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Abstract

Schubert polynomials generalize Schur polynomials, but it is not clear
how to generalize several classical formulas: the Weyl character formula,
the Demazure character formula, and the generating series of semistan-
dard tableaux. We produce these missing formulas and obtain several
surprising expressions for Schubert polynomials.

The above results arise naturally from a new geometric model of Schu-
bert polynomials in terms of Bott-Samelson varieties. Our analysis in-
cludes a new, explicit construction for a Bott-Samelson variety Z as the
closure of a B-orbit in a product of flag varieties. This construction works
for an arbitrary reductive group G, and for G = GL(n) it realizes Z as
the representations of a certain partially ordered set.

This poset unifies several well-known combinatorial structures: gener-
alized Young diagrams with their associated Schur modules; reduced de-
compositions of permutations; and the chamber sets of Berenstein-Fomin-
Zelevinsky, which are crucial in the combinatorics of canonical bases and
matrix factorizations. On the other hand, our embedding of Z gives an
elementary construction of its coordinate ring, and allows us to specify a
basis indexed by tableaux.
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Introduction

The classical Schur polynomials appear in many contexts: 1) as characters of the
irreducible representations of GL(n,C) (the Schur modules); 2) as an algebraic
model for the cohomology ring of a Grassmannian (product of Schur polynomials
↔ intersection of Schubert classes); 3) as an orthogonal basis for the symmetric
functions in a polynomial ring; and 4) as generating functions enumerating
semistandard Young tableaux. (See [10] for a unified account of this theory.)

∗Partially supported by the National Science Foundation.
1Keywords: flag variety, Young tableaux, Demazure character formula
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In recent decades many generalizations of Schur polynomials have appeared,
among the most interesting being the Schubert polynomials first defined by
Lascoux and Schutzenberger [15]. These are known to generalize each of the
above interpretations. They are: 1) characters of representations of the group
B of upper triangular matrices [12]; 2) an algebraic model of the cohomology
ring of a flag variety [4], [7]; 3) an orthogonal basis for a polynomial ring
[15]; and 4) generating functions for certain mysterious tableaux defined by
compatiblity conditions in the plactic monoid [16].

Nevertheless, many of the rich properties of Schur polynomials have no
known analogs for Schubert polynomials. In this paper we supply several such
missing analogs, mainly concerning interpretations 1) and 4): analogs of the
Weyl and Demazure character formulas; and a straightforward construction
for the mysterious tableaux of Lascoux and Schutzenberger, showing how they
“quantize” our Demazure formula. These results also hold for a broad class of
Schur-like polynomials associated to generalized Young diagrams, such as skew
Schur polynomials [1], [23], [24], [25], [21].

These results are purely combinatorial, but we obtain them by generalizing
a powerful tool of representation theory, the Borel-Weil Theorem, which states
that Schur modules (whose characters are Schur polynomials) are graded pieces
in the coordinate ring of a flag variety (c. f. [10]). The theory of Schur polynomi-
als can be developed from this point of view, and this is what we do for Schubert
polynomials and their associated B-modules. Instead of flag varieties, however,
we must use the more general varieties defined by Bott and Samelson, which
are a well-known tool in geometric representation theory. (They are indexed by
reduced decompositions of permutations into simple transpositions.)

This method follows our paper [21], but we must do extra geometric work
here, giving a precise connection between our B-modules and the Bott-Samelson
varieties Z. As a by-product of our analysis, we obtain a new construction of
the Bott-Samelson varieties for an arbitrary reductive group G. In our case
G = GL(n), the new construction realizes Z as the variety of representations
of a partially ordered set. This poset is equivalent to two well-known but pre-
viously unconnected combinatorial pictures, and our approach reveals deep re-
lations between them: first, generalized Young diagrams, which are used to
construct generalized Schur modules; and second, reduced decompositions of
permutations, which are pictured via the wiring diagrams and chamber sets
of Berenstein, Fomin, and Zelevinsky [2], [18], crucial in the combinatorics of
matrix factorizations, total positivity, and canonical bases.

The paper is organized into three parts, which may be read independently
and have separate introductions. The first part (§1) introduces Bott-Samelson
varieties for a general reductive group, and shows the isomorphism between
our new construction and the classical one. This lays the groundwork for our
papers [13], [14] with V. Lakshmibai, giving a Standard Monomial Theory for
Bott-Samelson varieties.

The second part (§§2-3) makes this construction explicit for GL(n), discusses
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the combinatorial models and their connections, defines generalized Schur mod-
ules and Schur polynomials, and proves the Demazure character formula for
them.

The last part (§4) states all the applications to Schubert polynomials in el-
ementary combinatorial language.

Acknowledgements. The author would like to thank Bill Fulton, Victor
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tions and for making available their unpublished work; as well as Wilberd van
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1 Bott-Samelson varieties

Let G be a complex reductive Lie group (or more generally a reductive algebraic
group over an infinite field of arbitrary characteristic or over Z), and let B be
a Borel subgroup.

The Bott-Samelson varieties are an important tool in the representation
theory of G and the geometry of the flag variety G/B. First defined in [5] as
a desingularization of the Schubert varieties in G/B, they were exploited by
Demazure [7] to analyze the singular cohomology or Chow ring H ·(G/B,C)
(the Schubert calculus), and the projective coordinate ring C[G/B]. Since the
irreducible representations of G are embedded in the coordinate ring, Demazure
was able to obtain an iterative character formula [8] for these representations.

Bott-Samelson varieties are so useful because they “factor” the flag vari-
ety into a “product” of projective lines. More precisely, they are iterated P1-
fibrations and they each have a natural, birational map to G/B. The Schu-
bert subvarieties themselves lift birationally to iterated P1-fibrations under this
map (hence the desingularization). The combinatorics of Weyl groups enters
because a given G/B can be “factored” in many ways, indexed by sequences
i = (i1, i2, . . . , il) such that w0 = si1si2 · · · sil

is a reduced decompostion of the
longest Weyl group element w0 into simple reflections.

The Bott-Samelson variety Zi is usually defined as a product of l minimal
parabolic subgroups modulo an action of Bl, but we give a new, dual construc-
tion of Zi as a subvariety rather than a quotient. It is the closure of an orbit of
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the Borel subgroup B inside a product of flag varieties:

Zi
∼= B · (si1B, si1si2B, . . . , w0B) ⊂ (G/B)l,

where B acts diagonally on (G/B)l. (We give several variations of this definition
below.)

This embedding of Zi allows us to apply the tools of Standard Monomial
Theory, producing a standard monomial basis for the space of sections of an
effective line bundle (a graded piece of C[Zi]). We pursue this in our papers
[13], [14] with V. Lakshmibai.

In §1.3, we give another definition of the Bott-Samelson variety in terms of
incidence conditions; and in §1.4, we show that the map Zi → G/B compactifies
the matrix factorizations of Berenstein-Fomin-Zelevinsky [2], [3].

1.1 Three constructions

Let W be the Weyl group generated by simple reflections s1, . . . , sr, where r is
the rank ofG. For w ∈W , �(w) denotes the length l of a reduced (i. e. minimal)
decompostion w = si1 . . . sil

, and w0 denotes the element of maximal length.
We let B be a Borel subgroup, T ⊂ B a maximal torus (Cartan subgroup).

Let Pk ⊃ B be the minimal parabolic associated to the simple reflection sk,
so that Pi/B ∼= P1, the projective line. Also, take P̂k ⊃ B to be the maximal
parabolic associated to the reflections s1, . . . , ŝk, . . . , sr. Finally, we have the
Schubert variety as a B-orbit closure inside the flag variety:

Xw = BwB ⊂ G/B

For what follows, we fix a reduced decompostion of some w ∈ W ,

w = si1 . . . sil
,

and we denote i = (i1, . . . , il).
Now let P ⊃ B be any parabolic subgroup of G, and X any space with

B-action. Then the induced P -space is the quotient

P
B
×X def= (P ×X)/B

where the quotient is by the free action of B on P × X given by (p, x) · b =
(pb, b−1x). (Thus (pb, x) = (p, bx) in the quotient.) The key property of this
construction is that

X → P
B
× X
↓

P/B

is a fiber bundle with fiber X and base P/B. We can iterate this construction
for a sequence of parabolics P, P ′, . . .,

P
B
×P ′ B

× · · · def= P
B
×(P ′ B

×(· · ·) ).
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Then the quotient Bott-Samelson variety of the reduced word i is

Z
quo
i

def= Pi1

B
× · · ·

B
×Pil

/B.

Because of the fiber-bundle property of induction, Zquo
i is clearly a smooth,

irreducible variety of dimension l. It is a subvariety of

Xl
def= G

B
× · · ·

B
×G︸ ︷︷ ︸

l factors

/B.

B acts on these spaces by multiplying the first coordinate:

b · (p1, p2, . . . , pl)
def= (bp1, p2, . . . , pl).

The original purpose of the Bott-Samelson variety was to desingularize the
Schubert variety Xw via the multiplication map:

Zquo
i → Xw ⊂ G/B

(p1, . . . , pl) �→ p1p2 · · · plB,

a birational morphism.
Next, consider the fiber product

G/B ×
G/P

G/B
def= {(g1, g2) ∈ (G/B)2 | g1P = g2P}.

We may define the fiber product Bott-Samelson variety

Zfib
i

def= eB ×
G/Pi1

G/B ×
G/Pi2

· · · ×
G/Pil

G/B ⊂ (G/B)l+1.

We let B act diagonally on (G/B)l+1; that is, simultaneously on each factor:

b · (g0B, g1B, . . . , glB) def= (bg0B, bg1B, . . . , bglB).

This action restricts to Zfib
i . The natural map to the flag variety is the projection

to the last coordinate:

Zfib
i → G/B

(eB, g1B, . . . , glB) �→ glB

This construction is related to the correspondences of Fulton [10], Ch. 10.3.
Finally, let us define the B-orbit Bott-Samelson variety as the closure

(in either the Zariski or analytic topologies) of the orbit of a point zi:

Zorb
i

def= B · zi ⊂ G/P̂i1 × · · · ×G/P̂il
,

where
zi = (si1 P̂i1 , si1si2 P̂i2 , . . . , si1· · ·sil

P̂il
)

Again, B acts diagonally. In this case the map to G/B is more difficult to
describe, but see the Examples in §2.3.
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1.2 Isomorphism theorem

The three types of Bott-Samelson variety are isomorphic.

Theorem 1 (i) Let

φ : Xl → (G/B)l+1

(g1, g2, . . . , gl) �→ (e, g1, g1g2 , . . . , g1g2· · ·gl),

where g means the coset of g. Then φ restricts to an isomorphism of B-varieties

φ : Zquo
i

∼→ Zfib
i .

(ii) Let

ψ : Xl → G/P̂i1 × G/P̂i2 × · · · × G/P̂il

(g0, g1, . . . , gl) �→ ( g1 , g1g2 , . . . , g1g2· · ·gl),

where g means the coset of g. Then ψ restricts to an isomorphism of B-varieties

ψ : Zquo
i

∼→ Zorb
i .

Proof. (i) It is trivial to verify that φ is a B-equivariant isomorphism from Xl

to eB × (G/B)l and that φ(Zquo
i ) ⊂ Zfib

i , so it suffices to show the reverse
inclusion. Suppose

zf = (eB, g1B, . . . , glB) ∈ Zfib
i .

Then
zq = φ−1(zf) = (g1, g−1

1 g2, g
−1
2 g3, . . .) ∈ Xl.

By definition, ePi1 = g1Pi1 , so g1 ∈ Pi1 . Also g1Pi2 = g2Pi2 , so g−1
1 g2 ∈ Pi2 ,

and similarly g−1
k−1gk ∈ Pik

. Hence zq ∈ Zquo
i , and φ(zq) = zf .

(ii) First let us show that ψ is injective on Z
quo
i . Suppose ψ(p1, . . . , pl) =

ψ(q1, . . . , ql) for pk, qk ∈ Pik
. Then p1P̂i1 = q1P̂i1 , so that p−1

1 q1 ∈ P̂i1∩Pi1 = B.
Thus q1 = p1b1 for b1 ∈ B. Next, we have

p1p2P̂i2 = q1q2P̂i2 = p1b1q2P̂i2 ,

so that p−1
2 b1q2 ∈ P̂i2 ∩ Pi2 = B, and q2 = b−1

1 p2b2 for b2 ∈ B. Continuing in
this way, we find that

(q1, q2, . . . , ql) = (p1b1, b
−1
1 p2b2, . . . , b

−1
l−1plbl)

= (p1, p2, . . . , pl) ∈ Xl

Thus ψ is injective on Zquo
i .

Since we are working with algebraic morphisms, we must also check that ψ
is injective on tangent vectors of Zquo

i . Now, the degeneracy locus

{z ∈ Zquo
i | Ker dψz 
= 0}
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is a B-invariant, closed subvariety of Zquo
i , and by Borel’s Fixed Point Theorem

it must contain a B-fixed point. But it is easily seen that the degenerate point

z0 = (e, . . . , e) ∈ Xl

is the only fixed point of Zquo
i . Thus if dψ is injective at z0, then the degener-

acy locus is empty, and dψ is injective on each tangent space. The injectivity
at z0 is easily shown by an argument completely analogous to that for global
injectivity given above, but written additively in terms of Lie algebras instead
of multiplicatively with Lie groups.

Thus it remains to show surjectivity: that ψ takes Zquo
i onto Zorb

i . Consider

zquo
i = (si1 , . . . , sil

) ∈ Xl,

a well-defined point in Zquo
i . Then

ψ(zquo
i ) = zi = (si1 P̂i1 , si1si2 P̂i2 , . . .),

and ψ is B-equivariant, so that ψ(Zquo
i ) ⊃ ψ(B · zquo

i ) = B · zi. However Zquo
i

is a projective variety, so its image under the regular map ψ is closed. Hence
ψ(Zquo

i ) ⊃ B · zi = Zorb
i . •

1.3 Incidence relations

We give another characterization of the Bott-Samelson variety as a subvariety
Zorb

i ⊂ G/P̂i1 × · · · ×G/P̂il
in terms of certain incidence conditions, which can

easily be translated into algebraic equations defining Zorb
i as a variety.

Given two parabolic subgroups P,Q ⊃ B, we say the cosets gP and g′Q are
incident (written gP ∼ g′Q) if any of the following equivalent conditions holds:

(i) (gP, g′Q) lies in the image of the diagonal map G/(P ∩Q)→ G/P ×G/Q;
(ii) gP ∩ g′Q 
= ∅;
(iii) g−1g′ ∈ PQ;
(iv) g−1g′B ∈ Xw, the Schubert variety of G/B associated to the unique longest
element w in the set WPWQ ⊂ W , the product of the subgroups of W corre-
sponding to P and Q.

For G = GL(n) and P,Q maximal parabolics, the spaces G/P,G/Q are Grass-
mannians, and our definition of incidence reduces to the inclusion relation be-
tween subspaces. (See §2.3.)

The incidence relation ∼ is reflexive and symmetric, but only partially
transitive. One substitute for transitivity is the following property. Suppose
g1Q1, g2Q2, g3Q3 are cosets of any parabolics with giQi ∼ gjQj for all i, j.
Then there exists g0 with g1Q1 ∼ g0(Q1∩Q2) ∼ g2Q2, and since (Q1∩Q2)Q3 =
Q1Q3 ∩Q2Q3 (by [6], Ch. 4, Ex. 1), we conclude that g0(Q1 ∩Q2) ∼ g3Q3. An
immediate consequence of this property is:
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Lemma 2 Consider any parabolics Q1, Q2, . . . ⊃ B. Then the point (g1Q1, g2Q2, . . .)
lies in the image of the diagonal map G/(∩iQi) →

∏
i G/Qi if and only if

giQi
∼= gjQj for all i, j.

This lemma generalizes the description of GL(n)/B as the variety of flags of
subspaces.

The incidence relation has another transitivity property. Suppose s, s′, s′′ are
simple reflections of W such that s′ is between s and s′′ in the Coxeter graph
of W : that is, if s(1), s(2), . . . , s(N) is any sequence of simple reflections such
that s = s(1), s′′ = s(N) and s(j)s(j+1) 
= s(j+1)s(j) for all j, then s′ = s(j) for
some j. Let P̂ , P̂ ′, P̂ ′′ be the maximal parabolic subgroups of G corresponding
to s, s′, s′′. Then we may easily show that P̂ P̂ ′P̂ ′′ = P̂ P̂ ′′, so that

gP̂ ∼ g′P̂ ′ and g′P̂ ′ ∼ g′′P̂ ′′ ⇒ gP̂ ∼ g′′P̂ ′′ .

¿From this and the previous Lemma, we obtain:

Lemma 3 Let P̂1, . . . , P̂r ⊃ B be all the maximal parabolic subgroups of G.
Then the point (g1P̂1, . . . , grP̂r) lies in the image of the diagonal embedding
G/B →

∏r
i=1G/P̂i if and only if giP̂i ∼ gjP̂j for all i, j with sisj 
= sjsi.

To our word i = (i1, . . . , il) we now associate a graph Γi whose vertices are
the symbols 1∗, 2∗, . . . r∗ and 1, 2, . . . , l. (Recall that r = rankG.) The edges of
Γi are all pairs of vertices of the forms:

(i∗, k) with i 
= ip for 1 ≤ p ≤ k and sisik

= sik

si,

(j, k) with ij 
= ip for j < p ≤ k and sijsik

= sik

sij .

The graph Γi is closely related to the wiring diagrams and chamber weights of
Berenstein, Fomin, and Zelevinsky [2], [3].

Now, it follows from Theorem 1 that Zorb
i is the image of Zfib

i under the
natural projection

(G/B)l+1 →
∏l

j=1 P̂ij

(g0B, g1B, . . . , glB) �→ (g1P̂i1 , . . . , glP̂il
).

Translating this into incidence conditions using the above Lemmas, we obtain:

Theorem 4

Zorb
i =

{
(g1P̂i1 , . . . , glP̂il

)

∣∣∣∣∣ eP̂i ∼ gkP̂ik
for all (i∗, k) ∈ Γi

gjP̂ij ∼ gkP̂ik
for all (j, k) ∈ Γi

}

See §2.3 below for examples in the case of G = GL(n).
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1.4 Open cells and matrix factorizations

In view of Theorem 1, we will let Zi denote the abstract Bott-Samelson variety
defined by any of our three versions. It contains the degenerate B-fixed point
z0 defined by:

z0 = (e, e, . . .) ∈ Zquo
i

= (eB, eB, . . .) ∈ Zfib
i

= (eP̂i1 , eP̂i2 , . . .) ∈ Zorb
i

as well as the generating T -fixed point whose B-orbit is dense in Zi:

zi = (si1 , si2 , si3 , . . .) ∈ Z
quo
i

= (eB, si1B, si1si2B, . . .) ∈ Zfib
i

= (si1 P̂i1 , si1si2 P̂i2 , . . .) ∈ Zorb
i

Big cell. We may parametrize the dense orbit B · zi ⊂ Zi by an affine cell.
Consider the normal ordering of the positive roots associated to the reduced
word i. That is, let

β1 = αi1 , β2 = si1(αi2 ), β3 = si1si2(αi3 ), · · ·

Let Uβk
be the one-dimensional unipotent subgroup of B corresponding to the

positive root βk. Then we have a direct product:

B = Uβ1 · · ·Uβl
· (B ∩wBw−1),

so that the multiplication map

Uβ1 × · · · × Uβl
→ B · zi

(u1, . . . , ul) �→ u1 · · ·ul · zi

is injective, and an isomorphism of varieties. The left-hand side is isomorphic
to an affine space Cl (or Al for G over a general field).

Opposite big cell. Zi also contains an opposite big cell centered at z0 which is
not the orbit of a group. Let U−αi be the one-dimensional unipotent subgroup
of w0Bw0 corresponding to the negative simple root −αi. The map

Cl ∼= U−αi1
× · · · × U−αil

→ Z
quo
i

(u1, . . . , ul) �→ (u1, . . . , ul)

is an open embedding.
In the case of G = GL(n), B = upper triangular matrices, we may write

an element of U−αik
as uk = I + tkek, where I is the identity matrix, ek is the
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sub-diagonal coordinate matrix e(ik+1,ik), and tk ∈ C. If we further map Zquo
i

to G/B via the natural multiplication map, we get

(t1, . . . , tl) �→ (I + t1e1) · · · (I + tlel)
Cl → N−
∩ ∩

Z
quo
i → G/B

(p1, . . . , pl) �→ p1 · · · plB

where N− denotes the unipotent lower triangular matrices (mod B). Thus the
natural map in the bottom row bottom compactifies of the matrix factoriza-
tion map in the top row, which has been studied by Berenstein, Fomin, and
Zelevinsky [2]; and the corresponding statement holds in the general case of [3].

2 Bott-Samelson varieties for GL(n)

We begin again, restating our results in explicit combinatorial form for the
general linear group G = GL(n,C). We define the Bott-Samelson variety in
an explicit and elementary way, which will easily show that their coordinate
rings consist of generalized Schur modules. That is, a generalized Schur module
bears the same relation to a Bott-Samelson variety as an ordinary (irreducible)
Schur module bears to a flag variety according to the Borel-Weil Theorem.
Therefore the characters, generalized Schur polyomials, can be computed by
powerful Riemann-Roch type theorems just like ordinary Schur polynomials.

Our purpose in this section is to get enough combinatorial control over the
Bott-Samelson varieties to make such theorems explicit. For a reduced decom-
position i, the Bott-Samelson variety Zi is the space of flagged representations
of a certain partially ordered set D+

i : that is, the variety of all embeddings of
the poset D+

i into the poset of subspaces of Cn. (Such an embedding is flagged
if a certain chain in D+

i maps to the standard flag C1 ⊂ C2 ⊂ · · ·Cn.)
The posets D+

i can be specified by several equivalent combinatorial devices.
They can be naturally embedded into the Boolean lattice of subsets of [n] =

{1, 2, . . . , n}. The image of such an embedding is a chamber family, associated
to a reduced decomposition via its wiring diagram. This is easily translated
into the language of generalized Young diagrams in the plane: the columns of a
diagram correspond to the elements of a chamber family. It is remarkable that
these different combinatorial pictures come together to describe our varieties.

In this the rest of this paper, G = GL(n). To make our statements more
elementary, we will use C for our base field, but everything goes through without
change over an infinite field of arbitrary characteristic or over Z. We let B
be the group of invertible upper triangular matrices, T the group of invertible
diagonal matrices, and Gr(k,Cn) the Grassmannian of k-dimensional subspaces
of complex n-space. Also W = permutation matrices, �(w) = the number of
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inversions of a permutation w, si = the transposition (i, i+ 1), and the longest
permutation is w0 = n . . . 321. We will frequently use the notation

[k] = {1, 2, 3, . . . , k}.

2.1 Chamber families

Define a subset family to be a collection D = {C1, C2, . . .} of subsets Ck ⊂ [n].
The order of the subsets is irrelevant in the family, and we do not allow subsets
to be repeated.

Now suppose the list of indices i = (i1, i2, . . . , il) encodes a reduced decom-
position w = si1si2 · · · sil

of a permutation into a minimal number of simple
transpositions. We associate a subset family, the chamber family

Di
def= {si1 [i1], si1si2 [i2], . . . , w[il]}.

Here w[j] = {w(1), w(2), . . . , w(j)}. Further, define the full chamber family

D+
i

def= {[1], [2], . . . , [n]} ∪Di.

We tentatively connect these structures with geometry. Let Cn have the
standard basis e1, . . . , en. For any subset C = {j1, . . . , jk} ⊂ [n], the coordinate
subspace

EC = SpanC{ej1 , . . . , ejk
} ∈ Gr(k)

is a T -fixed point in a Grassmannian. A subset family corresponds to a T -fixed
point in a product of Grassmannians

zD = (EC1 , EC2 , . . .) ∈ Gr(D) def= Gr( |C1| )×Gr( |C2| )× . . . .

We will define Bott-Samelson varieties as orbit closures of such points (see §2.3).

Examples. For n = 3, G = GL(3), i = 121, we have the reduced chamber
family

D121 = { s1[1], s1s2[2], s1s2s1[1] }
= { {2}, {2, 3}, {3} }
= {2, 23, 3}

The full chamber family is D+
121 = {1, 12, 123, 2, 23, 3}. The chamber family of

the other reduced word i = 212 isD212 = {13, 3, 23},D+
212 = {1, 12, 123, 13, 3, 23}.

For n = 4, the subset familyD = {12, 123, 2, 3} is associated to the T -fixed point

zD = (E12, E123, E2, E3) ∈ Gr(D) = Gr(2)×Gr(3)×Gr(1)×Gr(1).

•
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Chamber families have a rich structure. (See [18], [25].) Given a full chamber
family D+

i , we may omit some of its elements to get a subfamily D ⊂ D+
i . The

resulting chamber subfamilies can be characterized as follows.

For two sets S, S′ ⊂ [n], we say S is elementwise less than S′, S
elt
< S′, if

s < s′ for all s ∈ S, s′ ∈ S′. Now, a pair of subsets C,C′ ⊂ [n] is strongly
separtated if

(C \ C′)
elt
< (C′ \ C) or (C′ \ C)

elt
< (C \ C′) ,

where C \ C′ denotes the complement of C′ in C. A family of subsets is called
strongly separated if each pair of subsets in it is strongly separated.

Proposition 5 (Leclerc-Zelevinsky [18]) A family D of subsets of [n] is a
chamber subfamily, D ⊂ D+

i for some i, if and only if D is strongly separated.

Remarks. (a) Reiner and Shimozono [25] give an equivalent description of
strongly separated families. Place the subsets of the family into lexicographic

order. Then D = (C1

lex
≤ C2

lex
≤ · · ·) is strongly separated if and only if it is “%-

avoiding”: that is, if i1 ∈ Cj1 , i2 ∈ Cj2 with i1 > i2, j1 < j2, then i1 ∈ Cj2 or
i2 ∈ Cj1 . (b) If i = (i1, . . . , il) is an initial subword of i′ = (i1, . . . , il, . . . , iN ),
then Di ⊂ Di′ . Thus the chamber families associated to decompositions of the
longest permutation w0 are the maximal strongly separated families. (c) In
§4.3 below, we describe the “orthodontia” algorithm to determine a chamber
family D+

i which contains to a given strongly separated family D. See also [25].

Examples. (a) For n = 3, the chamber families D+
121 = {1, 12, 123, 2, 23, 3} and

D+
212 = {1, 12, 123, 13, 3, 23} are the only maximal strongly separated families.

The sets 13 and 2 are the only pair not strongly separated from each other.
(b) For n = 4, the strongly separted family D = {24, 34, 4} is contained in the
chamber sets of the reduced words i = 312132 and i = 123212. •

2.2 Pictures of chamber families

Wiring diagrams. Chamber families can be represented pictorially in several
ways, the most natural being due to Berenstein, Fomin, and Zelevinsky [2]. The
wiring diagram or braid diagram of the reduced word i is best defined via an
example.

Let G = GL(4), w = w0 (the longest permutation), and i = 312132. On the
right and left ends of the wiring diagram are the points 1,2,3,4 in two columns,
with 1 at the bottom and 4 at the top. Each point i on the left is connected to
the point w−1(i) on the right by a curve which is horizontal and disjoint from
the other curves, except for certain X-shaped crossings. The crossings, read left
to right, correspond to the entries of i. The first entry i1 = 3 corresponds to
a crossing of the curve on level 3 with the one on level 4. The curves on other
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levels continue horizontally. The second entry i2 = 1 indicates a crossing of the
curves on levels 1 and 2, the others continuing horizontally, and so on.

FIGURE 1

If we add crossings only up to the lth step, we obtain the wiring diagram of the
truncated word si1si2 · · · sil

.
Now we may construct the chamber family

D+
i = (1, 12, 123, 1234, 124, 2, 24, 4, 234, 34)

as follows. Label each of the curves of the wiring diagram by its point of origin
on the left. Into each of the connected regions between the curves, write the
numbers of those curves which pass below the region. Then the sets of numbers
inscribed in these chambers are the members of the family D+

i . If we list the
chambers from left to right, we recover the natural order in which these subsets
appear in D+

i . (Warning: In BFZ’s terminology, our D+
i would be the chamber

family of the reverse word of i, a reduced decomposition of w−1.)

Young diagrams. Another way to picture a chamber family, or any subset
family, is as follows. We may consider a subset C = {j1, j2, . . . , jc} ⊂ [n] as a
column of c squares in the rows j1, j2, . . .. For each subset Ck in the chamber
family, form the column associated to it, and place these columns next to each
other. The result is an array of squares in the plane called a generalized Young
diagram.

For our word i = 312132, we draw the (reduced) chamber family as:

Di =

1 �

2 � � � �

3 � �

4 � � � � �

where we indicate the row numbers on the left of the diagram.

2.3 Varieties

To any subset family D we have associated a T -fixed point in a product of
Grassmannians, zD ∈ Gr(D), and we may define the configuration variety of D
to be the closure of the G-orbit of zD:

FD = G · zD ⊂ Gr(D);

and the flagged configuration variety to be the closure of its B-orbit:

FB
D = B · zD ⊂ Gr(D).

13



Furthermore, if D = Di, a chamber family, then the Bott-Samelson variety is
the flagged configuration variety of Di:

Zi = Zorb
i = FB

Di
.

(We could also use the full chamber family D+
i , since the extra coordinates

correspond to the standard flag fixed under the B-action.)
Thus FD, FB

D , and Zi can be considered as varieties of configurations of sub-
spaces in Cn, like the flag and Schubert varieties. We will give defining equations
for the Bott-Samelson varieties analogous to those for Schubert varieties.

For a subset family D with partial order given by inclusion, define the variety
of flagged representations of D

RB
D =
{

(VC)C∈D ∈ Gr(D) ∀C,C′ ∈ D, C ⊂ C′ ⇒ VC ⊂ VC′

and ∀ [i] ∈ D, V[i] = Ci

}
.

(“Flagged” refers to the condition that a space V[i] corresponding to an initial
interval [i] ∈ D is fixed to be an element of the standard flag C1 ⊂ C2 ⊂ · · ·.)
Let B act diagonally on RB

D.
The following proposition is a special case of Prop. 4 of §1.3.

Proposition 6 For every reduced word i, we have Zi
∼= RB

D+
i

.

2.4 Examples of varieties

Example. For n = 4, i = 312132, we may use the picture in the above example
to write the Bott-Samelson variety Zi = RB

D+
i

as the set of all 6-tuples of

subspaces of C4, (V124, V2, V24, V4, V234, V34) with dim(VC) = |C| and satisfying
the following inclusions:

C4 =
V1234

↗ ↑ ↖
C3 = V123 V124 V234

↑ ↗ ↖ ↑ ↖
C2 = V12 V24 V34

↑ ↖ ↗ ↑ ↗
C1 = V1 V2 V4

↖ ↑ ↗
0

where the arrows indicate inclusion of subspaces. The natural map onto the
flag variety projects (V124, . . . , V34) to the flag at the right edge of the picture:
(0 ⊂ V4 ⊂ V34 ⊂ V234 ⊂ C4). •

14



Example. Desingularizing a Schubert variety. Let n = 7, and consider the
family D comprising the single subset C = 12457. Its configuration variety is
the Grassmannian FD = Gr(5,C7), and its flagged configuration variety is a
Schubert variety Xλ in this Grassmannian:

FB
D = Xλ = {V ∈ Gr(5,C7) | C2 ⊂ V, dim(C5 ∩ V ) ≥ 4}.

Here the indexing partition λ = (0, 0, 1, 1, 2) is obtained from the subset C =
12457 by subtracting 1, 2, . . . from its elements: 0 = 1−1, 0 = 2−2, 1 = 4−3,
1 = 5−4, 2 = 7−5.) Now, we know by Proposition 5 that any strongly separated
family is part of some chamber family Di. In fact, we may take i so that the
projection map Zi = FB

Di
→ FB

D is birational. The orthodontia algorithm of
§4.3 below produces such an i.

By orthodontia, we find that our variety is desingularized by the reduced
word i = 3465, for which Di = {124, 1245, 123457, 12457} and

Zi =


(V124, V1245, V123457, V12457) ∈ Gr(3)×Gr(4)×Gr(6)×Gr(5)

such that C2 ⊂ V124 ⊂ C4 ⊂ V123457 , V1245 ⊂ C5 ,
V124 ⊂ V1245 ⊂ V12457 ⊂ V123457

 .
The desingularization map is the projection

π : Zi → FB
D = Xλ

(V124, V1245, V123457, V12457) �→ V12457.

In our paper [21] and Zelevinsky’s work [26], there are given other desingular-
izations of Schubert varieties, all of them expressible as flagged configuration
varieties. •

Conjecture 7 For any subset family D, a configuration (VC)C∈D ∈ Gr(D) lies
in FD exactly if, for every subfamily D′ ⊂ D,

dim(
⋂

C∈D′
VC) ≥ |∩C∈D′ C|

dim(
∑

C∈D′
VC) ≤ |∪C∈D′ C|

Remarks. (a) If D = Di is a chamber family, the conjecture reduces to the
previous theorem.
(b) The conjecture is known if D satisfies the “northwest condition” (see [21]):
that is, the elements of D can be arranged in an order C1, C2, . . . such that if
i1 ∈ Cj1 , i2 ∈ Cj2 , then min(i1, i2) ∈ Cmin(j1,j2). In fact, it suffices in this case
to consider only the intersection conditions of the conjecture.
(c) Note that a configuration (V1, . . . , Vl) ∈ Gr(D) lies in the flagged config-
uration variety FB

D if and only if (C1, . . . ,Cn, V1, . . . , Vl) lies in the unflagged
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variety FD+ of the augmented diagram D+ def= {[1], [2], . . . [n]} ∪D. Hence the
conjecture gives conditions defining flagged configuration varieties as well as
unflagged.
(d) It would be interesting to know whether the determinantal equations im-
plied by the conditions of the conjecture (and the previous theorem) define
FD ⊂ Gr(D) scheme-theoretically. •

3 Schur and Weyl modules

The most familiar construction of Schur modules is in terms of Young sym-
metrizers acting on a large tensor power of Cn. This construction is limited to
characteristic zero, however, so we use an alternative construction in the spirit
of DeRuyts [10], Desarmenien-Kung-Rota [9], and Carter-Lusztig. This con-
struction is universally valid and is more natural geometrically. (We sketch the
connection with the symmetrizer picture at the end of §3.1.) Using the same
arguments as in [21], our Borel-Weil Theorem is immediate, and we work out a
version of Demazure’s character formula to get a new expression for generalized
Schur polynomials.

3.1 Definitions

We have associated to any subset family D = {C1, . . . , Ck} a configuration
variety FD with G-action, and a flagged configuration variety FB

D with B-action.
Now, assign an integer multiplicity m(C) ≥ 0 to each subset C ∈ D. For each
pair (D,m), we define a G-module and a B-module, which will turn out to
sections of a line bundle on FD and FB

D . We construct these “Weyl modules”
MD,m inside the coordinate ring of n × n matrices, and their flagged versions
MB

D,m inside the coordinate ring of upper-triangular matrices.
Let C[xij ] (resp. C[xij ]i≤j ) denote the polynomial functions in the variables

xij with i, j ∈ [n] (resp. xij with 1 ≤ i ≤ j ≤ n). For R,C ⊂ [n] with |R| = |C|,
let

∆R
C = det(xij)(i∈R,j∈C) ∈ C[xij ]

be the minor of the matrix x = (xij) on the rows R and the columns C. Further,
let

∆̃R
C = ∆R

C |xij=0, ∀ i>j ∈ C[xij ]i≤j

be the same minor evaluated on an upper triangular matrix of variables.
Now, for a subset family D = {C1, . . . , Cl}, m = (m1, . . . ,ml), define the

Weyl module

MD,m = SpanC

{
∆R11

C1
· · ·∆R1m1

C1
∆R21

C2
. . .∆

Rlml

Cl

∣∣∣∣∣ ∀ k,m Rkm ⊂ [n]
and |Rkm| = |Ck|

}
.
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That is, a spanning vector is a product of minors with column indices equal to
the elements of D and row indices taken arbitrarily.

For two sets R = {i1 < · · · < ic}, C = {j1 < · · · < jc} we say R
comp

≤ C
(componentwise inequality) if i1 ≤ j1, i2 ≤ j2, . . . . Define the flagged Weyl
module

MB
D,m = SpanC

{
∆̃R11

C1
· · · ∆̃R1m1

C1
∆̃R21

C2
. . . ∆̃

Rlml

Cl

∣∣∣∣∣ ∀ k,m Rkm ⊂ [n]

|Rkm| = |Ck|, Rkm

comp

≤ Ck

}
.

(In fact, the condition Rkm

comp

≤ Ck is superfluous, since ∆̃R
C = 0 unless Rkm

comp

≤
Ck.)

For f(x) ∈ C[xij ], a matrix g ∈ G acts by left translation, (g · f)(x) =
f(g−1x). It is easily seen that this restricts to a G-action on MD,m and similarly
we get a B-action on MB

D,m.
We clearly have the diagram of B-modules:

MD,m ⊂ C[xij ]
↓ ↓

MB
D,m ⊂ C[xij ]i≤j

where the vertical maps (xij �→ 0 for i > j) are surjective. That is, MB
D,m is a

quotient of MD,m.
The Schur modules are defined to be the duals

SD,m
def= (MD,m)∗ SB

D,m
def= (MB

D,m)∗.

We will deal mostly with the Weyl modules, but everything we say will of course
have a dual version applying to Schur modules.

Example. Let n = 4, D = {234, 34, 4}, m = (2, 0, 3). (That is, m(234) = 2,
m(34) = 0, m(4) = 3.) We picture this as a generalized Young diagram by
writing each column repeatedly, according to its multiplicity. Zero multiplicity
means we omit the column. Thus

(D,m) =

1
2 � �

3 � �

4 � � � � �

τ =

1
2 1 1
3 3 2
4 4 3 2 4 3

The spanning vectors for MD,m correspond to all column-strict fillings of this
diagram by indices in [n]. For example, the filling τ above corresponds to

∆134
234 ∆123

234 ∆2
4 ∆4

4 ∆3
4

=

∣∣∣∣∣∣
x12 x13 x14

x32 x33 x34

x42 x43 x44

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

x32 x33 x34

∣∣∣∣∣∣ · x24 · x44 · x34
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=

 1 1 2 2
3 2 3 3
4 3 2 4 3 4 4 4 4 4


The last expression is in the letter-place notation of Rota et al [9].

A basis may be extracted from this spanning set by considering only the
row-decreasing fillings (a normalization of the semi-standard tableaux), and in
fact the Weyl module is the dual of the classical Schur module Sλ associated to
the shape D considered as the Young diagram λ = (0, 2, 2, 5).

The spanning elements of the flagged Weyl module MB
D,m correspond to the

“flagged” fillings of the diagram: those for which the number i does not appear
above the ith level. For the diagram above, all the column-strict fillings are
flagged, and MD,m

∼= MB
D,m.

However, for

(D′,m) =

1
2 � �

3 � � � � �

4 � �

τ1 =

1
2 2 1
3 3 2 4 3 4
4 4 3

τ2 =

1
2 2 1
3 3 2 3 2 3
4 4 4

the filling τ1 is not flagged, since 4 appears on the 3rd level, but τ2 is flagged,
and corresponds to the spanning element

∆̃234
234 ∆̃124

234 ∆̃3
3 ∆̃2

3 ∆̃3
3 =

∣∣∣∣∣∣
x22 x23 x24

0 x33 x34

0 0 x44

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x12 x13 x14

x22 x23 x24

0 0 x44

∣∣∣∣∣∣ · x33 · x23 · x33.

We have MD,m
∼= MD′,m ∼= MB

D,m
∼= S∗

(0,2,2,5), the dual of a classical (ir-
reducible) Schur module for GL(4), and MB

D′,m
∼= S∗

(0,2,5,2), the dual of the
Demazure module with lowest weight (0, 2, 5, 2) and highest weight (5, 2, 2, 0).
Cf. [23]. •

Remarks. (a) In [13], [14] and §4.4 below, we make a general definition of
“standard tableaux” giving bases of the Weyl modules for strongly separated
families.
(b) We briefly indicate the equivalence between our definition of the Weyl mod-
ules and the tensor product definition given in [1], [23], [21].

Let Y = YD,m ⊂N×N be the generalized Young diagram of squares in the
plane associated to (D,m) as in the above examples, and let U = (Cn)∗. One
defines M tensor

Y = U⊗Y γY , where γY is a generalized Young symmetrizer. The
spanning vectors ∆τ of MD,m correspond to the fillings τ : Y → [n]. Then the
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map
MD,m → M tensor

Y

∆τ �→
(⊗

(i,j)∈Y e
∗
τ(i,j)

)
γY

is a well-defined isomorphism of G-modules, and similarly for the flagged ver-
sions. This is easily seen from the definitions, and also follows from the Borel-
Weil theorems proved below and in [21].

3.2 Borel-Weil theory

A configuration variety FD ⊂ Gr(D) has a natural family of line bundles defined
by restricting the determinant or Plucker bundles on the factors of Gr(D). For
D = (C1, C2, . . .), and multiplicities m = (m1,m2, . . .), we define

Lm ⊂ O(m1,m2, . . .)
↓ ↓
FD ⊂ Gr(D) = Gr(|C1|)×Gr(|C2|)× · · ·

We denote by the same symbol Lm this line bundle restricted to FB
D . Note

that in the case of a Bott-Samelson variety FD = Zi, this is the well-known line
bundle

Lm
∼=
Pi1 × · · · × Pil

×C
Bl

(p1, . . . , pl, v) · (b1, . . . , bl) def= (p1b1, . . . , b
−1
l−1plbl, 
i1(b

−1
1 )m1 · · ·
il

(b−1
l )ml v),


i denoting the fundamental weight 
i(diag(x1, . . . , xn)) = x1x2 · · ·xi.
Note that if mk ≥ 0 for all k (resp. mk > 0 for all k) then Lm is effective

(resp. very ample). However, Lm may be effective even if some mk < 0.

Proposition 8 Let (D,m) be a strongly separated subset family with multiplic-
ity. Then we have
(i) MD,m

∼= H0(FD,Lm) and Hi(FD,Lm) = 0 for i > 0.
(ii) MB

D,m
∼= H0(FB

D ,Lm) and Hi(FB
D ,Lm) = 0 for i > 0.

(iii) FD and FB
D are normal varieties, projectively normal with respect to Lm,

and have rational singularities.

Proof. First, recall that we can identify the sections of a bundle over a single
Grassmannian, O(1) → Gr(i), with linear combinations of i× i minors ∆R(x)
in the homogeneous Stiefel coordinates

x =

 x11 · · · x1i

...
. . .

...
xn1 · · · xni

 ∈ Gr(i),
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where R denotes any set of row indices R ⊂ [n], |R| = i. Thus, a typical
spanning element of H0(Gr(D),O(m)) is the section

∆R11(x(1)) · · ·∆R11(x(1)) ∆R21(x(2)) · · ·∆Rlml (x(l)),

where x(k) represents the homogeneous coordinates on each factor Gr(|Ck|) of
Gr(D), and Rkm are arbitrary subsets with |Rkm| = ik.

Now, restrict the above section to FD ⊂ Gr(D) and then further to the
dense G-orbit G · zD ⊂ FD. Parametrizing the orbit by g �→ g · zD, we pull back
the resulting sections of H0(FD,Lm) to certain functions on G ⊂ Matn×n(C),
which are precisely the products of minors defining the spanning set of MD,m.
This shows that

MD,m
∼= Im
[
H0(Gr(D),O(m)) rest→ H0(FD,Lm)

]
.

Similarly for B-orbits, we have

MB
D,m
∼= Im
[
H0(Gr(D),O(m)) rest→ H0(FB

D ,Lm)
]
.

Given this description of MD,m, our Proposition becomes a restatement of
the vanishing results in [21], Props. 25 and 28 (due to W. van der Kallen and S.P.
Inamdar, applying the work of O. Mathieu [22], P. Polo, et.al.). The conditions
(α) and (β) of these propositions apply to FD because D is contained in a cham-
ber family D+

i (Prop. 5 above). Furthermore, the proof of [21], Props. 25 and
28 go through identically with FB

D in place of FD, merely replacing Fw0;u1,...,ur

by Fe;u1,...,ur . •.

We recall another result from [21]: For the unflagged case, the following propo-
sition is a restatement of [21], Prop. 28(a). Again, the proof given there goes
through almost identically for the flagged case.

Proposition 9 Suppose (D,m), (D̃, m̃) are strongly separated subset families
with D ⊂ D̃, m̃(C) = m(C) for C ∈ D, m(C) = 0 otherwise. Then the natural
projection π : Gr(D̃) → Gr(D) restricts to a surjection π : F

D̃
→ FD, and

induces an isomorphism

π∗ : H0(FD,Lm) ∼→ H0(F
D̃
,L

m̃
),

and similarly for the flagged case.

Remarks. (a) Note that the proposition holds even if dimF
D̃
> dimFD.

(b) We will use the proposition in the case where D is a strongly separated
family which is part of the chamber family D̃ = Di. The above propositions
give:

MD,m
∼= H0(FD,Lm) ∼= H0(FDi

,L
m̃

) = H0(Zi,Lm̃
).
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In the next section, we apply the Demazure formula for Bott-Samelson varieties
to compute the character of MD,m.
(c) We may conjecture that all the results of this section hold not only in the
strongly separated case, but for all subset families and configuration varieties.

3.3 Demazure character formula

We now examine how the iterative structure of Bott-Samelson varieties helps to
understand the associated Weyl modules.

Define Demazure’s isobaric divided difference operator Λi : C[x1, . . . , xn]→
C[x1, . . . , xn],

Λif =
xif − xi+1sif

xi − xi+1
.

For example for f(x1, x2, x3) = x2
1x

2
2x3,

Λ2f(x1, x2, x3) = x2(x
2
1x2

2x3)−x3(x
2
1x2

3x2)
x2−x3

= x2
1x2x3(x2 + x3).

For any permutation with a reduced decompostion w = si1 . . . sil
, define

Λw
def= Λi1 · · ·Λil

,

which is known to be independent of the reduced decomposition chosen.
By the dual character of a G- or B-module M , we mean

char∗M = tr(diag(x1, . . . , xn)|M∗) ∈ C[x±1
1 , . . . , x±1

n ].

(The dual character of a Weyl module is the ordinary character of the corre-
sponding Schur module, a polynomial in x1, x2, . . ..) Let 
i denote the ith fun-
damental weight, the multiplicative character ofB defined by
i(diag(x1, . . . , xn)) =
x1x2 · · ·xi.

Proposition 10 Suppose (D,m) is strongly separated, and

D ⊂ D+
i = {[1], . . . , [n], C1, . . . , Cl},

for some reduced word i = (i1, . . . , il). Define m̃ = (k1, . . . , kn,m1, . . . ,ml) by
m̃(C) = m(C) for C ∈ D, m̃(C) = 0 otherwise. Then

char∗MB
D,m = 
k1

1 · · ·
kn
n Λi1(


m1
i1

. . . (Λil

ml

il
) . . .).

Furthermore,
char∗MD,m = Λw0 char∗MB

D,m,

where w0 denotes the longest permutation.
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Remark. We explain in §4.4 below (and in [13],[14]) how one can recursively
generate a set of standard tableaux for MB

D by “quantizing” this character
formula.

We devote the rest of this section to proving the Proposition.
For a subset C = {j1, j2, . . .} ⊂ [n], and a permutation w, let wC =

{w(j1), w(j2), . . .}, and for a subset familyD = {C1, C2, . . .}, let wD = {wC1, wC2, . . .}.
Now, for i ∈ [n− 1], let

ΛiD
def= {si[i]} ∪ siD,

where si[i] = {1, 2, . . . , i − 1, i + 1}. We say that D is i-free for i ∈ [n] if for
every C ∈ D, we have C ∩ {i, i+ 1} 
= {i+ 1}.

Lemma 11 Suppose (D,m) is strongly separated and i-free. Then:
(i) FB

ΛiD
∼= Pi×B FB

D .
(ii) FB

siD
∼= Pi · FB

D ⊂ Gr(D) .
(iii) The projection FB

ΛiD
→ FB

siD
is regular, surjective, and birational.

(iv) Let m̃ be the multiplicity on ΛiD defined by m̃(siC) = m(C) for C ∈ D,
m̃(si[i]) = m0. The bundle L

m̃
→ FB

ΛiD
is isomorphic to

L
m̃
∼= Pi

B
× ((
m0

i )∗ ⊗ Lm) ,

where (
m0
i )∗ ⊗ Lm indicates the bundle Lm → FB

D with its B-action twisted
by the multiplicative character (
m0

i )∗ = 
−m0
i .

Proof. (i) SinceD is i-free, we have UizD = zD, where Ui is the one-dimensional
unipotent subgroup corresponding to the simple root αi. We may factor B into
a direct product of subgroups, B = UiB

′ = B′Ui. Then

FB
D = B · zD = B′ · zD.

Hence the T -fixed point (si, zD) ∈ Pi

B
× FB

D has a dense B-orbit:

B · (si, zD) = (UiB′si, zD)
= (Uisi, B′ · zD)
= Pi×B FB

D .

Clearly, the injective map

ψ : Pi

B
× Gr(D) → Gr(i)×Gr(D)
(p, V ) �→ (pCi, pV )

takes ψ(si, zD) = zΛiD, the B-generating point of FB
ΛiD

. Thus ψ : Pi

B
× FB

D

→ FB
ΛiD

is an isomorphism.
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(ii+iii) By the above, the projection is a bijection on the open B-orbit, and hence
is birational. The image of the projection is Pi ·FB

D , which must be closed since
Pi×B FB

D is a proper (i.e. compact variety).
(iv) Clear from the definitions. •

Lemma 12 Let (D,m) be a strongly separated family and i ∈ [n− 1]. Let

F ′ = Pi

B
× FB

D

L′ = Pi

B
× Lm.

so that L′ → F ′ is a line bundle. Then

char∗H0(F ′,L′) = Λi char∗H0(FB
D ,Lm).

Proof. By Demazure’s analysis of induction to Pi (see [7], “construction
élémentaire”) we have

Λi char∗H0(FB
D ,Lm) = char∗H0(F ′,L′)− char∗H1(Pi/B,H

1(FB
D ,Lm) ).

However, we know by [21], Prop. 28(a) that H0(FB
D ,Lm) has a good filtration,

so that the H1 term above is zero. •

Corollary 13 If (D,m) is strongly separated and i-free, and (ΛiD, m̃) is a
diagram with multiplicities m̃(siC) = m(C) for C ∈ D, m̃(si[i]) = m0, then

char∗MB

ΛiD,m̃
= Λi


m0
i char∗MB

D,m.

If m0 = 0, then

char∗MB
siD,m = char∗MB

ΛiD,m̃
= Λi char∗MB

D,m

This follows immediately from the above Lemmas and Proposition 9.

Proof of Proposition. The first formula of the Proposition now follows from
the above Lemmas and Prop. 9. The second statement follows similarly from
Demazure’s character formula and the vanishing statements of [21], Prop. 28.
•.

4 Schubert polynomials

We now apply our theory to compute the Schubert polynomials S(w) of permu-
tations w ∈ Sn, which generalize the Schur polynomials sλ(x1, . . . , xk). They
were originally considered as representatives of Schubert classes in the Borel
picture of the cohomology of the flag variety GL(n)/B, though we will give a
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completely different geometric interpretation in §4.2. As a general reference, see
Macdonald [20] or Fulton [10].

Although our results follow from the geometric theory of previous sections,
we phrase them in a purely elementary and self-contained way (except in §4.2).
Most of our computations in §§4.3-4.5 are valid for the character of the gener-
alized Schur module of any strongly separated family.

We first state the combinatorial definition of Schubert polynomials, and then
prove the theorem of Kraskiewicz and Pragacz [12], that Schubert modules are
the characters of flagged Schur modules associated to a Rothe diagram. Finally,
we give three new, explicit formulas for Schubert polynomials.

4.1 Definitions

The Schubert polynomials S(w) in variables x1 . . . , xn are constructed combina-
torially in terms of the following divided difference operators. First, the operator
∂i is defined by

∂if (x1, . . . , xn) =
f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

Then for a reduced decomposition of a permutation u = si1si2 · · ·, the operator
∂u = ∂i1∂i2 · · · is independent of the reduced decomposition chosen. Also, take
∂e = id.

Now we may define the Schubert polynomials as follows. Let w0 be the
longest permutation (w0(i) = n+1− i), and take u = w−1w0, so that wu = w0.
Then

S(w) def= ∂u(xn−1
1 xn−2

2 · · ·x2
n−2xn−1).

We have deg S(w) = �(w).

To compute any S(w), we write w0 = wsi1 · · · sir for some reduced word si1 · · · sir

(si = (i, i + 1) denoting a simple transposition in Sn). In particular, we may
take ik to be the first ascent of wk = wsi1 · · · sik−1 ; that is, ik = the smallest i
such that wk(i+ 1) > wk(i).

Examples. (a) For w ∈ S3, we have S(w0) = x2
1x2, S(s1s2) = x1x2, S(s2s1) =

x2
1, S(s2) = x1 + x2, S(s1) = x1, S(e) = 1.

(b) For the permutation w = 24153 ∈ S5, by inverting first ascents we get
ws1s3s2s1s4s3 = w0, so

S(w) = ∂1∂3∂2∂1∂4∂3(x4
1x

3
2x

2
3x4)

= x1x2 (x1x2 + x1x3 + x2x3 + x1x4 + x2x4).

(c) Given n > k, the partition λ = (0 ≤ λ1 ≤ λ2 ≤ · · ·λk ≤ n) is “strictified”
to the subset C = {λ1 + 1 < λ2 + 2 < · · ·λk + k} ⊂ [n], which is completed
to a Grassmannian permutation w by adjoining [n] \ C. Then the Schubert
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polynomial of w is equal to the Schur polynomial of λ: S(w) = sλ(x1, . . . , xk).
For instance, for n = 7, k = 5, C = 12457, λ = 00112, we have S(1245736) =
s00112(x1, . . . , x5). •

Now, a diagram (generalized Young diagram) is a subset D ⊂ N×N. The
point (i, j) is in row i, column j, and we think of a diagram as a list of columns
C ⊂ N: D = (C1, C2, . . .). Two diagrams are column equivalent, D ∼= D′, if
one is obtained from the other by switching the order of columns (and ignoring
empty columns). For a column C ⊂N, the multiplicity multD(C) is the number
of columns of D with content equal to C. An equivalence class of diagrams is
another way to express our subset families with multiplicity in §3.1. Sum of
diagrams

D ⊕D′

means placing D horizontally next to D′ (concatenating lists of columns), and
D \ {C} means removing one column whose content is equal to C.

The Rothe diagram of a permutation w ∈ Sn is

D(w) = { (i, j) ∈ [n]×[n] | i < w−1(j), j < w(i) }.

It is easy to see that D(w) is a strongly separated subset family. (In fact, it is
northwest. See [23], [24], [21])

Example. For the same w = 24153, we have

D = D(w) =

1 �

2 � �

3
4 �

∼=

�

� �

�

= ( {1, 2}, {2, 4} ) •

Recall that [i] denotes the interval {1, 2, 3, . . . , i}.

4.2 Theorem of Kraskiewicz and Pragacz

The geometric significance of the Schubert polynomials is as follows. There are
two classical computations of the singular cohomology ring H ·(G/B,C) of the
flag variety. That of Borel identifies the cohomology with a coinvariant algebra

c : H ·(G/B,C) ∼→ C[x1, . . . , xn]/I+,

where I+ is the the ideal generated by the non-constant symmetric polynomials.
The map c is an isomorphism of graded C-algebras, and the generator xi rep-
resents the Chern class of the ith quotient of the tautological flag bundle, which
is not the dual of an effective divisor. The alternative computation of Schubert
gives as a linear basis for H ·(G/B,C) the Schubert classes σw = [Xw0w], the
Poincare duals of the Schubert varieties.
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The isomorphism between these computations was defined by Bernstein-
Gelfand-Gelfand [4] and Demazure [7], and given a precise combinatorial form
by Lascoux and Schutzenberger [15]. It states that the Schubert polynomials
S(w) defined above are representatives of the Schubert classes in the cohomology
ring.

We now give a completely different geometric interpretation of the polyno-
mials S(w) in terms of Weyl modules.

Theorem 14 (Kraskiewicz-Pragacz [12])

S(w) = char∗MB
D(w),

where MB
D(w) is the Weyl module of §3.1 associated to D(w) (thought of as a

subset family with multiplicity).

Proof. (Magyar-Reiner-Shimozono) Let χ(w) = char∗MB
D(w). We must show

that χ(w) satisfies the defining relations of S(w).
First, D(w0) = ([1], . . . , [n− 1]), and

MB
D(w0)

= C · ∆̃1
1∆̃

12
12 . . . ∆̃

[n−1]
[n−1],

a one-dimensional B-module, so χ(w0) = xn−1
1 xn−2

2 · · ·xn−1.
Now, suppose wsi < w, and i is the first ascent of wsi. Then the w(i+ 1)th

element of D(w) is Cw(i+1)(w) = [i]. Letting

D′(w) def= D(w) \ { [i] },

it is easily seen that:
(i) D′(w) is i-free,
(ii) D(w) ∼= D′(w) ⊕ { [i] }, and
(iii) D(wsi) ∼= siD

′(w) ⊕ { [i− 1] } (where [0] = ∅) .

Hence we obtain trivially:

χ(w) = x1· · ·xi char∗MB
D′(w)

χ(wsi) = x1· · ·xi−1 char∗MB
siD′(w).

Since D′(w) is strongly separated and i-free, Corollary 13 implies that

char∗MB
siD′(w) = Λi char∗MB

D′(w).

Thus we have

χ(wsi) = (x1 · · ·xi−1) Λi char∗MB
D′(w)

= Λix
−1
i (x1 · · ·xi) char∗MB

D′(w)

= Λix
−1
i χ(w)

= ∂i χ(w).
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But now, using the the first-ascent sequence to write w0 = wsi1 · · · sir , we
compute

χ(w) = ∂i1 · · · ∂ir (xn−1
1 xn−2

2 · · ·xn−1) = S(w).

•

4.3 Orthodontia and Demazure character formula

We will use the Demazure character formula (Prop. 10) to compute Schubert
polynomials. To make this formula explicit, however, we must embed our Rothe
diagram into a chamber family. The algorithm we give below will work for any
strongly separated family.

Let D = (C1, C2, . . .) be a Rothe diagram. We require a reduced word
i = (i1, . . . , il) and a multiplicity list m = (k1, . . . , kn,m1, . . . ,ml), ki,mj ≥ 0,
which generate D in the following sense. Define a diagram by

Di,m =
n⊕

i=1

ki · [i] ⊕
l⊕

j=1

mj · (si1si2 · · · sij [ij]),

where m · C = C ⊕ · · · ⊕ C (m copies of C), and 0 · C = ∅, an empty column.
Then we require that D ∼= Di,m..

As our first step in generating i and m, let ki = multD([i]), 1 ≤ i ≤ n, and
remove from D all columns of the form C = [i] to get a new diagram D−.

Given a column C ⊂ [n], a missing tooth of C is a positive integer i such that
i 
∈ C, but i + 1 ∈ C. The only C without any missing teeth are the intervals
[i], so we can choose a missing tooth i1 of the first column of D−. Now switch
rows i1 and i1 + 1 of D− = {C1, C2, . . .} to get a new diagram D′ with closer
teeth (orthodontia). That is,

D′ = si1D− = {si1C1, si1C2, . . .}.

In the second step, repeat the above with D′ instead of D. That is, let
m1 = multD′([i1]), and remove all columns of the form C = [i1] from D′ to get
a new diagram D′

−. Find a missing tooth i2 of the first column of D′
−, and

switch rows to get a new diagram D′′ = si2D
′
−.

Iterate this procedure until all columns have been removed. It is easily seen
that the sequences i and m thus defined have the desired properties.

Example. For w = 24153,

D = D(w) =

1 �

2 � �

3
4 �

D− =

1 ◦
2 �

3
4 �

D′ = D′
− =

1 �

2
3 ◦
4 �
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D′′ = D′′
− =

1 �

2 ◦
3 �

D′′′ =
1 �

2 �
D′′′

− = ∅

so that the sequence of missing teeth (as indicated by ◦) gives i = (1, 3, 2), and
m = (k1 = 0, k2 = 1, k3 = 0, k4 = 0,m1 = 0,m2 = 0,m3 = 1). Furthermore
D = {[2]1, (s1s3s2[2])1} = { {1, 2}, {2, 4} }.

Note that si1 · · · sil
= s1s3s2 is a reduced subword of the first-ascent sequence

s1s3s2s1s4s3 which raises w to the maximal permutation w0. This is always the
case, and we can give an algorithm for extracting this subword. •

Note. To apply this algorithm to a general strongly separated family D (with
multiplicity), first choose an orderD = {C1, C2, . . .} for the subsets in the family

(the columns) such that if i < j then (Ci \ Cj)
elt
< (Cj \ Ci), in the notation of

§2.2. For example, the obvious lexicographic order will do. •

Now, the definition of S(w) involves descending induction (lowering the degree),
but we give the following ascending algorithm, which follows immediately from
Prop. 10.

Proposition 15 Given a permutation w, let (i, m) be a generating sequence
such as the orthodontic sequence above. Let Λi = ∂ixi and 
i = x1x2 · · ·xi.
Then

S(w) = 
k1
1 · · ·
kn

n Λi1(

m1
i1

. . . (Λil

ml

il
) . . .).

Example. For our permutation w = 24153, we may verify that

S(w) = x1x2 Λ1Λ3Λ2(x1x2).

Note that this algorithm is more efficient than the usual one if the permutation
w ∈ Sn has small length compared to n. •

Remark. The above proposition computes a Schubert polynomial S(w) in
terms of a word i. This word i is not a decomposition of w. We may view the
formula of the proposition as computing the character of a space of sections
over the Bott-Samelson variety Zi (cf. §3.3). This variety is not the Schubert
variety Xw, nor any desingularization of it, since in general dimXw 
= dimZi.
There is no obvious combinatorial relationship between w and i, nor any obvious
geometric relationship between Xw and Zi. •

4.4 Young tableaux

The work of Lascoux-Schutzenberger [17] and Littlemann [19] allows us to
“quantize” our Demazure formula, realizing the terms of the polynomial by cer-
tain tableaux endowed with a crystal graph structure. Reiner and Shimozono
have shown that our construction gives the same non-commutative Schubert
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polynomials as those in [16]. Our tableaux are different, however, from the
“balanced tableaux” of Fomin, Greene, Reiner, and Shimozono [11]. For proofs
see [14], and see also [24], [25].

Recall that a column-strict filling (with entries in {1, . . . , n}) of a diagram
D is a map t , mapping the points (i, j) of D to numbers from 1 to n, strictly
increasing down each column. The weight of a filling t is the monomial xt =∏

(i,j)∈D xt(i,j), so that the exponent of xi is the number of times i appears in
the filling. We will define a set of fillings T of the Rothe diagram D(w) which
satisfy

S(w) =
∑
t∈T

xt.

We will need the root operators first defined in [17]. These are operators
fi which take a filling t of a diagram D either to another filling of D or are
undefined. To define them we first encode a filling t in terms of its reading word:
that is, the sequence of its entries starting at the upper left corner, and reading
down the columns one after another: t(1, 1), t(2, 1), t(3, 1), . . . , t(1, 2), t(2, 2), . . ..

If it is defined, the lowering operator fi changes one of the i entries to i+ 1,
according to the following rule. First, we ignore all the entries in t except those
containing i or i+1; if an i is followed by an i+1 (ignoring non i or i+1 entries
in between), then henceforth we ignore that pair of entries; we look again for an
i followed (up to ignored entries) by an i + 1, and henceforth ignore this pair;
and iterate until we obtain a subword of the form i+1, i+1, . . . , i+1, i, i, . . . , i.
If there are no i entries in this word, then fi(t) is undefined. If there are some
i entries, then the leftmost is changed to i+ 1.

For example, we apply f2 to the word

t = 1 2 2 1 3 2 1 4 2 2 3 3
. 2 2 . 3 2 . . 2 2 3 3
. 2 . . . 2 . . 2 . . 3
. 2 . . . 2 . . . . . .

f2(t) = 1 3 2 1 3 2 1 4 2 2 3 3
f2
2 (t) = 1 3 2 1 3 3 1 4 2 2 3 3
f3
2 (t) = undefined

Decoding the image word back into a filling of the same diagram D, we have
defined our operators.

Moreover, define the quantized Demazure operator Λ̃i taking a tableau t to
a set of tableaux:

Λ̃i(t) = {t, fi(t), (fi)2(t), . . .}.

Also, for a set T of tableaux, Λ̃(T ) = ⊕t∈T Λ̃(t). Note that this means ordinary
union of sets, without counting any multiplicities.

Now, consider the column φi = {1, 2, . . . , i} and its minimal column-strict
filling 
i (jth row maps to j). For a filling t of any diagram D = (C1, C2, . . .),
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define in the obvious way the composite filling 
i ⊕ t of the concatenated
diagram φi⊕D = (φi, C1, C2, . . .). This corresponds to concatenating the words
(1, 2, . . . ,m) and t. Similarly, let [
i]m ⊕ t denote concatenating m copies of

m before t.

Proposition 16 For a permutation w, let i, m be a generating sequence as in
the previous Proposition. Define the set of tableaux

T = 
k1
1 ⊕ · · · ⊕
kn

n ⊕ Λ̃i1(

m1
i1
⊕ . . . (Λ̃il


ml
il

) . . .).

Then the Schubert polynomial S(w) is the generating function of T :

S(w) =
∑
t∈T

xt.

Proof. Follows immediately from the Demazure formula above, and the combi-
natorial properties of root operators described in [19] Sec. 5.

Example. Continuing the example of the previous section, the set T of tableaux
(words) is built up as follows:

{
2 = 12} Λ̃2→ {12, 13} Λ̃3→ {12, 13, 14} Λ̃1→= {12, 13, 14, 23, 24}
�2⊕→ T = T2 = {1212, 1213, 1214, 1223, 1224}.

This clearly gives us the Schubert polynomial as generating function, and fur-
thermore we see the crystal graph (with vertices the tableaux in T and edges
all pairs of the form (t, fit) ):

1223 1← 1213
3↓ ↓3
1224 1← 1214

1212

The highest-weight elements in each component are the Yamanouchi words
Yam(T ) = {1213, 1212}, and by looking at the corresponding lowest elements,
we may deduce the expansion of the Schubert polynomial in terms of key polyno-
mials (characters of Demazure modules): S(w) = κx1x2

2x4
+κx2

1x2
2

= κ1201+κ2200.
Lascoux and Schutzenberger [17] have obtained another characterization of such
lowest-weight tableaux.

4.5 Weyl Character Formula

Our final formula reduces to the the Weyl character formula (Jacobi bialternant)
in case S(w) is a Schur polynomial.

Geometrically, the idea is to apply the Atiyah-Bott Fixed Point Theorem to
the Bott-Samelson variety to compute the character of its space of sections (the

30



Schubert polynomial). This would be very inefficient, however, since the formula
would involve 2l terms (where l is the length of the i found by orthodontia).
We obtain a much smaller expression from considering a smaller configuration
variety F

D̃
which is smooth and birational to the Bott-Samelson variety, and

which desingularizes the configuration variety FD(w). (See [21] for details.) The
formula below applies also to the subset families of northwest type considered
in [21], but for a general strongly separated family one has only the inefficient
formula coming from the full Bott-Samelson resolution.

Combinatorially, we define a certain extension D̃ of the Rothe diagram
D = D(w). Define the staircase diagram to be the set of columns Φ =
{[1], [2], . . . , [n]}. Let the flagged diagram Φ⊕D be the sum (concatenation) of
the two diagrams. Now, given Φ ⊕D = (C1, . . . , Cr), define the blowup of the
flagged diagram ̂Φ⊕D = (C1, . . . , Cr, C

′
1, C

′
2, . . .), where the extra columns are

the intersections C̃ = Ci1 ∩Ci2 ∩ · · · ⊂ N, for all lists Ci1 , Ci2 , . . . of columns of
Φ ⊕D; but if an intersection C̃ is already a column of Φ ⊕D, then we do not
append it. Let D̃ = ̂Φ⊕D.

Define a standard tabloid t of D̃ to be a column-strict filling such that if C,C′

are columns of D̃ with C horizontally contained in C′, then the numbers filling C
all appear in the filling of C′. In symbols, t : D̃ → {1, . . . , n} , t(i, j) < t(i+1, j)
for all i, j, and C ⊂ C′ ⇒ t(C) ⊂ t(C′).

For 1 ≤ i 
= j ≤ n and a tabloid t of D̃, we define certain integers: dij(t) is
the number of connected components of the following graph. The vertices are
columns C of D̃ such that i ∈ t(C), j 
∈ t(C); the edges are (C,C′) such that
C ⊂ C′ or C′ ⊂ C.

Finally, since there are inclusions of diagrams D, Φ ⊂ D̃, we have the re-
strictions of a tabloid t for D̃ to D and Φ, which we denote t|D and t|Φ. For t
a filling of D, let

xt =
∏

(i,j)∈D

xt(i,j),

the weight of the filling.

Proposition 17

S(w) =
∑

t

x(t|D)∏
i<j (1 − x−1

i xj)dij(t)−1 (1− x−1
j xi)dji(t)

,

where t runs over the standard tabloids for ̂Φ⊕D such that (t|Φ)(i, j) = i for
all (i, j) ∈ Φ.

Example. For the same w = 24153,

D = D(w) =

1 �

2 � �

3
4 �

Φ⊕D =

� � � � �

� � � � �

� �

� �
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̂Φ⊕D =

1 � � � � �

2 � � � � � �

3 � �

4 � �

.

There are six standard tabloids of the type occurring in the theorem. Their
restrictions to the last three columns of ̂Φ⊕D are:

1
2 1 1

2

,

1
2 1 1

3

,

1
2 1 1

4

,

1
2 1 2

2

,

1
2 2 2

3

,

1
2 2 2

4

.

The integers dij(t) are 0, 1, or 2, and we obtain

S(w) = x2
1x2

2

(1−x−1
1 x2)(1−x−1

2 x3)(1−x−1
2 x4)

+ x2
1x2x3

(1−x−1
1 x2)(1−x−1

3 x4)(1−x−1
3 x2)

+ x2
1x2x4

(1−x−1
1 x2)(1−x−1

4 x2)(1−x−1
4 x3)

+ x2
1x2

2

(1−x−1
1 x3)(1−x−1

1 x4)(1−x−1
2 x1)

+ x1x2
2x3

(1−x−1
2 x1)(1−x−1

3 x4)(1−x−1
3 x1)

+ x1x2
2x4

(1−x−1
2 x1)(1−x−1

4 x1)(1−x−1
4 x3)

.

Note that it is not clear a priori why this rational function should simplify to a
polynomial (with positive integer coefficients).
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