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Abstract—We present a deterministic number theoretic con-
struction for matrices with the Restricted Isometry Property
(RIP). Furthermore, we show that the number theoretic prop-
erties of our RIP matrices allow their products with Discrete
Fourier Transform (DFT) matrices to be well approximated via
a few highly sparse matrix multiplications. Hence, our RIP ma-
trices may be approximately multiplied by the DFT of any input
vector in sublinear-time by reading only a small fraction of its
entries. As a consequence, we obtain small deterministic sample
sets which are guaranteed to allow the recovery of near-optimal
sparse Fourier representations for all periodic functions having
an integrable second derivative over a single period. Explicit
bounds are provided for the sizes of our RIP matrices, the sizes
of their associated sublinear Fourier sampling sets, and the errors
incurred by quickly approximating their products with DFT
matrices. The Fourier sampling requirements obtained herein
improve on previous deterministic Fourier sampling results in
[1], [2].

Index Terms—Fourier transforms, Discrete Fourier trans-
forms, Algorithms, Number theory, Signal processing

I. I

There has been interest in deterministic Compressed Sens-
ing (CS) RIP matrix constructions ever since the introduction
of universal near-optimal randomized constructions [3]. Since
then deterministic constructions have been discovered [4],
[5], but they do not lead to small sampling sets in the
important Fourier CS case. In this paper we present a simple
deterministic construction for RIP matrices which leads to
small deterministic Fourier sampling set constructions. As a
consequence, we obtain a deterministic sparse Fourier trans-
form method which is guaranteed to recover a near-optimal
sparse Fourier representation (if one exists) for any input signal
by reading only a small deterministic subset of its entries.

Suppose we want to find a near-optimal k-term Fourier
approximation for a signal (i.e., periodic function) with band-
width N. Randomized RIP matrix construction results tell us
that O(k · log4 N) random signal samples suffice for the near-
optimal k-term approximation of all N-bandwidth signals with
high probability (see [6], and Theorem 1 below, proven in
[7]). However, verifying that any such randomly selected set
of samples actually works for all signals is computationally
infeasible. In addition, random sampling can be difficult to
incorporate into some circuit designs. In this paper we show
that O

(
k2 ·

log3 N
log2 k

)
deterministic samples suffice for guaranteed

near-optimal Fourier approximation. Furthermore, the deter-
ministic sampling entailed is simple.

Coherence arguments show that all N-bandwidth signals
consisting of exactly k nonzero modes can be recovered with
high probability using O(k2 · log N) random sampling positions
[8]. Furthermore, the associated coherence of any such random
sampling set can be checked in time O(k2 ·N2 · log N). The end
result is a polynomial-time Las Vegas algorithm for generating
sets of samples which are guaranteed to allow the recovery
of all k-sparse Fourier signals. However, these results do not
consider noise (i.e., signals which are only approximately
sparse). Furthermore, if k is Ω(Nα) for a fixed α ∈ (0, 1),
we achieve sampling sets of comparable size explicitly and
deterministically. We don’t need to check coherence properties
for new k and N-valued sample sets.

Finally, we note that the deterministic Fourier sampling
results herein improve on previous deterministic sparse Fourier
sampling results concerning periodic functions, f , whose
Fourier transforms decay algebraically [1], [2]. The best such
result states that if f ’s bth-largest magnitude Fourier coefficient
is O(b−p) for some p > 1, then a near optimal k-term Fourier
representation for f can be calculated using O

(
k

2p
p−1 ·

log3 N
log2 k

)
deterministic samples [2]. Hence, the number of samples
required for guaranteed approximation depends on the signal’s
Fourier compressibility. We improve on these deterministic
sampling bounds for all fixed p ∈ (1,∞).

The remainder of this paper is organized as follows: In
Section II we introduce required definitions and briefly review
compressed sensing results. In Section III we introduce our de-
terministic RIP matrix construction method, and give explicit
row bounds. Doing so allows us to compare it to previous
RIP matrix constructions and conclude that it is near-optimal
for its class (binary entries, L2-RIP). Finally, we note that our
number theoretic matrices are easy to build and cheap to store.

In Section IV we demonstrate how our measurement matri-
ces’ number-theoretic structure allows them to produce small
deterministic sparse Fourier sampling sets. In doing so we
provide fast algorithms for approximating the product of our
measurement matrices with the discrete Fourier transform of
an array of samples from an arbitrary Fourier-compressible
signal. Explicit error bounds for the approximation methods
are derived. In Section IV-A these results are extended to



include standard discrete Fourier transform results (where only
given equally-spaced signal samples can be utilized).

Finally, in Section V we conclude with a short discussion
of reconstruction methods. In doing so we note that our
RIP matrices lead to efficient linear-time (in the bandwidth)
sparse Fourier transforms. Better yet, we briefly discuss the
possibility of sublinearizing the runtime of these methods by
using a small number of additional samples.

II. P
We are interested in signals (i.e., arrays), A, of N complex

values with an associated N × N complex valued matrix Ψ
under which A is sparse. Thus, we assume that only k < N
entries of Ψ · A are significant (or large) in magnitude. In
this case standard compressed sensing (CS) methods [3], [5],
[9], [7] deal with recovering the k most significant entries of
Ψ·A using only a small (i.e., compressed) set of measurements
given by M ·Ψ ·A, where M is a special type of rectangular
K × N matrix with the Restricted Isometry Property (RIP).

Let the discrete Lq-norm of any array A be

‖A‖q =

N−1∑
j=0

|A( j)|q


1
q

.

A matrix M has the RIP(N,k,ε) if

(1 − ε)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + ε)‖x‖22

for all x ∈ CN containing at most k non-zero coordinates.
Given a RIP(N,O(k),ε) matrix M with ε ∈

(
0, 1

2

)
sufficiently

small, a near optimal O(k)-term approximation can be obtained
for Ψ · A using linear programming [3], [5] or Regularized
Orthogonal Matching Pursuit (ROMP) variants [9], [7]. In
particular, we will later utilize the following theorem proven
in [7].

Theorem 1. Suppose that M is a K ×N measurement matrix
with RIP(N,2k,ε), where ε is sufficiently small. Fix precision
parameter η ∈ R and let U = MΨA + E be measurements
for a given A ∈ CN , contaminated with arbitrary noise E.
Then, we may use a ROMP variant with input U to produce
a 2k-sparse approximation R satisfying

‖Ψ · A − R‖2 ≤ Const ·max
{
η,

1
√

k
· ‖Ψ · A − Ropt‖1 + ‖E‖2

}
where Ropt is a best k-sparse approximation to Ψ · A. The
runtime is O(C · log(‖Ψ ·A‖2/η)), where C bounds the cost of
a matrix-vector multiply with M or M∗.

In this paper we are primarily interested the special CS case
where Ψ is the N×N Discrete Fourier Transform (DFT) matrix

Ψi, j =
2π
N
· e

2πi·i· j
N .

Thus, A’s DFT, denoted Â, is a sparse/compressible signal of
length N defined as follows:

Â(ω) = Ψ · A =
2π
N
·

N−1∑
j=0

e
−2πiω j

N A( j), ∀ω ∈

(
−

⌈
N
2

⌉
,

⌊
N
2

⌋]
.

Later we will assume that A consists of point samples from
a function f : [0, 2π] 7→ C so that A( j) = f

(
j · 2π

N

)
for all

j ∈ [0,N) ∩ Z. We note that this is always the case since A
always has the bandlimited interpolant

f (x) =
1

2π

b N
2 c∑

ω=1−d N
2 e

Â(ω) · eiω·x, x ∈ [0, 2π].

However, our results easily extend to the case where f is
known to not be bandlimited, but instead exhibits sufficiently
fast decay of its large Fourier modes. We formalize this notion
by defining (c, γ,N)-decay for any function f : [0, 2π] 7→ C.
A function f has (c, γ,N)-decay for c, γ ∈ R+, γ > 1, if
| f̂ (ω)| ≤ c · |ω|−γ for all ω <

(
−

⌈
N
2

⌉
,
⌊

N
2

⌋]
. Note that any 2π-

periodic function f with an integrable second derivative over
[0, 2π] has (c, γ,N)-decay with γ > 1 for some constant c ∈ R+

(see [10]).

III. D RIP C

Define p0 = 1 and let pl be the lth prime natural number.
Thus, we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . (1)

Choose q ∈ N so that

pq−1 < k ≤ pq. (2)

We will use the first K ∈ N (to be specified later) primes no
smaller than k

k ≤ pq < pq+1 < · · · < pq+K−1 (3)

to create a measurement matrix

M ∈

{
0,

1
√

K

}(∑K−1
j=0 pq+ j

)
×N

.

We create our measurement matrix M as follows: We
produce a row r j,h, j ∈ [0,K) ∩ Z and h ∈ [0, pq+ j) ∩ Z, in
M for each possible residue of each of our pq+ j primes. Each
r j,h row’s nth entry, n ∈ [0,N) ∩ Z, is given by

(r j,h)n = δ
(
(n − h) mod pq+ j

)
=

{
1 if n ≡ h mod pq+ j

0 otherwise . (4)

We then set

M =
1
√

K



r0,0
r0,1
...
r0,pq−1
r1,0
...
r1,pq+1−1
...
rK−1,pq+K−1−1



. (5)

For an example measurement matrix see Figure 1.



—————————————————————————

n ∈ [0,N) 0 1 2 3 4 5 6 . . .

n ≡ 0 mod 2
n ≡ 1 mod 2
n ≡ 0 mod 3
n ≡ 1 mod 3
n ≡ 2 mod 3

...
n ≡ 1 mod 5

...



1 0 1 0 1 0 1 . . .
0 1 0 1 0 1 0 . . .
1 0 0 1 0 0 1 . . .
0 1 0 0 1 0 0 . . .
0 0 1 0 0 1 0 . . .

...
0 1 0 0 0 0 1 . . .

...


Fig. 1. Measurement Matrix,

√
K · M, Using p1 = 2, p2 = 3, p3 = 5, . . .

—————————————————————————

Given the first k + K primes we can see that it is easy to
form our measurement matrix M. Thus, we quickly mention
that efficient algorithms for generating the first n primes
exist (see [11]) and have been widely implemented (e.g.,
MATLAB’s  function). In addition, previously computed
lists of primes can be found online (e.g., the first 50 million
primes can be downloaded at [12]). We now concentrate on
demonstrating that M has the Restricted Isometry Property.

Theorem 2. Our measurement matrix M has RIP(N,k,ε) for
all K ≥ (k−1)·blogk Nc

ε
.

Proof:

We prove the result via an argument similar to one employed
by DeVore in [4]. Let S = {n1, . . . , nk} ⊂ [0,N). Given any
such S we defineMS to be the

(∑K−1
j=0 pq+ j

)
×k matrix consist-

ing of M’s S columns. We now consider the k × k Grammian
(and therefore symmetric and non-negative definite) matrix

M∗SMS = I +DS .

If we can show that both ‖ DS ‖1≤ ε and ‖ DS ‖∞≤ ε are true,
we will have our result.

Each off diagonal entry (DS )l,m , l , m, is the inner product
of M’s associated nl and nm columns. Thus, we have

(DS )l,m =
1
K
·

K−1∑
j=0

δ
(
(nl − nm) mod pq+ j

)
≤
blogk Nc

K

by the Chinese Remainder Theorem (see [11]). The end
result is that both ‖ DS ‖1 and ‖ DS ‖∞ are ≤ (k−1)·blogk Nc

K .
Theorem 2 follows. 2

We will now study the number of rows,
∑K−1

j=0 pq+ j, in our

measurement matrix. It follows from results in [13] that

K−1∑
j=0

pq+ j =
p2

q+K

2 ln pq+K
·

(
1 + O

(
1

ln pq+K

))
− (6)

p2
q

2 ln pq
·

(
1 + O

(
1

ln pq

))
.

Furthermore, the Prime Number Theorem (see [11]) tells us
that

q =
k

ln k

(
1 + O

(
1

ln k

))
.

Thus, if we use the smallest possible value for K in order to
obtain a measurement matrixM with RIP(N,k,ε) we will have

q + K =
k · blogk Nc

ε

(
1 + O

(
ε

ln N

))
.

Here we have assumed that K is an natural number (e.g., that
ε−1 ∈ N) and that k + K is less than N.

Applying the Prime Number Theorem once more we have
that

pq = k
(
1 + O

(
ln ln k
ln k

))
and

pq+K =
k · blogk Nc · ln

(
k·ln N
ε

)
ε

1 + O

 ln ln
(

k ln N
ε

)
ln

(
k ln N
ε

) 
 . (7)

Utilizing Equation 6 now yields

K−1∑
j=0

pq+ j =

k2 · blogk Nc2 · ln
(

k·ln N
ε

)
2ε2

1 + O

 ln ln
(

k ln N
ε

)
ln

(
k ln N
ε

) 
 . (8)

Hence, we have an asymptotic for the number of rows in M.
In the next theorem we provide a concrete bound.

Theorem 3. Suppose that ε−1 ∈ N − {1} and N > k ≥ 2. If
we use the smallest K ≥ 5 possible so thatM has RIP(N,k,ε),
the number of rows in M will be bounded above by

7k2 · blogk Nc2

ε2
ln

(
3.05 · k · blogk Nc

ε

)
.

Tighter (and asymptotically correct) upper row bounds may
be explicitly calculated using Equations 9 – 12 below.

Proof:

Let π(n) be the number of primes no greater than n. In [14]
it is shown that

n
ln n

(
1 +

0.992
ln n

)
≤ π(n) ≤

n
ln n

(
1 +

1.2762
ln n

)
for all n ≥ 599. Using this result (in combination with
numerical tests for n < 600) we obtain the following bounds



for q + K and q.

q + K ≤ π(k) + K + 1 ≤
k · blogk Nc

ε

(
1 +

ε

ln k · blogk Nc
+

1.2762 · ε
ln2 k · blogk Nc

)
. (9)

and

q ≥ π(k) ≥ max
{

k
ln k

(
1 +

0.992
ln k

−
8.85

k

)
, 1

}
. (10)

Continuing, we can bound the sums of our utilized primes
by noting that

q−1∑
j=1

p j ≥

q−1∑
j=1

j · ln( j) (see [14])

≥

∫ q−1

1
x · ln x dx ≥

(q − 1)2

2

(
ln(q − 1) −

1
2

)
(11)

and

q+K−1∑
j=1

p j ≤ 10 +
q+K−1∑

j=4

j · ln(p j) (see [14])

≤ 10 + ln(pq+K) ·

q+K−1∑
j=4

j

 (see [14])

≤
(q + K − 1)(q + K)

2
· ln

(
(q + K) · (ln(q + K) + ln ln(q + K))

)
(12)

≤
3
4

(q + K)2 · ln(q + K). (13)

Using Equation 9 together with Equation 13 finishes the
proof. 2

Theorem 3 establishes our explicit measurement matrix
construction as being near-optimal (i.e., within logarithmic
factors) with respect the number of rows for explicit RIP
matrices with binary entries [15]. Unfortunately, RIP(N,k,ε)
matrices consisting of binary entries are suboptimal with
respect to row number [4], [15]. It is known that Ω(k·log(N/k))
rows are necessary for fixed ε, and randomized constructions
[6], [16] can generate RIP matrices containing numbers of
rows within constant factors of this lower bound. However,
the structure of explicitly constructed RIP matrices can endow
them with beneficial properties that randomly constructed
RIP matrices lack. Examples of such properties include (i)
guaranteed recovery of all sufficiently sparse signals, (ii)
small storage requirements, and (iii) fast matrix multiplication
procedures for important change-of-basis matrices Ψ.

Clearly, any explicit RIP matrix construction will have
recovery guarantees (property (i)). Verifying that a randomly
constructed matrix has the RIP property is computationally
intractable. Furthermore, randomly constructed RIP matrices
generally require Ω(N ·k · log(N/k)) bits of storage (e.g., in the
Gaussian and Bernoulli cases [6], [16]). On the other hand,

our explicit number theoretic construction requires only

O

K−1∑
j=0

log pq+ j

 = O ((q + K) · ln(q + K))

= O
(

k · blogk Nc
ε

· ln
(

k · blogk Nc
ε

))
bits of storage (see [14] and Equation 9). Finally, our RIP
matrix is relatively sparse. Its easy to see that it (as well
as its adjoint) can be multiplied by a vector in O(K · N) =
O

( k·blogk Nc
ε
· N

)
time. Of greater interest, however, is that our

RIP matrices have fast multiplication algorithms which utilize
a small number of function samples in the Fourier CS case
(i.e., when Ψ is a DFT matrix).

IV. T F C

Let P be the least common multiple of
{
N, pq, . . . , pq+K−1

}
and imagine that we form the new Fourier CS problem

Ã(h) = f
(
h ·

2π
P

)
for h ∈ [0, P) ∩ Z, x = Ψ̃Ã

where f : [0, 2π] 7→ C is such that

A( j) = f
(

j ·
2π
N

)
= Ã

(
j ·

P
N

)
and Ψ̃ is the P × P DFT matrix defined by Ψ̃ω, j = 2π

P · e
2πi·ω· j

P .
Recall that there is always such a function f (e.g., we
can always let f be A’s bandlimited interpolant). For the
time being we will assume we have direct access to Ã. In
section IV-A we will again restrict our sample usage to values
from A.

To solve these new problems we will use an extended
version of our number theoretic RIP(N,k,ε) matrix M. This
extended RIP matrix,MP, is the

(∑K−1
j=0 pq+ j

)
×P matrix formed

by extending each row r j,h of M as per Equation 4 for all
n ∈ [0, P). We now consider the product of MP and Ψ̃. For
each row r j,h of MP and column ω of Ψ̃ we have

(
MP · Ψ̃

)
r j,h,ω
=

2π

P ·
√

K

P
pq+ j
−1∑

l=0

e
2πi·ω·(h+l·pq+ j)

P

=
2π · e

2πi·ω·h
P

P ·
√

K

P
pq+ j
−1∑

l=0

e
2πi·ω·l
P/pq+ j (14)

=

 2π·e
2πi·ω·h

P

pq+ j·
√

K
if ω ≡ 0 mod P

pq+ j

0 otherwise
.

Thus the product MP · Ψ̃ is highly sparse. In fact, we can see
that each r j,h row contains only pq+ j non-zero entries. Better
still, all the rows associated with a given pq+ j will access
all the same Ã entries in a pattern consistent with a small
FFT. This aliasing phenomena results in a fast algorithm for
computing MP · Ψ̃ · Ã (see Algorithm 1). Theorem 1 shows
that MPΨ̃Ã is a good approximation to MΨA for all signals,
f , whose Fourier transforms decay sufficiently fast.



Algorithm 1 FM
1: Input: Signal pointer f , integers k < K < N, primes

pq, . . . , pq+K−1
2: Output: MP · Ψ̃ · Ã
3: for j from 0 to K − 1 do
4: Apq+ j ← f (0), f

(
2π

pq+ j

)
, . . . , f

(
2π(pq+ j−1)

pq+ j

)
5: Âpq+ j ←

1
√

K
·FFT[Apq+ j ]

6: end for
7: Output

(
Âpq , Âpq+1 , . . . , Âpq+K−1

)T

Lemma 1. Suppose that M has RIP(N,k,ε). Furthermore,
suppose that N ≥ 3, pq+K ≤

N
2 , and that f̂ has (c, γ,N)-decay.

Then, ‖ MΨA −MPΨ̃Ã ‖2 is O
(

c
√

k·(γ−1)

(
N
4

)1−γ
)
.

Proof:

Suppose N is odd (the even case is analogous). Then, for
all r j,h we have that∣∣∣MΨA(r j,h) −MPΨ̃Ã(r j,h)

∣∣∣ =
1
√

K
·

∣∣∣∣∣∣∣∣∣
∑

l, |h+l·pq+ j |≤
N−1

2

Â(h + l · pq+ j) −
∑

ω≡h mod pq+ j

f̂ (ω)

∣∣∣∣∣∣∣∣∣ =
1
√

K
·

∣∣∣∣∣∣∣∣∣
∑

l, |h+l·pq+ j |≤
N−1

2

∑
ω̃≡(h+l·pq+ j) mod N

f̂ (ω̃) −
∑

ω≡h mod pq+ j

f̂ (ω)

∣∣∣∣∣∣∣∣∣ =
1
√

K
·

∣∣∣∣∣∣ ∑
l, |h+l·pq+ j |≤

N−1
2

∑
ω̃≡(h+l·pq+ j) mod N, |ω̃|≥ N+1

2

f̂ (ω̃)

−
∑

ω≡h mod pq+ j, |ω|≥
N+1

2

f̂ (ω)

∣∣∣∣∣∣
≤

2c
√

K
·

[(
N

pq+ j
+ 2

)
·

∞∑
l=0

(
N + 1

2
+ l · N

)−γ
+

∞∑
l=0

(
N + 1

2
+ l · pq+ j

)−γ]
≤

2c

pq+ j ·
√

K · (γ − 1)
·

8 (N
4

)1−γ

+ 2
(

N − pq+K

2

)1−γ .
Thus, we can see that

‖ MΨA −MPΨ̃Ã ‖22

≤
4c2

pq · (γ − 1)2 ·

8 (N
4

)1−γ

+ 2
(

N − pq+K

2

)1−γ2

≤
400 · c2

k · (γ − 1)2

(N
4

)2−2γ

.

The result follows. 2

Looking at Section III’s Theorem 3 we can see than
Algorithm 1 utilizes only O

(
k2·blogk Nc2·ln( k·ln N

ε )
ε2

)
f -samples/Ã-

entries. Similarly, we can see that Algorithm 1 runs in time

O
(∑K−1

j=0 pq+ j log pq+ j

)
if we calculate the FFTs using a chirp

z-transform [17]. Thus, the runtime is

O

K−1∑
j=0

pq+ j log pq+ j

 = O
(
p2

q+K

)
(see [13])

= O

k2 · blogk Nc2 · ln2
(

k·ln N
ε

)
ε2


using Equation 7. We next consider the case where we only
have access to entries of A and can not freely sample from f
(or Ã).

A. Restricted Sampling

To restrict our sampling to A but still use a small number of
samples we will utilize a P× N interpolation matrix based on
polynomials in Lagrangian form [18]. We begin by defining
np as

np = max
{
n ∈ [0,N) ∩ Z

∣∣∣ n ≤
p · N

P

}
.

Furthermore, we define the polynomial lκb,m : R 7→ R for given
b, κ ∈ [0,N) ∩ Z and m ∈ (b, b + 2κ] as

lκb,m(x) =
2κ∏

h=1,b+h,m

x·N
P − b − h
m − b − h

.

Now we define the P × N matrix L2κ by

L2κ
p,n =

{
lκnp−κ,m(n)(p) if n ∈ (np − κ, np + κ] mod N
0 otherwise

, (15)

where m(n) ∈ (np − κ, np + κ] ∩ Z and m(n) ≡ n mod N.
We will use L2κ to locally interpolate A to a finer grid

containing P equally spaced points. Put another way, we will
sample Section IV’s Ã as needed by calculating L2κA ≈ Ã.
We can then use Section IV’s techniques to approximate
the bandlimited interpolant, f , of A. We have the following
theorem.

Lemma 2. ‖ MΨA −MPΨ̃L
2κA ‖2 is

O


√

k · blogk Nc · ln
(

k·ln N
ε

)
ε

·
‖ Â ‖1

8κ

 .
Proof:

We take f : [0, 2π] 7→ C in Lemma 1 to be the bandlimited
interpolant of A. Thus, if we set

β = L2κA − Ã

we can see that

‖ MΨA −MPΨ̃L
2κA ‖2=‖ MPΨ̃β ‖2

since f̂ (i.e., Â) has (0, γ,N)-decay for any γ > 0. In order to
bound this last expression it suffices to bound ‖ β ‖∞.



Using standard results concerning polynomial interpolation
error (see [18]) we can see that

‖ β ‖∞ ≤
2 ‖ Â ‖1

(2κ)!

(N
2

)2κ κ∏
j=1

( j
N

)2

≤
2 ‖ Â ‖1

8κ
.

Therefore, using Equation 14, we have that∣∣∣MPΨ̃β(r j,h)
∣∣∣ ≤ 4π

√
K

‖ Â ‖1
8κ
.

Finishing, we have that

‖ MPΨ̃β ‖
2
2 ≤ 16π2 · pq+K ·

‖ Â ‖21
82κ .

The result follows from Equation 7. 2

Theorem 3 together with Algorithm 1 and Equation 15
for L2κ imply that we can approximately calculate MΨA by
MPΨ̃L

2κA using only O
(
κ ·

k2·blogk Nc2·ln( k·ln N
ε )

ε2

)
A-entries. The

required runtime is O
((
κ + ln

(
k·ln N
ε

))
·

k2·blogk Nc2·ln( k·ln N
ε )

ε2

)
. We

now conclude by briefly considering CS recovery.

V. C

By combining our work herein with Theorem 1 we obtain
the following deterministic Fourier approximation result.

Corollary 1. Suppose that f : [0, 2π] 7→ C has (c, γ,N)-decay.
Fix precision parameter η ∈ R. We can produce a 2k-term N-
bandlimited Fourier approximation, R̂, so that ‖ f̂ − R̂‖2 is

O
(

1
√

k
· ‖ f̂ − R̂opt‖1 +

c · (N/4)1−γ

γ − 1
+ η

)
.

Here R̂opt is a best k-term N-bandlimited Fourier ap-
proximation to f̂ . The required number of samples
is O

(
k2 · blogk Nc2 · ln (k ln N)

)
. The required runtime is

O
(
N · k · blogk Nc · log

(
1
η
·

[
‖ f̂ ‖2 + c

(γ−1)
√

N

]))
.

Proof Sketch:

We begin by applying Theorem 1 in combination with
Theorem 2, Theorem 3, and Lemma 1. This tells us that we
can deterministically approximate Â = ΨA well with a 2k-
term Fourier representation using Õ(k2) samples. We continue
by restating the result in terms of f̂ . A calculation similar to
the one performed for the proof of Lemma 1 reveals that both

‖ χ(−d N
2 e,b

N
2 c] · f̂ − ΨA ‖2 and ‖ f̂ − ΨA ‖2 are O

(
c
γ−1

(
N
4

) 1
2−γ

)
.

Similarly, ‖ f̂ − ΨA ‖1 is O
(

c
γ−1

(
N
4

)1−γ
)
. Finally, one can

see that the optimal 2k-term Fourier representation for ΨA
must also be a near-optimal representation for 2k of f ’s
near-largest magnitude low frequency Fourier coefficients.
The result follows. 2

Corollary 1 improves on previous deterministic linear-time
in bandwidth results [2] in terms of both sampling and run-
time requirements. Unlike these previous results, Corollary 1

exhibits no runtime or sampling dependence on the Fourier
compressibility of our input signal f . Following the logic of
[2] one immediately considers the possibility of sublineariz-
ing Corollary 1’s runtime, thereby improving the sublinear-
time algorithms developed therein. Indeed, the reconstruction
algorithm [7] as used in Corollary 1 is sublinear-time ex-
cept that it requires multiplications with M∗. However, these
multiplications are only used to identify energetic frequencies
in f̂ . In principle they can be replaced by sublinear-time
energetic frequency identification procedures from [19] at the
expense of additional sampling. Although these identification
procedures fail with some small probability, our guaranteed
RIP properties allow us to check identified frequencies for
energy. This approach bears fruit in the noiseless exact k-
sparse signal case. Handling noise is less straightforward.
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