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Abstract

We consider two methods for managing fluctuations in power gen-
eration due to intermittent renewable energy generation. Excess en-
ergy must be stored during times of excess power generation, and then
released when power generation decreases, thereby stabilizing the en-
ergy supply. We will consider evening the supply by storing excess
power to a battery during excess generation, and then releasing the
energy when power generation diminishes. Among other considera-
tions, we would like to release and store energy at a bounded rate,
and restrict the power saved (thereby reducing the required battery
size).

1 Introduction

There is an international push to increase our use of clean, renewable elec-
tric energy. Many states within the United States have adopted renewable
portfolio standards, which require a certain percentage of electric energy pro-
duction to come from renewable resources. In the 2011 State of the Union
Address, President Obama stated that he wants the USA to have 80

These mandates pose new technical challenges to operating the high-
voltage electric grid. Much of the renewable energy requirements will come
from future investments in wind energy and solar energy. Solar energy and
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wind energy are not controllable generation resources like traditional genera-
tion resources such as coal, natural gas, nuclear, and hydro. These resources
are intermittent and can have fast and unpredictable output fluctuations.
These fluctuations pose a strain on the operations of the grid. For instance,
grid operators must have backup generation on standby in order to compen-
sate for the intermittency of these resources.
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Figure 1: True Output (Red) Vs. Clear Output (Black) with no clouds, etc.

As an example of renewable generation intermittency, consider Figure 1.
It demonstrates the variation of power output from a solar panel. The red
curve demonstrates true measured power output. The black curve demon-
strates the expected output with no noise (i.e., constant sun over the course
of a day with no clouds, birds, or other objects passing over the panel, etc.).
The red curve demonstrates the sharp noisy variations produced by real solar
panels which can be disruptive to the grid, and can be smoothed via bat-



tery storage. Note that solar panels which are located closely to one another
will have highly correlated power noise. Thus, one can not hope for noise
variations from many panels to average out the noise too much.

Image: J. Kleissl (2010) 
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Figure 2: Battery Used to Level Power Output from Solar Panel

One technique to limit the impact of these intermittent resources on the
grid is to couple them with energy storage, i.e., a battery. For instance, when
a cloud passes over a solar panel, the output of energy can drop by 70% very
quickly. A battery can be used to smooth out this fast drop in electric energy
to the grid such that the net output to the grid has a much slower rate of
change. See Figure 2 for an example of a solar panel/battery unit. This type
of system is exactly what we will consider optimizing in this report.

The remainder of this report is organized as follows: In Section 2 a linear
programming model is considered for optimizing both the required battery
storage size, and battery charge rates. Minimizing the required battery size



minimizes the unit system cost, while minimizing storage/discharge rates
enhances battery life. The output power is smoothed as much as possible
within these competing battery cost constraints. This linear programming
model is scenario based – that is, the battery characteristics and behavior
are determined with respect to a dictionary of “average days”. In Section 3
we focus on optimal control of the battery of a predetermined size. The
(dis)charge rate of the battery is optimized in order to provide a smooth
output power supply to the grid.

2 Linear Programming Model

The objective of the following Linear Programming (LP) problem is to de-
termine the optimal (minimal) size of a battery required in order to (nearly)
deliver promised power to the grid, (1), such that the net output to the
grid does not fluctuate beyond levels that the grid can handle; these rates of
changes are referred to as ramp rate constraints and are shown by (3) and (4).
The model is a scenario based problem with the scenarios reflecting various
potential energy output levels from the solar panel/wind turbine. Equation
(2) represents the relationship between the storage output, the solar panel
input, and the net output to the grid. Equation (5) ensures that the energy
storage device’s charge is always non-negative. Equation (6) ensures that
the storage device’s charge never exceeds its maximum. Equation (7) en-
sures that the net output from the storage device is zero over the cycle that
is being modeled, be it a day, week, month, etc. Equations (8) through (14)
determine at what times the battery unit will be used in order to smooth the
power supply to the grid.

Variables:
Emax: Maximum size of the energy storage device
E0: Initial Charge in the energy storage device
P n

o,t: Output power to the grid at time t for scenario n
P n

s,t: Output power from the storage device at time t for scenario n

Parameters:
R∗

t : Maximum ramp up/down rate allowable to the grid/battery
P n

i,t: Input from the solar panel at time t for scenario n
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0 ≤ Ut, Vt, Wt ≤ 1 ∀t (13)
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Dn
o,t ≥ −P̄o,t + P n
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Ut = 1 when battery unit is on at time t, 0 otherwise (19)

Vt = 1 when battery unit is started at time t, 0 otherwise (20)

Wt = 1 when battery unit is shutdown at time t, 0 otherwise (21)

P̄o,t = promised output to the grid (22)

Dn
o,t = deviation of real output from promised output (23)

A preliminary experiment was conducted with a precursor to the LP
presented above. The results are presented in Figure 3. Note that the battery



size requirement is rather large. This is primarily due to the fact that this
scenario was generated with the goal of smoothing power over an entire 24
hour period, which caused the system to attempt to store a good deal of
energy throughout the entire day and then release it throughout the night.
However, this is somewhat impractical given that power consumption rates
are generally lower at night, and that other traditional power systems could
be utilized to provide power during the night. In the LP model presented
above, we are allowed to decide when we would like to smoothen the power
output to the grid (i.e., during the day only) via the binary Ut, Vt, and Wt

variables. This should allow the required battery size to be greatly reduced.

Ramp Rate Limit = 7.5 kW/hr 
Minimum Storage Size = 29.7 kW hr 
 
System: Powell Structural Systems Laboratory, UCSD Campus 
 
System Physical Size/Rating (Approx): 120 m2 / 18.3 kW 
Minimum storage requirement equivalent to about 29 Lead-Acid Car Batteries 
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Figure 3: Battery Used to Level Power Output from Solar Panel



3 An Optimal Control Approach

Let PI be the power output into a grid of electric power network. Due to
the nature of renewable energy, fluctuation of PI could be so significant that
a storage is required as the means of control to achieve steady power flow.
Let PS be the power flow from the storage, the resulting power output to the
network is denoted by PO. The problem is to find a feedback of controlling PS

or ṖS so that PO is as steady as possible, provided that the total energy, ES,
in the storage is within its capacity. For the reason of continuous operation,
we also require that the final value of ES equals a half of the maximum
storage capacity, or any other value that is appropriate.

A preliminary formulation of the problem has the following form

min
ṖS

∫ t0+T

t0

(λf(ṖO) + (1− λ)Ṗ 2
S)dt

subject to
PO = PI + PS

0 ≤ ES(t) = ES(0)−
∫ t

t0

PS(t)dt ≤ EM
S

ES(t0) = ES0

ES(t0 + T ) = ES1

In this formulation, PI can be a known function of t, or it is a random pro-
cess. In the cost function, f(ṖO) ≥ 0 has a minimum value at ṖO = 0. This
is to ensure that ṖO is close to zero. By including Ṗ 2

S in the cost function,
the speed of charging the storage is limited for the reason of battery lifespan.

3.1 Moving Horizon Optimal Control

In moving horizon optimal control, an open-loop optimal control ṖS(t) is
computed for a given time interval. Then this control input is updated real-
time. The advantage of this approach is its capability of finding controllers
with constraints. However, it requires real-time numerical solution of opti-
mization.

For this purpose, the stabilization of PO is formulated as a problem of
optimal control. Denote x1 = ES, x2 = −PS, and the control input is



u = −ṖS, the velocity the battery is charged or discharged. Then the problem
of optimal control is formulated as follows

Φ = min
u

∫ t0+T

t0

(λf(ṖO) + (1− λ)u2)dt

subject to
ẋ1 = x2

ẋ2 = u
0 ≤ x1 ≤ EM

S

x1(t0) = ES0

x1(t0 + T ) = ES1

ṖO = ṖI − u

The method of pseudospectral optimal control is applied to numerically solve
the optimal control problem. For testing purposes, let λ = 1 and we assume
a predictable variation of PI in a five hour time interval

PI = 70 sin(2πt/tf), tf = 5

To minimize the variation, we take a quadratic function

f(ṖO) = Ṗ 2
O

If there is enough storage, then the control is able to completely stabilize
PO so that it has zero variation. However, the storage capacity may not be
adequate. Figure 4 is a numerical result with battery storage capacity about
25% short of the amount required to fully stabilize the power output. In
this case, the minimum cost is Φ = 1415. In this computation, we allow the
battery to jump start. If the initial PS is zero, then the optimal control is
shown in Figure 5. The zero initial PI is quite restrictive. In fact, the cost,
Φ = 5718, is four times that of using jump start.

In the figures, it may seem like a saturation of Es in an interval around
t = 2.5. In fact, it is due to the inaccuracy of the plot. In a computation
with enough number of nodes, for this case N = 61, Es peaks at t = 2.5,
but do not saturate in an interval around this point. By peaking at t = 2.5,
this controller works aggressively to stabilize PO as much as it can achieve.
A more conservative controller can be computed by weighting on Es, which
is shown in the next section.



In some applications, a quadratic cost function may not serve the purpose.
For example, it is important to keep ṖO away from a bound. In this case, we
apply a U shaped cost function f(ṖO) (Figure 6). Then the control policy is
much closer to piecewise linear. For instance, assuming 25% short of storage,
with jump start, we have the following performance (Figure 7). In the case
of continuous start, the result is shown in Figure 8.

3.2 State Feedback Control

If the fluctuation of the input power has significant random variation, a
moving horizon controller may not be able to react fast enough to the random
change. For this purpose, a feedback control law is desirable. Suppose

PO = PI + wt + u

where wt is a Brownian motion that represents the random part of the input
power variation. Denote x3 = PO, then the problem can be formulated as
follows

Φ = min
u

E

(∫ t0+T

t0

(λf(ṖO) + (1− λ)(x1 − EM
S /2)2)dt

)
subject to

ẋ1 = x2

ẋ2 = u

dx3 = (ṖI − u)dt + σdwt

In this formulation, the term in (x1−EM
S /2)2 is used to limit the magnitude

of variation in the storage. By increasing the value of λ, the controller is
less aggressive and Es tends to stay away from its capacity limit. For in-
stance, if λ = 1/3 and without random variation, Figure 9 shows the control
performance

If
f(ṖO) = Ṗ 2

O



then

E

(∫ t0+T

t0

(λf(ṖO) + (1− λ)(x1 − EM
S /2)2)dt

)
= E

(∫ t0+T

t0

(λ((ṖI − u)2 + 2σ(ṖI − u)ẇt + (σẇt)
2) + (1− λ)(x1 − EM

S /2)2)dt

)
=

∫ t0+T

t0

(λ((ṖI − u)2 + σ2) + (1− λ)(x1 − EM
S /2)2)dt

We can remove the constant term σ2 from the cost function

Φ = min
u

∫ t0+T

t0

(λ(ṖI − u)2 + (1− λ)(x1 − EM
S /2)2)dt

The optimal cost is a functional Φ(t, x1, x2, ṖI) and the optimal control
law is also a functional u(t, x1, x2, ṖI). They satisfy the following Hamilton-
Jacobi-Bellman (HJB) equation

∂Φ

∂t
+ min

u

(
∂Φ

∂x1

x2 +
∂Φ

∂x2

u +
∂Φ

∂x3

(ṖI + u) +
σ2

2

∂2Φ

∂x2
3

+ λ(ṖI − u)2 + (1− λ)(x1 − EM
S /2)2

)
= 0

Φ(t0 + T, x1, x2, x3, ṖI) = 0

The optimal control has the form

u∗ = −1

2

(
∂Φ

∂x2

+
∂Φ

∂x3

+ 2λṖI

)
Ideally, we would like to analytically solve the HJB equation so that the

feedback controller is derived explicitly. Such a controller avoids the online
numerical optimization, which significantly reduces the computational load
for real-time applications.
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Figure 4: PI (blue) and PO (red) vs time; Total storage vs time
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Figure 5: PI(blue) and PO(red) vs time; Total storage vs time
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Figure 6: f(ṖO)
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Figure 7: PI and PO vs time; Total storage vs time
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Figure 8: PI and PO vs time; Total storage vs time
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Figure 9: PI and PO vs time; Total storage vs time


