the first set of assumptions fbf together with the definition of’ € [K;] from Algorithm 1 we can see

that
o d - 1 -
=Gl < 7 M7 - M| < \/ el 0 T [EN e T B

We now turn our attention to the case whéfesatisfies the second set of assumptions. We have that

-

ol ot = ol SRR
< ||-7?_-7?0pt|| + ﬂ 1_¢ (HM x xopt + HMJ?_ME)],IC](J?) )
< ||# - Zopd| + \/1_6 HM (¥ - Zop) l 1” Zopt = ()| -

Focusing on the first and third terms in the line immediatéig\e, we note that

1 > -
+(1+,/1j§)||x_x(,ptu.

Next, we prove a lemma which guarantees the accuracy of thtmoof the overdetermined least squares problem
produced by line 4 of Algorithm 1.

1+e
1-¢€

1+e¢
1-¢

-

1% = Zopel| + “|[¥opt = T, (®) - C9,‘,19‘(,?)

The result followsOd

Lemma 4. Let M c RP be a compaat-dimensional Riemannian submanifold®¥f, and¥ € RP. Furthermore, let

P; = {IPj,k | ke [K,]} be a scalg € [J] GMRA approximation to\, andk’ € [K;] be the value computed by line 3 of
Algorithm 1. Then, if our X D measurement matrix! satisfies either set of assumptions in Section 2.5 aboe, lin
5 of Algorithm 1 will produce atAl (M%) € RP which has

[P @ - A9 < 2 [Mf- e @

Proof: Let#’ € R be as defined in line 4 of Algorithm 1. Given either set of agstioms forM we will have

)

o -t (-] = (e - o) e

1-¢

wherel is theD x D identity matrix. By the definition off ” in Algorithm 1 we can now see that

Hq)JTk’W Jk’ Jk’( ka' H = 1_6 ”M[I (D]k’q)lk']( C]k' ||

The stated result follows

Finally, we demonstrate the accuracy of the output of Altponi1 as an approximation
12



Theorem 2. Fix e € (0, %) Let M c RP be a compact-dimensional Riemannian submanifold®¥, andx € RP.

Furthermore, lefP; = {IPj,k | k€ [K,]} be a scalg € [J]] GMRA approximation to\. Then, if ourn x D measurement
matrix M satisfies Assumption Set 1 in Section 2.5 above, Algorithrill butput a point, A (Mx) € RP, which
satisfies
[¥ - AMD)| < 100.3][% - Zopel| + O (27).
Now suppose that our X D measurement matrid satisfies Assumption Set 2 in Section 2.5 above, andPthat

is a scalejf GMRA approximation to\ for somej > jj (revisit Properties 3a and 3b in Section 2.2 for the defimisio
of the constantgy, C;, andC). Furthermore, suppose thate RP — M has

(7) 2-EM(J?—J?0pt)S(8‘V1—e— V1+e)||3? ]k(:?) ( —€e+ 1+e)||x xoptH
Then, Algorithm 1 will output a pointA (Mx) € RP, which satisfies
8) ¥ = AME)|| < 220 ||¥ = Zope]| + 4+ Ent (¥ = Zope) + O (27).

Proof: To begin we note that
© ¥~ A < £ Pye @] + [P () - AW

wherek’ € [K;] is defined as in line 3 of Algorithm 1. The first set of assummgiéor M together with Lemmas 2
and 3 tells us that

=P @ < 17 |¥ = 2o + O (27)
sincee € (0, %) Furthermore, the first set of assumptions¥6together with Lemma 4 indicates that

1+e

[P - AW < = [M[z-Pie @] < 275 7P ).

Hence, we obtain the stated bound in the f|rst case.
Now assume tha¥! satisfies Assumption Set 2 in Section 2.5. We will begin byriating the|| P (¥) — A (Mz)||
term in Equation 9. Applying Lemma 4 and then utilizing ouc@ed set of assumptions regardilwe can see that

[P @ - A < 2 [M[7- P @] < 72 ([Mx - M| + [MEop - MP e D))
< o (v = M| + [ Mo = MP e (Zop) | + M (Zop) — M1 )
(10) < 2 75 o+ 1 (M = Mo + Mo - M (o))

In order to bound the last term in Equation 10 above, we n(atEHfh— Cf/k’H <8 Hx = Cik (@)

whenevet,, (3? — fopt)

satisfies Equation 7. Therefore, we will halip: — || < 16 || Zopt — c*j,k/_(fopt)H whenevel[¥ — & || > 17 [|# - Zope
by an argumentidentical to that presented in the second ol of the proof of Lemma 2. Hence, Property 3b in Sec-
tion 2 guarantees th#ﬁ’ P xopt || < C-277 whenevel|Z - €| > 17]|% - Zopt|- Item (d) of Assumption Set

2 in Section 2.5 now guarantees tHMxopt - MP (xopt) will also beO (2 f) wheneveﬂx - Cj,k’” > 17 ||x - xopt”.

To finish, suppose thifi¥ — & || < 17 ||¥ - %] Continuing to bound the last term of Equation 10 in this case
obtain

2 MM ()] < 2 (P~ ]+ 10T, (o 0
< v11+e||xopt_c,k,||+2 e
1 v d v d
< 36 5 (14 VIT €)7o
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Combining this bound with the previous paragraph concltidegroof.C

Theorem 2 demonstrates that Algorithm 1 can stably apprateémvectors € IRP \ M as long as the measurement
matrix, M, satisfies one of the two sets of assumptions detailed indde2z. However, the strength of the approxima-
tion guarantee depends on which set of assumpfibissitisfies. Whed possess the attributes listed in Assumption
Set 1 (most notably, attribute (a)) the vector returned lyo#ithm 1 will always provide an approximationfavhose
error is a within a constant multiple of the optimal approation error. WhernM satisfies Assumption Set 2, on the
other hand, Algorithm 1 is only guaranteed to provide nedinugd approximations for vectors, which are relatively
close to the manifoldv1.

3.1. Practical Implementation of Algorithm 1. In line 3 of Algorithm 1 we want to locate the nearest neighbor
of M¥ € R™ from the set{MEj,k | ke [K]-]} c R™. This can be accomplished naively @(mK;)-time. However,

K; is potentially large in the worst case (see Lemma 6 belower@fore, it is important to note that the runtime’s
dependence o, can be greatly reduced in practice with the aid of standaadespartitioning techniques (e.g., by
building a k-d tree to solve the nearest neighbor problenterAatively, other fast nearest neighbor methods could
also be utilized (e.g., see [33, 8, 4] and the referencesitieDue to the dyadic structure of o@yg-vectors, the worst

case theoretical runtime complexity of line 3 can be impdosigghtly to (Zo(d) log V)-time by using cover trees [8].

Alternatively, when it suffices to find @ + 6)-nearest neighbor df1x with high probability, we can utilize even faster
algorithms which run inn®D-time (see Proposition 3 in [33] together with the boundrfion Theorem 3 below).

Line 4 of Algorithm 1 requires the solution of an overdetared least squares problem. This can be accomplished
in O(md?)-time via the singular value decompositiorﬂ\dﬂ)}T ,. Furthermore, the solution can be computed accurately

since both sets of assumptions in Section 2.5 guaranteMﬁ%}, is well conditioned. Finally, explicitly forming

A(MZ) in line 5 of Algorithm 1 can be accomplished@(Dd)-time. The total runtime of Algorithm 1 will therefore
beO (d(md + D) + Tnn), WhereTyy bounds the runtime of the nearest neighbor algorithm usédar8.

4. UPPERBOUNDS ON THENUMBER OF REQUIRED MEASUREMENTS

In this section we will bound the number of rows, needed in order for oun X D measurement matrixy/,
to satisfy each set of assumptions discussed in Sectionl@.5rder to do so, it will suffice to leM be a linear
Johnson-Lindenstrauss embedding of a well chosen set nfspmiR? into R™. Of course, this set of points will
vary depending on which set of assumptions from Section 2.%antM to satisfy. Below we consider each set of
assumptions separately. However, we will first establighleBmmas which will be useful in both cases.

Lemma 5. Lete € (0, %) Furthermore, letj € [J] andk € [K;] denote an affine projectdP;; (see Property 1 in
Section 2). Then, there exists a finite set of vectofs.C X« = {CDEk(D];kﬂ je ]RD} with |Qj,k| < (12/e)d +1, such
that

(-9 efoud] < Moo < a+oofeud
forall i e RP wheneveM embeds);, into R™ with /2-distortion.

Proof: We let Q;k be a minimale/4-cover of thed-dimensional unit ball inX;; centered ab € Xk Now set

Qjk = Q}k U {6} The stated upper bound h@j,k| follows from existing covering results (see [5] for refeces).
Furthermore, itV embedg) into R™ with e/2-distortion it is easy to see that

(1—e/2)llqll < IMgll < (1 +€/2)llqll

for all g € Qjx. The remainder of the proof now directly parallels the prafdfemma 5.1 in [5].0

Lemma 6. Fix ] € N and letlP;, j € []], be a GMRA approximation to a given compaalimensional Riemannian
manifold, M c RP, withd-dimensional volum¥&. Furthermore, suppose thite []]—[max {jo, log, (reafm) - 2}]

SHereV is the volume of thel-dimensional manifold\ ¢ RP.
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wherejp andC; are defined as in Property 3a of Section 2. Then, the numbeffinégrojectors at scal¢’, K, is
/41! 441
bounded above b%f% V- (% + 1)2+ .

Proof: We know thatB ,-j- (3];() N M is nonempty for allk € [K;] sincej” > jo. Now consider a minimal
C1-27/72-cover of M, C¢, »-7— (M). Itis not difficult to see that ever, , will be contained irB., ,--: (¥) for some
iy € C¢ -7 (M). Furthermore, there can be oe C¢, ,-7- (M) such that two distinc; « are contained in the

same ball B¢ -7 (), by Property 2b in Section 2. Hendé¢; < )Ccl,z—j’—z M) ) Applying Lemma 1 concludes the
proof.O

We are now prepared to upper bound the number of rows reqgoyredrm x N measurement matrid/, in order
to satisfy each set of assumptions listed in Section 2.5.

4.1. Bounding the Number of Rows Required to Satisfy Assumption &t 1.

Theorem 3. Fix € € (0%) ¥ € RP, and] € N sufficiently large. Furthermore, legP;, j € [J], be a GMRA
approximation to a given compadtdimensional Riemannian manifold{ c RP, with volumeV. Then, there exists
anm x D matrix, M, which satisfies Assumption Set 1 in Section 2.5 with O (de‘2 (J +log(d/e)) + €% log V).

Proof: The setS; c RP defined in item (a) of Assumption Set 1 h&s| < 2(] + 1)K; + 1. Furthermore, applying

Lemma 5 to all at most] + 1)K affine projectors yields a set of size at mgst 1)K; ((12/e)d + 1) for item (b) of
Assumption Set 1. Lemma 6 together with Theorem 1 now finighegroof.C

Itis importantto recall that Theorem 1 is proven by showimaf & random matrix will (nearly) isometrically embed
a given subset dRP into IR” with high probability. In the proof of Theorem 3 above, Theorl is applied to embed
a set which depends on the givére R we are ultimately interested in approximating (i.e., theSedefined in
Section 2.5 depends af). Thus, Theorem 3 provides us with a high probability recgwiarantee for each separate
¥ € RP on which we apply Algorithm 1.

4.2. Bounding the Number of Rows Required to Satisfy Assumption & 2. We will begin this section by consider-
ing item (b) of Assumption Set 2. Among other things, thid ellow us to finally define the functioBy; : RP — R*.
However, we must first define the Restricted Isometry Prgg&8] on which the subsequent discussion relies.

Definition 2. LetD,d € N, ande € (0,1). Anm x D matrix M’ has the Restricted Isometry Property, RIR{,¢), if
ay (-l < M <+ o
for all ¥ € RP containing at most nonzero coordinates.
We have the following lemma.
Lemma 7. Lete € (0, %) There exists a finite set of vecto€@,c X = {§| i € RP containsd nonzero coordinate}s

with )Q| < (1;) ((12/e)d + 1), such that ann x D matrix M’ has the RIPD,d,€) whenever it embed3 into R™ with
€/2-distortion. Furthermore, any such mati’ will have)(M’ﬂ|2 bounded above by

b = VT Il + -1

for all i € RP.

Proof: To prove thatM’ has the RIFD,d,€) we employ an argument similar to the proof of Theorem 5.5jn To
begin, we defingj, j € [D] - {0}, to be thejt" row of theD x D identity matrix. Then, for eachi-element subset
S ={j1,...,ja} € [D] - {0}, we defineX;s to be thed-dimensional subspace spannedE};y. . .,Ejd. Next, we IetQ’S
be a minimak/4-cover of thed-dimensional unit ball irXs centered ab, and defings = Q; U {6} as per Lemma 5.
Finally, we let
o= |J o
Sc[D]-{0}, IS|=d
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The upper bound of)| follows immediately.

Now suppose thatv!” embedsQ into R with e/2-distortion. Every¥ € RP containing at most nonzero coor-
dinates belongs to some subspaXe, whose associated s€lg C Q, is also embedded inf@™ with e/2-distortion
by M’. Hence, a trivial variant of Lemma 5 guarantees that eveci Swill satisfy Equation 11. Thereforé/’ will
have the RIPD,d,€) as claimed. The equation &g, now follows from Proposition 3.5 in [38]2

We are now sufficiently equipped to consider item (a) of Asgtiom Set 2 in Section 2.5. We have the following
lemma.

Lemma 8. Fixe € (0, %) and] e N — [max {jo,log2 (ﬁl(/\/l)) - 2}] wherej, andC; are defined as in Property 3a
of Section 2. In addition, leP}, j € [J], be a GMRA approximation to a given compadaiimensional Riemannian
manifold, M c RP, with d-dimensional volum& . Then, there exist absolute universal constaf{sC; € R*, which
are independent of botM and its GMRA approximation, together with a finite set of @ext8 ¢ RP, so that any
m X D matrix M’ which embed$ into R™ with (Cs - €)-distortion will satisfy

a-oli-4f < pry-mef < a+aly-4
forall i,z € MU {Ejk | jel]] ke [Kj]} c RP. FurthermoreB c RP will have

)B| _ O[2C4].dvz( D )C4d)'
€ - min {1, reach (M)} - min {1, Cy}

Proof: See Appendix AO

Furthermore, a modification of the proof of Lemma 8 yeilds fimal lemma concerning Assumption Set 2 in
Section 2.5. We have the following result regarding itemofddssumption Set 2.

Lemma9. Fixe € (0, %) and] e N — [max {jo,log2 (ﬁm) - 2}] wherej, andC; are defined as in Property 3a
of Section 2. In addition, leP;, j € [J], be a GMRA approximation to a given compadaiimensional Riemannian
manifold, M c RP, with d-dimensional volum& . Then, there exist absolute universal constaf{sCs € R™*, which
are independent of botM and its GMRA approximation, together with a finite set of #ext8’ c RP, so that any
m X D matrix M’ which embed8$’ into R™ with (Cs - €)-distortion will satisfy

(-ollf-Pu@|-27 < [M7-MPy@| < A+e)lf-Pu@| +27
forall je[]], k € [K{], andi/ € M. Furthermore B’ c RP will have

D -
o C(J‘d 2
IB'| = 0(2 Y (e-min{l,reach(M)} : min{l,C1}) )

Proof: See Appendix BO

We are finally ready to provide a useful upper bound for the lmemof rows required in any measurement matrix
satisfying Assumption Set 2 in Section 2.5. We have the fatig theorem.

Theorem 4. Fix e € (O, %) and]/ e N-— [max {jo, log, (ﬁﬁ(/\@) - 2}] wherejy andC; are defined as in Property 3a

of Section 2. In addition, IeP;, j € []], be a GMRA approximation to a given compaeaiimensional Riemannian
manifold, M c RP, with d-dimensional volum&. Then, there exists an x D matrix, M, which satisfies Assumption
Set 2 in Section 2.5 with

m=0 (de‘2 log( ) +de ] +elog V)

Db
€ - reach (M)
and

£ = VT e[|l + -1
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Proof: Any m x D matrix which embed$ c RP from Lemma 8 intaR™ with (Cs - €)-distortion will satisfy both
items (@) and (b) of Assumption Set 2 in Section 2.5 (see Lesifrand 8). Similarly, any givem x D matrix which
embedsB’ ¢ RP from Lemma 9 intdR™ with (Cs - €)-distortion will satisfy item (d) of Assumption Set 2. Fihal
just as in the proof of Theorem 3 above, Lemma 5 applied tatafi@st(] + 1)K; affine projectors yields a subset of

RP of size at mostJ + 1)K; ((12/e)d + 1) for item (c) of Assumption Set 2. Theorem 1 applied to the ombthis
subset withB U B’ guarantees the existence of

O(elog (|B] +1B| + (J + DK; ((12/e)" +1))) x D

Johnson-Lindenstrauss embedding matrices which satisfpiiption Set 2 with high probability. Applying Lem-
mas 6, 8, and 9 to bourid;, )B| and|B’|, respectively, now finishes the proaf.

In the proof of Theorem 4 above, Theorem 1 is applied to emised ehich only depends on the given manifold,
M, and its GMRA approximation. More specifically, no knowledgas assumed regarding any poine RP \
M which we might be interested in approximating via Algoritdm Thus, Theorem 4 provides us with a uniform
approximation guarantee for alle RP on which we might apply Algorithm 1. However, we pay seveealties for
this uniformity. First, the number of rows in our measuretmeatrix, 7, now depends on thextrinsic dimensionality
D, of the given manifold. Second, the resulting uniform elvounds are only nontrivial for input pointg, which are
close to the given manifold. Hence, although Theorem 4 iesghat Algorithm 1 enjoys a limited form of stability, it
does not provide very robust uniform error guarantees intjme

5. EMPIRICAL EVALUATION

We implemented Algorithm 1 and present an empirical evadnaif the algorithm in this sectioh.We consider
the following examples:

(i) M;: 20,000 points sampled from a “swiss roll”, 2dimensional manifoldS embedded int@®'%;

(i) My: 40,000 points sampled from a urfkdimensional spher®’ embedded int®'?;

(i) Ms: 5,000 pictures of the digit1’ from the MNIST data base of image28 x 28 pixels, of handwritten
digits’, with each picture having pixel intensity normalized to @awitL.2 norm.

(iii) M,: 15,000 points from the MNIST data base, wiBh000 points sampled from each of the diglts3, 5, with
each picture having pixel intensity normalized to have Gfiihorm.

(iv) Ms: the Science News text document data set, which comptisgstext documents, modeled as vectors
in 1153 dimensions, whoseth entry is the frequency of thieth word in a dictionary (see [21] for detailed
information about this data set), normalized so that eveouthent vector has unit Euclidean norm.

We construct the GMRA on these data sets in order to obtailintiar approximationsP; for each scalg considered

below in the noiseless setting. For the noisy experimentaddeGaussian noisg/ (0, ”—ZID) whereD is the (ambient)
dimension of the data, to each data pointdoe (0,0.05,0.1). We then use the noisy data to compute the GMRA
approximations of the noisy data, as well as the random gliojes utilized by the proposed reconstruction algorithm
A. We consider the following measures of approximation:

. ||x1 A (Mxl) ”2 2 ”xz 1[:'j (fz) ”2
(12) relMSE(A, M, j)* := ,  1elMSE; -
: Z ER T Z; 7P

Where{xl} are the data pointg, is the level in the GMRA, ranging frorfi to | (dependent on the data se#},
is Algor|thm 1, andM is a fixed random (with respect to Haar measure) orthogomgegiion at each scalgwith
range of dimensiord; - m) A D, where the “oversampling factoriz = 1,2,4,16, and the “intrinsic dimension”
d; = max; dim(range(l[’] x)). Therefored; is the dimension of the manifol@ @nd9, respectively) forM; and M.
The dimension parametet;, is adaptively chosen in a scale-dependent wayiy My, Ms as described in [3], with
actual values used in these examples reported in Figure 1.

6All GMRA and Algorithm 1 code is freely available &ttp://www.math.duke.edu/ ~mauro/code.html as part of the GMRA
package. An example script for manifold-based compressesirgy,script IGWT_CS_2.m , has been included here.
7pvailable athttp://yann.lecun.com/exdb/mnist/.
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In Figure 1 we also run SpaRSA [51], one of the leading alpor#, among many, for sparse reconstructions.
SpaRSA provides additional benchmarking by solving théstiasrsuit denoising problem,

13) ji= argmin S|z - MWL+ o],
2er((4+1)(x+1))

for each data point; € R” at scalgj. Heret € R+ was hand tuned as recommend in [51], &dde RP*O(@+D(Kj+D)
was the GWRA-based dictionary

Wj= [(DjT,O 81)0 q)]T,l 81}1 q)]T,Kj gf/K/]
for each scalg € [J]. We then outpulV;ij; € R” as SpaRSA's approximation to eagat scalej, wherey; is defined
as in Equation 13.

The dashed black line in each Figure 1 plot reports#i®ISE;-error of the GMRA approximation computed with
no compression (see Equation 12). Looking at the Figure ts ple note that that our manifold-based compressed
sensing erroelMSE(A, M, j), is close to the uncompressed projector’s approximatimr.aelMSE;, at each scale
j. Hence, we appear able to achieve our stated goals frono8&c8 computationally as well as theoretically. We also
note that: (a) for general real world data sets SpaRSA aekieemparable precision to our algorithm, suggesting that
the GMRA dictionaries}V;, may be used in concert with standard sparse approximaabmiques for compressive
sensing; (b) for low-dimensional manifold synthetic dagéss which do not curve in many dimensions, SpaRSA
achieves higher accuracy, since the directions of a fewetainglanes are sufficient to span a subspace containing the
entire manifold.

Finally, in Figure 2 we report running times, for the sameadssts as in Figure 1, for both our algorithfhand
SpaRSA. These graphs suggest that our algorithm can pestarenal orders of magnitude faster than SpaRSA. In the
examples shown it took a few seconds to run Algorithm 1 orhallgoints, with SpaRSA taking a significant fraction
of a second to run on a single point. In some sense this issgnéxpected since Algorithm 1 was designed to take
advantage of the GMRA dictionary’s structure in order to astdr, while SpaRSA is using the GMRA dictionary
generically, without any knowledge of its structure.

6. CONCLUSION

In this paper we discussed the ability of random projectimnembed an intrinsically low/-dimensional sub-
manifold of RP, together with a piecewise linear approximation to the samifold, into R°“1°84) in a way which
(approximately) preserves the fidelity of the embeddedeguigse linear approximation. Although any collection of
approximating affine spaces suffice, we focussed on the typeilti-scale linear approximations provided by GMRA
[3]. Itis worth mentioning that the entire Geometric Watdleansform (GWT) [3] of a point near a given manifold
can also be preserved by the type of random projectionssisciherein.

Note that the GWT of a point on a given manifold will always lppeximated by the sum of at mopt vectors
(where] is the number of scales in the GWT). So, pessimisticallynaoan projection needs to preserve all distances
in a number ofD(Jd)-dimensional subspaces which is bounded above by Lemmar6@én o approximately preserve
the entire geometric wavelet transform of each point on tlaifold. Thus, the GWT of each point on a given
manifold should be preserved in compressed form by a randwarl projection onto a subspace whose dimension,
m, satisfies a variant of Theorem 3 withreplaced everywhere hyl.
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APPENDIXA. PROOF OFLEMMA 8

To prove this lemma we will modify the proof of Theorem 3.1 &).[ The proof of Theorem 3.1 proceeds in two
steps. First, a finite seB, ¢ RP, of points on/near the given manifolé is defined. The main body of the proof then
consists of demonstrating that amyx D matrix, M’, which embed$ into R™ with ®(e)-distortion will also satisfy

A-ol-d| < [[M7Z-M7| < a+eo-

for all X, i/ € M. Our proof will proceed along a similar path. We will beginfingt defining a modified version of the
set, B, considered in [6]. We will call this séi. Then, we will prove that any: x D matrix which which embedB
into R™ with ©(e)-distortion will also satisfy item (a) of Assumption Set 2Section 2.5.

Let d (¥, /) denote the geodesic distance betw@ei € M. Furthermore, lefan; denote thel-dimensional
tangent space td1 at each¢ € M. Finally, let

B (@) ={Fe M|du(E D) < o

for eachd € R* and¥ € M.
We are now ready to construBtc RP as per [6] as follows: S€F = O(E—D2 ~rnin{1,reach(M)}) and, for each

¥ € M, let Q, (¥) c Tan; denote a minima® (e -T/ Vﬁ)-cover of thed-dimensional Euclidean ball of radius
centered ab € Tanz. Next, chooseéd c M to be a minimal finite cover oM satisfying

min dyp(@,%) < T,
deA

for all ¥ € M. Then,
B:=| Jiu@+Q@).
deA
In the next paragraph we will define our modified $&t; RP, which is a superset of the seidefined above.
Fix j € [J1andk € [K;]. For eachr € A above, letijx € B, (7) be such that
@i = Giell < 117 = Giell V7 € Bpar @
LetAj; = {a*]-,k ) ie A}. Furthermore, denote ttfé + 1)-dimensional vector space spannedray;, |J {E]k - d}k} by
Tan; i, and then leQ; (@) ¢ Tan, ;; be a minimal® (e T/ Vﬁ)—cover of the(d + 1)-dimensional Euclidean ball of
radiusT centered ab. To finish, define
Bis:= | (U (@ + Qs @)
deA
and then set
B:= U Bj,k U {C_)]k} UBUQ,
Jell, kelK;]

whereQ c RP is as defined in Lemma 7.
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Note thatB| will be bounded above by
+1)-Kp(1+ max |Bj||+IBl+1Ql.
J+1 ]( jeU],qu/]| ],k)) IB] + Q|

Applying Lemma 7 to bounfl)|, Lemma 6 to bound;, and appealing to Section 3.2.5 of [6] to bouBf the previous
line reveals that

d o) D 0(@)
B ogd) .y — =~ .
(14) B < 2209V (min{l, cl}) (je[}i‘?e’fk,] |Bf"")+V(e-min{l,reachw»)

We now finish bounding the cardinality 8fby noting thanj,k| will always be bounded above by the upper bounds

for |B| in Section 3.2.5 of [6] after every occurrencelof= d is replaced withi + 1.2 The stated upper bound 41&)
follows.

We will now complete the second portion of our proof by dentiating that a sufficiently precise linear embedding
of B will satisfy item (a) of Assumption Set 2. First, sinBec B, Theorem 3.1 in [6] guarantees that a low-distortion
embedding o3 will preserve all pairwise distances between points on thaifold M. Furthermore, any embedding
of B will also embed allcj;-vectors since they form a proper subsetBofHence, if suffices for us to show that a
sufficiently precise linear embeddingBfwill (approximately) preserve the distance from eﬁghvector to all points
on the manifoldM.

Fix j € [J], k € [K;], andX € M. Letd’ € A be the closest element dfto ,

d’ = argmin dy(@,%).

deA
Finally, Ietf;k denote the projection afonto the(d + 1)-dimensional affine subspaﬁ’?k +Tan;. ;. By considering
the Taylor series expansion of the unit speed parametienizat the geodesic path fronﬁ;k to ¥ on M, we find that

& (2a)
X = f}/k+7, Where||r1|=O r/eV:aT(A]:)]'

2
)sinceT < reach (M) /2 (see Corollary 2.1 in [6]).

Furthermore, the definition qitf;,k € Mimplies that =0 (Hf— F]k”)

Continuing with the proof, suppose that anx D matrix, M’, embeds3 into R with @(e)-distortion. A trivial
variant of Lemma 5 then implies that

In fact, the magnitude of the remaindgrjs aIsoO( X— E;k

X—a’
ik

IN
IN

M7z mre| HM’:?— M2,

+ HMf o M'%H M| + (1 + ©e)) ‘

27/ _ —)‘
X ik C]/k

IA

IA

)
sinceQ;x (7’)  Tan;. ;i is a proper subset df, and(f;k - Ejk) € Tany, ;. In addition, the fact tha® c B together
with Lemma 7 guarantees thist’ will have the RIPD,d,0®(¢)). This fact combined with the Holder inequality finally

reveals that
) < 1o+ o[ y5-1] -

|M'E- ey < 1+6e)|[F- e + o[\/g
The lower bound foHM’a?— M’Ej,kH is established in an analogous fashion. We have the statecdetm.

(1 + ) (|- &l + A + [M7A| < @+ @I - Gl + M7 + O~ 77

< @+0(@) |74

8Intuitively, we are increasing the effective intrinsic dinsionality ofM fromd tod + 1 in the process of creating o ;-subsets.
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APPENDIXB. PROOF OFLEMMA 9

The proof of this Lemma borrows heavilly from the proof of Lewa 8. Sefl’ = O(% -min {1, reach (M)}).
We will begin by defining the seB’ ¢ RP. LetA c¢ M, B c R”, andAj; = {c?]-,k)c?e A} c M for each
j € U], k € [K;] be defined as in Appendix A above (except now using the smadlee ofT from the second sentence
of this appendix). Leﬁ\ﬁﬁk denote thé€2d + 1)-dimensional vector space spanned by

Tang, | {6 - @ [ (@], | 7 < R)
for eachdx € Ajx. Furthermore, for eaclx € Ay, let Q) @) c fg-ﬁi,j,k be a minimal® (e T/ Vﬁ)-cover of the

(2d + 1)-dimensional Euclidean ball of radi@scentered ab faﬁi,jrk. To finish, define

B}, = ({@) v (@i + 0}, @)
deA

for eachj € []], k € [K;], and then set

B = B\ U {Ej,k}] UBUQ,

[jGUJ, ke[K;]
whereQ c RP is as defined in Lemma 7. Itis not difficult to see t&it will be bounded above as per Equation 14
aftere is replaced everywhere By/e. Simplifying yields the stated upper bound.

We will now complete our proof by demonstrating that a suffitly precise linear embedding Bf will satisfy
item (d) of Assumption Set 2. Fike []], k € [K;], and¥ € M. Letd’ € A be the closest element éfto ,

d’ = argmin dy(a,%).
deA

Finally, Ietf;k denote the projection af onto the(2d + 1)-dimensional affine subspaé’?k + ﬁﬁﬂjj’k. By considering
the Taylor series expansion of the unit speed parametienizat the geodesic path fronﬁ;k to ¥ on M, we find that

& (%, a*;,k)]

¥ = ¥+, where|]| = 0| Som

2
Furthermore, we recall that the magnitude of the remaintaralsoO (Hf— E;.k ) sinceT is sufficiently small.

To finish, suppose that amx D matrix, M’, embed$’ into R™ with ®(e)-distortion. A trivial variant of Lemma 5
implies that

72 - MY ()

IA

vz - e,

+ ”M'JE’;/,{ ~M'P (f)|| < || + (1 +©e))
(1 +0@) (|- e @] + 1]) + M7
)

< 1+ 0@ R~ P @] + M| + o[-,
sinceQ’, (@") C ﬁm is a subset oB’, and(f;k - P (9?)) € ﬁﬁm. In addition, the fact tha® c B’ together
with Lemma 7 guarantees thst’ will have the RIPD,d,0(¢)). This fact combined with the Holder inequality reveals

that
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wheneverT is weighted by a sufficiently small (universal) constant.eTlbwer bound fmﬂM’f—M'IP]-,k (JE’)” is

established in an analogous fashion.
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