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ABSTRACT

We consider the problem of recovering the phase of an unknown vector, x ∈ Cd, given (normalized) phase dif-
ference measurements of the form xjx

∗
k/|xjx∗k|, j, k ∈ {1, . . . , d}, and where x∗j denotes the complex conjugate

of xj . This problem is sometimes referred to as the angular synchronization problem. This paper analyzes a
linear-time-in-d eigenvector-based angular synchronization algorithm and studies its theoretical and numerical
performance when applied to a particular class of highly incomplete and possibly noisy phase difference mea-
surements. Theoretical results are provided for perfect (noiseless) measurements, while numerical simulations
demonstrate the robustness of the method to measurement noise. Finally, we show that this angular synchro-
nization problem and the specific form of incomplete phase difference measurements considered arise in the phase
retrieval problem – where we recover an unknown complex vector from phaseless (or magnitude) measurements.
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1. INTRODUCTION

We are interested in recovering the phase of a vector, x ∈ Cd, given measurements of the form

(X ′)j,k = xjx
∗
k, |j − k mod d| < δ, (1)

where j, k ∈ [d] := {1, 2, . . . , d} and δ ∈ Z+. We note that these measurements describe the diagonal entries of
the rank one matrix xx∗ ∈ Cd×d; i.e.,

(X ′)j,k =

{
(xx∗)j,k if |j − k mod d| < δ
0 otherwise.

. (2)

Normalizing each entry of X ′ ∈ Cd×d, we obtain the matrix A ∈ Cd×d with entries

(A)j,k =

{
ei(φj−φk) if |j − k mod d| < δ
0 otherwise,

, (3)

where xj = Cje
iφj for j ∈ [d]. Our objective is to use A ∈ Cd×d in order to recover φ1, . . . , φd ∈ [0, 2π] or

equivalently, the vector x̃ ∈ Cd with∗

(x̃)j := e
iφj = xj/|xj |. (4)

This is an angular synchronization problem since we recover d individual phase angles (modulo a global factor
of 2π) from the phase angle differences, 6 (A)j,k = φj − φk. For δ � d, (3) describes an angular synchronization
problem with highly incomplete measurements. In addition, it is also likely that these measurements are cor-
rupted by measurement noise, which makes the problem even more challenging. This problem has applications
in diverse fields such as network analysis (see1 for an example), optics,2 computer vision3 and phase retrieval
(see4 for more details). We are particularly interested in applications of this problem to phase retrieval, which
we describe below.
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1.1 Phase Retrieval

The phase retrieval problem5–10 involves the reconstruction of an unknown vector x ∈ Cd, up to a global phase
factor, from the phaseless or magnitude measurements,

bi := |〈pi,x〉|2 + ni, i ∈ Z+. (5)

Here, pi ∈ Cd is a measurement vector or mask and ni ∈ R is measurement noise. In developing a phase
retrieval method, we are interested in designing the measurement mask pi such that unknown vector x can be
recovered efficiently using a minimal number of measurements and in a manner robust to measurement noise.
Several computational methods for solving this problem have been proposed, including alternating projection
algorithms such as,6 optimization-based approaches such as7 and frame-theoretic, graph-based methods such as.8

We restrict our attention, however, to a recently introduced4 fast (essentially linear time in d) phase retrieval
algorithm based on block-circulant measurement constructions. These type of measurements arise, for example,
when computing correlations or convolutions with compactly supported masks. Moreover, this algorithm is of
particular relevance to the discussion in this paper since it requires the solution of an angular synchronization
problem similar to that described in (3). A brief summary of the method follows below while we refer the
interested reader to4 for more details and additional discussion.

Let pi ∈ Cd be a mask with δ non-zero entries such that (pi)` = 0 for ` > δ; i.e., only its first δ entries are
non-zero. Now consider the (squared) correlation measurements, bi = |corr (pi,x) |2, i = 1, 2, . . . , N , where N
denotes the number of distinct masks used. Expanding the correlation sum, we obtain

(bi)` =

∣∣∣∣∣
δ∑

k=1

(pi)
∗
k · x`+k−1

∣∣∣∣∣
2

=

δ∑
j,k=1

(pi)j (pi)
∗
k x`+j−1 x

∗
`+k−1, ` ∈ [d], i = 1, 2, . . . , N, (6)

where the indices are considered modulo-d. Note that we obtain d measurements – (bi)1, (bi)2, . . . , (bi)d for each
mask pi, i = 1, 2, . . . , N , and that (6) describes a linear system for the (scaled) phase differences, (X ′)j,k = xjx

∗
k.

As an illustrative example, consider the simple case where d = 4 and δ = 2. Writing out the linear system (6)
for these parameter values and using the notation (pi)j,k := (pi)j(pi)

∗
k, we obtain

M ′ x′ = b, (7)

where

M ′=



(p1)1,1 (p1)1,2 (p1)2,1 (p1)2,2 0 0 0 0 0 0 0 0
(p2)1,1 (p2)1,2 (p2)2,1 (p2)2,2 0 0 0 0 0 0 0 0
(p3)1,1 (p3)1,2 (p3)2,1 (p3)2,2 0 0 0 0 0 0 0 0

0 0 0 (p1)1,1 (p1)1,2 (p1)2,1 (p1)2,2 0 0 0 0 0
0 0 0 (p2)1,1 (p2)1,2 (p2)2,1 (p2)2,2 0 0 0 0 0
0 0 0 (p3)1,1 (p3)1,2 (p3)2,1 (p3)2,2 0 0 0 0 0
0 0 0 0 0 0 (p1)1,1 (p1)1,2 (p1)2,1 (p1)2,2 0 0
0 0 0 0 0 0 (p2)1,1 (p2)1,2 (p2)2,1 (p2)2,2 0 0
0 0 0 0 0 0 (p3)1,1 (p3)1,2 (p3)2,1 (p3)2,2 0 0

(p1)2,2 0 0 0 0 0 0 0 0 (p1)1,1 (p1)1,2 (p1)2,1
(p2)2,2 0 0 0 0 0 0 0 0 (p2)1,1 (p2)1,2 (p2)2,1
(p3)2,2 0 0 0 0 0 0 0 0 (p3)1,1 (p3)1,2 (p3)2,1



,

x′ =
[
|x1|2 x1x

∗
2 x2x

∗
1 |x2|2 x2x

∗
3 x3x

∗
2 |x3|2 x3x

∗
4 x4x

∗
3 |x4|2 x4x

∗
1 x1x

∗
4

]T
, and

b =
[
(b1)1 (b2)1 (b3)1 (b1)2 (b2)2 (b3)2 (b1)3 (b2)3 (b3)3 (b1)4 (b2)4 (b3)4

]T
.

With δ = 2, there are (2δ − 1)d = 12 unknown phase differences to be estimated. Equation (7) solves for these
using measurements generated using N = 3 distinct masks, pi, i = 1, 2, 3. We draw attention to the block-
circulant structure of the matrix M ′, which allows for efficient inversion using FFTs. This is especially desirable



for large dimensional problems. Further, it can be shown that the matrix M ′ is well conditioned – we refer the
reader to4 for details and explicit (including deterministic) constructions of the masks pi.

The above framework allows us to recover phase differences even though we start with phaseless measurements.
It is a specific realization of a more general framework called lifting – instead of solving for the unknown vector
x ∈ Cd directly, we first solve for the quadratic form xx∗ ∈ Cd×d using masked measurements. Lifting methods
are analytically and computationally appealing since they transform non-linear (and indeed non-convex) problems
such as the phase retrieval problem (5) to linear forms such as (6). However, for the block-circulant measurements
described by (6) and of interest to us, we only recover the diagonal entries of the matrix xx∗ ∈ Cd×d (recall (2)).

Further, since δ is typically much smaller than d, recovering x from X ′ is no longer a trivial problem.
Although the magnitude of x can be easily approximated using |xj | =

√
(X ′)j,j , j ∈ [d], recovering the phase

of x is less straightforward. The solution is to solve the angular synchronization problem determined by (3).
This may be solved using the eigenvector-based method proposed in this paper to recover the phase of x,
(x̃)j := eiφj = xj/|xj |, j ∈ [d]. Therefore, efficient, accurate and robust angular synchronization methods are
essential for solving phase retrieval problems arising from block-circulant measurements constructions such as
those introduced above.

1.2 Related Work

Angular synchronization has mainly been studied in the context of its applications (see1–3 for some examples).
A more general formulation and mathematical analysis of the problem can be found in.11 Further connections
to graph theory, maximum likelihood estimation and convex relaxations are explored in.12,13 In most of these
works, recovery algorithms and guarantees are developed under the assumption that measurements are missing (or
corrupted) at random. Their applicability to the structured and highly incomplete† measurement constructions
of (2) is not immediately obvious.

The rest of the paper is organized as follows: §2 provides a theoretical analysis of eigenvector-based angular
synchronization, while §3 provides numerical simulations showing the accuracy of the proposed method and its
robustness to measurement noise. Finally, we provide some concluding remarks and future research directions
in §4.

2. EIGENVECTOR-BASED ANGULAR SYNCHRONIZATION

Recall that our objective in solving the angular synchronization problem is to recover the phases of the entries
of x given A; i.e., we want to recover (x̃)j := eiφj = xj/|xj |, j ∈ [d] using the normalized and banded entries of
the matrix A ∈ Cd×d defined in (3). We show below that x̃ can be accurately approximated using the leading
eigenvector of A. This is computationally attractive since the leading eigenvector of A can be computed efficiently
using the power method14 in essentially linear time. For the discussion below, we let D = (2δ − 1)d and we
always order the d real eigenvalues of a d× d Hermitian matrix as λ1 ≥ λ2 ≥ · · · ≥ λd, with possible repetitions.

The following lemmas demonstrate that eigenvector-based angular synchronization should indeed be possible.
In particular, this first lemma shows that x̃ is always an eigenvector for the largest eigenvalue of A.

Lemma 1. The largest eigenvalue of A is λ1 = 2δ−1, and x̃ is an eigenvector of A with this maximal eigenvalue.

Proof: Let λmax denote the largest magnitude eigenvalue of A. Since A is Hermitian, the spectral radius of A =
‖A‖2 = |λmax|. Furthermore, one can see that

|λmax| ≤ ‖A‖∞ = max
j∈[d]

d∑
k=1

|Aj,k| = 2δ − 1,

using standard results concerning matrix norms.15 Finally, one can also see that Ax̃ = (2δ − 1)x̃.

The next lemma shows that the smallest eigenvalue of A, which is generally negative, is strictly smaller in
magnitude than λ1. Hence, λ1 is indeed the unique largest magnitude eigenvalue of A if λ1 > λ2.

†especially those arising from problems in phase retrieval using block-circulant measurements



Lemma 2. The smallest eigenvalue of A has magnitude |λd| ≤ 2δ − 3 = λ1 − 2 for all δ ≥ 3.

Proof: Suppose λd ≥ 0. In this case, we have that

λ1(d− λ1) = ‖A‖2F − λ21 =

d∑
j=2

λ2j ≥ (d− 1)λ2d.

Thus, λd ≤
√
λ1 ≤ λ1 − 2 = 2δ − 3 since λ1 ≥ 4. Now suppose that λd < 0. Let y be an eigenvector of A with

eigenvalue λd, and let j ∈ [d] be such that |yj | = ‖y‖∞. Considering the equation (A− λdI)y = 0, we note that
the inner product of the jth row of A− λdI with y must satisfy

−(1 + |λd|)yj =
∑

0<|k−j mod d|<δ

yke
i(φj−φk)

so that

‖y‖∞ = |yj | =
1

1 + |λd|

∣∣∣∣∣∣
∑

0<|k−j mod d|<δ

yke
i(φj−φk)

∣∣∣∣∣∣ ≤ 2δ − 2

1 + |λd|
· ‖y‖∞.

This last inequality can not hold unless 1 + |λd| ≤ 2δ − 2. The desired result follows.

This third lemma proves that x̃ is the only eigenvector of A with eigenvalue λ1. This establishes that λ1 > λ2
does indeed hold.

Lemma 3. The largest two eigenvalues of A are not equal, λ1 6= λ2, for all δ ≥ 2.

Proof: Let y be an eigenvector of A with eigenvalue λ1, and let j ∈ [d] be such that |yj | = ‖y‖∞ as above.
Considering the equation (A− λ1I)y = 0, we see that the inner product of the jth row of A− λ1I with y must
satisfy

(2δ − 2)yj =
∑

0<|k−j mod d|<δ

yke
i(φj−φk) (8)

so that

‖y‖∞ = |yj | =
1

2δ − 2

∣∣∣∣∣∣
∑

0<|k−j mod d|<δ

yke
i(φj−φk)

∣∣∣∣∣∣ ≤ 1

2δ − 2

∑
0<|k−j mod d|<δ

|yk|.

Note that this last inequality can not hold unless |yk| = ‖y‖∞ also holds for all 2δ − 2 values of k with
0 < |k − j mod d| < δ. Repeating this argument we come to the conclusion that |yk| = ‖y‖∞ must indeed hold
for all k ∈ [d]. Revisiting (8) and dividing through by yj we learn that

(2δ − 2) =
∑

0<|k−j mod d|<δ

e
i(θk−θj)ei(φj−φk)

holds, where yj = ‖y‖∞eiθj , for all j ∈ [d]. As a result, it must be the case that θk − φk = θj − φj holds for all
j ∈ [d], 0 < |k − j mod d| < δ. It follows that y must be scalar multiple of x̃.

Finally, one can also see that the largest eigenvalue will contain a substantial fraction of the spectral energy
of A if δ is taken to be sufficiently large.

Lemma 4. Let c ∈ R+. We will have c
√∑d

j=2 λ
2
j ≤ λ1 whenever δ ≥ 1+(d+1)c2

2(1+c2) .

Proof: Whenever δ ≥ 1+(d+1)c2

2(1+c2) we will have dc2 ≤ (2δ − 1)(1 + c2) = λ1(1 + c2), using Lemma 1. Continuing,

we learn that

λ21 ≥ λ1(d− λ1)c2 = (‖A‖2F − λ21)c2 =

 d∑
j=2

λ2j

 c2.



Taking square roots now yields the desired result.

We now have achieved the desired final result of our analysis: In the noiseless case a simple power method
may be used on A from (3) in order to recover x̃ from (4). Furthermore, this simple scheme will be efficient
whenever λ1 dominates both λ2 and λd sufficiently well (which is a function of the choice of δ for fixed d).

3. NUMERICAL RESULTS

We now present numerical results studying the spectral properties of the matrix A and demonstrating the
robustness of eigenvector-based angular synchronization to measurement noise. In all simulations below, i.i.d.
standard complex Gaussian signals are used as the test signals x. All simulations were performed in Matlab; in
particular, Matlab’s eigs command was used to estimate the desired eigenvalues and eigenvectors. Each data
point in the figures below was obtained as the average of 100 trials.

We begin by studying the spectral properties of A – in particular, the spectral gap, λ1 − λ2, and the ratio
λ1

max (|λ2|, |λd|)
. As discussed in §2, these quantities are important in ensuring that the recovered solution is

unique, accurate, and can be efficiently computed using an iterative scheme such as the power method. Figure
1a illustrates the dependence of the spectral gap λ1−λ2 on the band parameter δ for a fixed problem dimension
d. Plots for d = 64, 256 and 1024 are provided which show that the spectral gap is always positive, increases
with δ (the plots indicate that the spectral gap appears to grow cubically with δ), and that λ1 − λ2 ≈ d when
δ ≈ d/2 (i.e., as expected, the matrix A becomes rank-1 when we measure all possible phase differences). We

also plot the dependence of the ratio
λ1

max (|λ2|, |λd|)
on δ in Figure 1b. Note that this ratio is always greater

than 1 as predicted in §2, indicating that the iterative method used to compute the leading eigenvector (such as
the power method) will converge.
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Figure 1: Spectral Properties of A – Dependence of the spectral gap, λ1 − λ2 and the ratio
λ1

max (|λ2|, |λd|)
on

the band parameter δ.

Similarly, Figure 2 illustrates the dependence of the spectral gap and the ratio
λ1

max (|λ2|, |λd|)
on the problem

dimension d. For a fixed band parameter δ, Figure 2a shows that the spectral gap appears to vary like 1
d2 . For

completeness, we also plot the variation in the ratio
λ1

max (|λ2|, |λd|)
as a function of d in Figure 2b.
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Next, we present numerical simulations demonstrating the robustness of the proposed method to measurement
noise. Although we defer a rigorous theoretical analysis to future work, Figures 3 and 4 show that eigenvector-
based angular synchronization is indeed robust to measurement errors numerically. For the results below, we
assume that following noisy measurement model:

(Y ′)j,k = (X ′)j,k + ηj,k =

{
(xx∗)j,k + ηj,k if |j − k mod d| < δ
0 otherwise,

. (9)

where ηj,k denotes additive measurement noise and is drawn from an i.i.d complex Gaussian distribution. More-
over, we apply the eigenvector method to (Y ′ + (Y ′)∗)/2 to ensure that Hermitian symmetry is maintained. We
report added noise in terms of signal to noise ratio (SNR, in dB), with

Added Noise SNR (dB) = 10 log10

(
‖X ′‖2F

‖Y ′ −X ′‖2F

)
.

Similarly, we report reconstruction errors in dB, with

Reconstruction Error (dB) = 10 log10

 min
θ∈[0,2π)

‖ỹ − eiθx̃‖22

‖x̃‖22

 ,

where x̃ is the true phase of the unknown signal x (refer to (4)), ỹ is the eigenvector-based approximation to
x̃ and θ is a global phase offset. Figure 3 plots the reconstruction error (in dB) as a function of the added
noise level for a fixed problem dimension d. Figure 3a plots the reconstruction performance for d = 256, while
Figure 3b plots the reconstruction errors for d = 1024. In each case, plots for a few different values of the band
parameter δ are included to illustrate its effect on reconstruction performance. As expected, the reconstruction
error is roughly of the same order as added noise, with performance improving with increase in δ. We note that
for large problem dimensions and with high levels of added noise, choosing a small value of δ can result in poor
performance (see, for example, Figure 3b). This is not surprising, given that the spectral gap is likely to be small
in this case. Similar conclusions can be drawn from Figure 4, where the reconstruction error (in dB) is plotted
as a function of the added noise level for a fixed value of the band parameter δ.
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Figure 3: Performance of eigenvector-based angular synchronization in the presence of measurement noise. This
figure plots the reconstruction error as a function of added noise level for a fixed problem dimension, d.
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Figure 4: Performance of eigenvector-based angular synchronization in the presence of measurement noise. This
figure plots the reconstruction error as a function of added noise level for a fixed value of the band parameter, δ.



4. CONCLUDING REMARKS

In this paper, we have considered angular synchronization from highly incomplete information – a problem
which arises from applications in phase retrieval using block circulant measurement constructions. We use an
eigenvector-based method to solve this angular synchronization problem and analyze its theoretical performance.
Numerical results show that this method is accurate, efficient, and robust to measurement errors. Some future
research directions include a theoretical analysis of the method in the presence of measurement errors, connections
and comparisons of this method to other angular synchronization algorithms such as alternating projection
methods, as well as applying the theoretical and numerical findings presented here to the phase retrieval problem.
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