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Bott-Samelson varieties are an important tool in geometric representation
theory [1], [3], [25], [10]. They were originally defined as desingularizations of
Schubert varieties and share many of the properties of Schubert varieties. They
have an action of a Borel subgroup, and the projective coordinate ring of a
Bott-Samelson variety splits into certain generalized Demazure modules (which
also appear in other contexts [22], [23]).

Standard Monomial Theory, developed by Seshadri and the first author [15],
[16], and recently completed by the second author [20], gives explicit bases for
the Demazure modules associated to Schubert varieties. In this paper, we extend
the techniques of [20] to give explicit bases for the generalized Demazure modules
associated to Bott-Samelson varieties, thus proving a strengthened form of the
results announced by the first and third authors in [12]. (See also [13].) We also
obtain more elementary proofs of the cohomology vanishing theorems of Kumar
[10] and Mathieu [25]; of the projective normality of Bott-Samelson varieties;
and of the Demazure character formula.
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1 Basis Theorem

In this section we state the main results which we prove in the rest of the paper.
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1.1 Demazure modules

Let G be a reductive algebraic group of rank n over an algebraically closed
field k, g its Lie algebra, and U(g) its universal enveloping algebra. (To avoid
technicalities, we deal with finite-dimensional g, but our results extend straight-
forwardly to symmetrizable Kac-Moody algebras.) Choose a Cartan subgroup
H C G, and a Borel subgroup B D H. For i = 1,... ,n, we then have positive
and negative simple root vectors E; and F; generating g; the Cartan subalgebra
h; the Borel subalgebra b generated by E; and h; the simple roots «; and coroots
o = [Ej, Fi]; the fundamental weights w; with (w;, ) = d;; and the weight
lattice X = @D, Zw;; and the simple reflections s;: X =X, X\ — A—(\, ) Yo,
generating the Weyl group W.

An element A € X is a one-dimensional representation A : h — k, and it
extends to a one-dimensional b-module denoted k). For a dominant weight
A€ XT =@, Z,w;, we let V) denote the Weyl module of highest weight
vector vy with b- vy = A(b) vy for b € b. (That is: over the rational numbers,
Vi@ is the irreducible Gg-module; Vi z C Vi g is the smallest Z-submodule
containing vy and closed under the operations E!/I! and F} /l! for [l > 0,i € [1,n];
and in general V) = V) x := Vi z ®z k.) We also have the dual module V. For
k of characteristic zero, V) and V' are irreducible G-modules.

Given an arbitrary word, meaning a sequence i = (i1,...,4,) with i; €
{1,2,...n}; as well as a multiplicity list m = (mq,... ,m,) with m; € Z;; we
let

)\1 =M1Wy 7>\r = Myw;,..

We define the generalized Demazure module Vi m as a certain B-submodule of
the tensor product V), ® --- ® Vy .

‘/i,m = Uy (U)\l @ Wiy (U)Q QW (U/\r—l @ uy,: (’U)\T‘)) T ))7

where u; = @, kF!/l! denotes the hyperalgebra of a single negative root
vector. (By convention, if r = 0, so that i is the empty word, we set V; m = ko,
the trivial one-dimensional B-module.) The dual B-module V;*,, is a quotient
of Vi @ ---®@Vy . We will explain in §1.4 how these modules arise from Bott-
Samelson varieties.

The ordinary Demazure module V) (w) C V) is essentially a special case.
Given w € W, choose the word i so that w = s;, - - - s;,. is a reduced decomposi-
tion, and hence

V)\(U)) = Uiy - - Uq, U) .

Given a weight A = lywy + - -+ + l,,w,, choose multiplicities (mq,... ,m,) as
follows. Suppose the rightmost occurrence of ¢ = 1 in the word 1 is at position
k: that is, 4, = 1,4; # 1 for j > k. Then let my = l;. (If i = 1 does not occur
in i, let my = 0.) Next let &' be the rightmost occurrence of ¢ = 2 in i, and let
my = la. Proceed in this way for each 4, then let m; = 0 if it has not already
been defined. Finally, let \' = Ziei ljw;, where the sum runs over those ¢ which
do not occur anywhere in i. Then V) (w) 2 ky ® Vi m, with w(N) = X.
This paper revolves around the following



Problem: Find explicit bases for the generalized Demazure module V; p,, and
its dual Vi,

From now on, we will assume i and m are fixed, so that we can refer to i,,
or r, or A1,..., A, without ambiguity.

1.2 Standard tableaux

We recall the machinery of Lakshmibai-Seshadri paths ([17], [18]) needed to
index our bases of Vi m.

Let Xg := X ®z R be the real form of the weight lattice. A path is a
piecewise-linear map 7 : [0, 1] — Xgr (up to reparametrization) with 7(0) = 0.
For a weight A € X, we let 7" denote the straight-line path: 7*(t) := t\; and
m * mo denotes the concatenation of two paths. The weight of a path is its
endpoint, wt(m) := m(1).

Let W) C W be the stabilizer of a weight A € X, and use > to denote the
Chevalley-Bruhat order on W and on the coset space W/Wy. Let A € X be a
dominant weight. An LS-chain of shape A is a pair of lists

(m>->7; 0=ay<a1 <---<aq=1),

where 7; € W/W) and a; € Q, such that for each j there exists a chain in the
Bruhat order 7; = g9 > 01 > -+ > 0p = Ty with l(opp) = €(o) + 1 and
aj(orp A — opA) € @i, Zay for each k. An LS-chain corresponds to a path
7 : [0,1] — Xg, whose linear pieces are defined by:

i

1
7(t) = (a; — aj)T A+ (t — ar )T A for  apa <t < ag.
1

<.
I

We call a path an LS-path if it can be so constructed from a (necessarily unique)
LS-chain. We will frequently refer to LS-paths by their defining LS-chains, and
abuse notation by writing: 7= (11 > -+ > 74; ap < -+ < aq).

The lowering root operators f; act on a path 7 in the usual way [18]. Since
we will only consider f; acting on an LS-path or a concatenation of LS-paths,
we may equivalently define these operators as in [17]. That is, let @ be the
minimum value of the function ¢t — (7 (), ;) for ¢ € [0,1]. Let t; be the largest
t for which this minimum @Q is attained, and let ¢2 € [0, 1] be the smallest ¢ > t;
where the function attains @ + 1 (if there exists any such ¢). Now split our path
7 into three segments m = 7y * 7 * 73, corresponding to ¢t € [0,t1], t € [t1, 2],
and t € [tg, 1]. Define the root operator

Ji(m) i= w1 % 8y * 73,

where s;ms is the path ¢ — s;(m2(t)). If there exists no to as above, then f;(7)
is undefined.

We may also define the raising root operators e; analogously, so that e;
reflects the portion of ™ between ] and t}, where t} is the smallest t for which
(m(t), ) attains its minimum @, and ¢} is the largest t < t}, where the function



attains @+ 1 (if there exists such t). We thus have e;(fi(7)) = m whenever f;(r)
is defined, and wt(f;m) = wt(m) — a;, wt(e;m) = wt(m) + «;.

Recall our notation A\; = miw;,,..., A, = myw;, for our fixed data i,m. A
tableauw or LS-monomial of shape (A1, ..., \;) is a concatenation IT = 7y - - =%,
where 7; is an LS-path of shape A;. A given tableau can be divided in only one
way into such a concatenation of LS-paths of the proper shapes. Indeed, all LS-
paths of shape \; have length |A;| (in the W-invariant metric); so if we divide
the path II into pieces of length [A1],...,|Ar|, and successively translate the
division points to the origin, we obtain the unique LS-path factors 7y, ... , 7.

We will usually refer to the tableau Il by the corresponding r-tuple of LS-
chains, and write: II = (mq,..., 7). If we list all the Weyl group cosets in all
the chains 7y, -+ , 7., we obtain a long list which we denote

H = (T117T12,. .. 77-1;0177—21;- .. 77-7"pr)7

where 7, is a coset modulo W) in the LS-chain 7r;. When convenient we will
reindex this long list as IT = (71, 72, ... , 7n)-

Denote by [1,7] the set of integers {1,2,...,r}. For any subset of indices
J={a<b< -} Clr], we have a subword i(J) = (iq,1p,...) of our
fixed word i = (i1,...,i,). We also define w(i) = s;,8i, -+~ s;, € W, so that
w(i(J)) = si, 84, - - -, the Weyl group element corresponding to the subword i(.J).
We say that i is reduced if r = £(w(i)), the Bruhat length; and similarly for the
subword i(.J). Further, we write JU) := JN[1, ], so that w(i(J))) is an initial
subword of w(i(J)). If i(J) is reduced, then so is i(J)).

Let IT be a tableau of shape (A1,... , A.), considered as a sequence (71, ... , ;)

of LS-chains 7;, producing the long list of cosets IT = (711,... , Typ, ).

Definition. We say II is a liftable-standard tableau (or just liftable) if there
exists a long chain of position-sets (Ji1 D -+ D Jyp,.) such that for all j,p, the

subword i(.J J%)) is reduced and

w(i(Jj(Z))) =1Tj, modulo W),,.

Now consider the tableau II as a concatenation of LS-paths 71 * - - - % 7.

Definition. We say a tableau II is a constructable-standard tableau (or is
constructable) if it can be written as

= fil (s fi2 (w2 5 fir(a?)---)
for some Iy, ... ,l. € Z4.

Note that for any ly,...,l, € Z,, the path II defined by previous formula is
a concatenation of LS-paths of the correct shapes, and is thus a tableau, which
is constructable-standard by the definition. (See [18, §§2.6, 4.2].)

Given an arbitrary path IT of shape (A1,..., ), we may test whether it is a
standard tableau as follows. Define the highest raising e*°P(II) := ¢!(II), where



I is maximal such that €'(IT) is defined. Let e;°P(IT) = 7{ % - - -+ 7. (division into
pieces of length |A1],. .., |Aq]). If 7} # 71, then I is not standard. Otherwise,
let I = 7} * -+« . and let e;°P(II') = 74 -« 7/, If 7§ # w2, then II is
not standard. If we can continue in this way, raising by e;, and removing intial
factors 7, until we obtain the one-point path (of length 0), then II is standard;
otherwise it is not.

Example. Let G = GLs3, i = (1,2,1,2) a non-reduced word, m = (2,1,0,1),
X = Zey ® Lea, w1 = €1, w2 = €1 + €2, A1 = 2€1, Ay = €1 + €2, A3 = 0,
A = €1 + €.

A typical LS-path of shape X is: 7 = (s1 > €;0 < % < 1) = 7¢@) x g,
a concatenation of two length-one segments. (For legibility we write €(1), €(2)
instead of €1, €2; and 7 denotes a straight-line path.)

Now consider the tableau II = 72 s 7€) 4 7€) +e(@) 4 ge(D+eB) Diyid-

ing IT into segments of lengths 2,1,0,1, we get the LS-path factors of shapes

A, ..., II =@ % 9 % w3 * my, Where:
m o= 7@ saM = (5 >e0< 1<),
Ty = w6 = (55;0 < 1),
73 = w° = (e;0< 1), the one-point path,
mg = n@Te@ = (s251;0 < 1).

This path has the lifting: Ji1 = {1,2,3,4}, Ji2 = {2,3,4}, Ja1 = {2,3,4},
Js1 = {3,4}, Ju = {3,4}; since:

w(l(Jﬁ))) = wl) =% = 711 mod Wy,
w(l(.]lg))) = w() =e = 7112 mod Wy,
w(l(']z(?))) =  w(iz)=s2 = 71 mod Wy,
w(l(.]g))) = w(is)=s1=e = 73 mod W),
w(l(Jﬁ))) = w(izia) =s152 = 711 mod Wy,

Furthermore, II is constructable, since:

I fl(ﬂ_2e(1) % f2(7T6(1)+6(2) % flfQ(ﬂ_e(l)Jre(Q)) ) )

Si(m s fo(m2 s fr(709 x fo(m™))))

Theorem 1 A tableau II is liftable if and only if it is constructable. We call
such II a standard tableau of shape (A1, ..., ).

Any set 7 of paths possesses a natural structure of crystal graph: namely,
the graph with vertex set 7, and with i-colored edges {II, f;II} (whenever both
IT and f;II lie in 7). For example, the crystal graph of an ordinary Demazure
module V) (w) is associated to the set of tableaux {lell e fil:w’\ | li,... 0, >0},
where w = s;, - -+ 8;, (reduced). Many important crystal graphs reduce to this
basic case.



Theorem 2 The crystal graph on the set {11} of standard tableauz of shape
(M, ..., Ar) is isomorphic (as an edge-colored graph) to a disjoint union of
crystal graphs of ordinary Demazure modules. For p € X+ a dominant weight,
the same is true of the set of paths {m* 11}, where II runs over the standard
tableauz of shape (A1,..., Ap).

This is a combinatorial version of excellent filtration for the B-modules Vl*m
and kj, @ Vi",,. (See §2.4.)

1.3 Standard monomial bases

We use tableaux to index bases of B-modules, starting with the Weyl modules
Vi, then proceeding to Vi m.

For any Weyl module V), the second author has constructed [20] a basis
{vx} indexed by LS-chains = of shape A, in which v, is a weight vector with
weight wt(m). (See §3.1 below for details.) The basis {vr}, inspired by the work
of Raghavan and Sankaran [26], is highly non-canonical, depending on several
arbitrary choices. However {v,} is related to most “reasonable” bases of V) by
a triangular matrix. Actually, we shall find it more convenient to pair {vy} with
bases of the dual module Vy'.

To be more specific, define the following lexicographic partial order on LS-
chains. Given 7 = (11 > -+ ;0<a; <---)and 0 = (o1 > -+ ;0 < by < --+),
we say m < 0 if: 7 <oy (in Bruhat order); or 7 =01, a1 <by; or 1 = oy,
a1 = by, T3 < o0g; etc. Note that the highest weight path is minimal in this
order, and a path is large in this order if it is far from the highest weight path.
We can extend this to tableaux by defining (m1,... ,m.) < (61,...,0,) to mean:
71 < 601 (in the above order); or m; = 61 and my < s; etc.

Given a basis {p,} of V) indexed by LS-chains of shape A, we say {pr} is
triangular to {vy} if

Dr = Vs + Z xvp
0>
where o indicates an appropriate scalar coefficient (possibly different in each
term). That is, (pr,vz) = 1, and (pp,vr) = 0 for all & 2 m. A certain basis {p.}
defined in [20] obeys this triangular property for all groups G, as do most of the
other known bases of Weyl modules, at least for classical groups G (types A,,
By, Cy, Dy).

Theorem 3 The following bases of V¥ are triangular to {v.}, for the specified
classes of reductive groups:

(a) Littelmann’s canonically defined LS-path basis [20], for all G;

(b) Lusztig’s dual canonical basis [21] (= Kashiwara’s upper crystal basis [8],
[6]), for classical G;

(¢) Lakshmibai’s standard PBW basis [11], for classical G.

(d) Lakshmibai-Seshadri’s standard monomial basis [15], [16], for classical G.

Proof. For (a), see [20]. It is established in [26], [24] that, for the fundamental
representations V%, the bases (a), (b), and (d) coincide. But this implies the



triangularity for an arbitrary Vy*. The triangularity between (b) and (c) follows
from [11]. e

We expect that bases (b)—(d) possess the triangularity property for all G (in-
cluding the Kac-Moody case).

Any such system of bases {p,} for each V" gives a basis of V' @ --- @ V'
whose indexing set consists of all tableaux of shape (A1,..., ;). The standard
tableaux pick out a subset of this basis which restricts to a basis of the quotient

Theorem 4 For every A € X, let {pr} be a basis of Vi which is triangular
to {vy}. For Il = (my,... ,m) a tableauw of shape (\1,...,\.), define

P = Pry Q- Q P, € V): ®...®V):.
Then {pn}, where Il runs over the standard tableau of shape (A1,...,\.), re-

stricts to a basis of Vi*,,. We call this a standard monomial basis of V%,

Since we may assume pry to have weight wt(IT), we can use the combinatorics
of tableaux to compute the character of Vi m. Let R = Z[X] = @, . x Ze* be the
group ring of the weight lattice X. The Weyl group acts Z-linearly on characters

by w(e*) = ™. We may define the Demazure operator A; : R — R by
f—e %si(f)
AN(f) = ———=
(f) =1

which can be interpreted uniquely as an element of R. We may also characterize
A; as the unique linear operator with A? = A; and

Ai(eM) = & + o L A2 Ly esid
for any A € X with (\, ) > 0.
Theorem 5 The character of the B-module V; m is:
Ay (M A (- A (€M) ---)).

Our strategy of proof for the above theorems is as follows. Theorem 1 is
an elementary combinatorial fact, proved in §2.2. Also in §2.3 we prove that
the Demazure formula computes the formal character of the set of standard
tableaux, and we prove Theorem 2 in §2.4, all by the combinatorics of paths.
Next we prove Theorem 4 in two steps. First, in §3 we show that the set {pr}
is linearly independent in V;* | so that

i,m>

dim V;*,, > dim Span(pn) = # standard tableaux.

Then in §4 we compare the combinatorial Demazure formula with the geometric
version to conclude

# standard tableaux > dim V4,

,m>

which proves the Theorem. Also, Theorem 5 follows in the course of this proof,
as does Theorem 6 below.



1.4 Bott-Samelson varieties

We now give a Borel-Weil-type result for producing our Demazure modules in-
side the projective coordinate rings of certain varieties. We will prove this, along
with the corresponding analog of Bott’s vanishing theorem. (These theorems
were originally proved in our case in [25] and [10].)

Recall our fixed word i = (i1,... ,4,) from §1.1, and our Borel subgroup B
of G. For each i let P; O B be the minimal parabolic subgroup with Weyl group
(s;), and define the Bott-Samelson variety as the quotient

Zy:=(Pyx--xP )/ B",
where B" acts on the right by:

(p1y--spr) - (b1,. .., by) i= (p1b1, by *paba, ... b, ip.by).

This is a smooth algebraic variety of dimension 7. (If » =0 and i is the empty
word, we let Z; be a point.)

For A € X, let e* denote the multiplicative character of B associated to X,
and let k?Al,... ) be the one-dimensional representation of B” defined by

(biy... b)) k=M (by)- e (b))
Define a line bundle on Z; by

B"
'Ci,m = (Pil X+ 'X‘P’ir) X k?)\h“.’)\r)

so that we identify o

By k) ~ (B-b, b - k)
forpe Py x---xPF;, be B, and k € k. Unraveling the definitions, we may
concretely describe the space of regular global sections of this bundle as:

Vbj EB,pj EPfL'J.
HY(Zi, Lim) = [Py x---xP —k| f((p1,...,pr) - (b1,...,bp)) =
e)\l (bl) ' 'eA".(bT)f(plv e 7p7")

where f denotes a polynomial function on the linear algebraic group P, x- - -x P; .
The Borel subgroup acts on Z; and £L; m by left multiplication: for b € B,

b-(p1,...,0r) := (bp1,p2,...,pr) and b:(p1,...,pr k) := (bp1,p2,... ,pr, k).

The space H°(Z;, Lim) of regular global sections of £; m over Z; is naturally a
B-module under translation.

Our analysis extends to certain varieties desingularized by Bott-Samelson va-
rieties, called configuration varieties in [22], [23]. For a given m = (my,... ,m,),
the line bundle £; m is very ample (resp. semi-ample) exactly when all m; > 0
(resp. m; > 0). In the latter case, define Z; m, as the image of the natural map
Z; — P*HO(Z;, Li m). This variety is singular in general, and can be of smaller
dimension than Z;. If we take i, m so that ky ® Vi m = Vi (w) is a Demazure
module (see §1.1), then Z; my = B - wB C G/B, a Schubert variety.




Theorem 6 The B-module of reqular global sections is isomorphic to the dual
of a generalized Demazure module:

H(Zi, Lim) = Vi
Also, Z; is projectively normal with respect to the bundle L ym, and H (Zi, Li ym) =
0 fori > 1. Furthermore, all the above statements hold for Z; m in place of Z;.

We give the proof in §4.2.

1.5 The Symplectic group

In [13], we work out the above constructions at length in the case of the general
linear group G = GL,4+1. (Our treatment there is more elementary, avoiding
the technicalities of the basis {vrr}.) In this section, we give the example of the
symplectic group G = Spay,, in the spirit of De Concini [2]. (The orthogonal
case is similar, but slightly more complicated.)

In general, the main obscurity in the above constructions is that most bases
{p=} of V¥ are difficult to write explicitly, so that writing the corresponding basis
{pn} of Vi'm 1s equally difficult. However for G a classical group, it is easier
to construct bases of the fundamental representations V% , and to obtain from
these a standard monomial basis {p.} of the quotient (V7 )¥™ — V* = V.
(See [15], [16].) Thus we will obtain bases of V;*  via the composite restriction
map: /

p: (Ve )omee(Vg, ) = V5 @@V — Vi,

Wiy

This is the formulation announced in [12].
Now, for i € [1,2n], let us denote i := 2n+1—4 and |i| := min(é,7). The

standard basis of k?" is {e1,...,e2,} = {e1,...,en,€n,...,e1}. Let G =
Span(k) be the linear isometries of the symplectic form (e;, e5) = —(ej, ;) = dyy,
(eirej) = (ez,e5) = 0 for 4,5 € [1,n]. That is, G = {A € GLy, | AEA" = E},

where E is the matrix with ¢j-coordinate (e;, e;) for ¢,j € [1,2n].

We may write the weight lattice as X = @?:1 Ze;; with simple roots a; =
€1 — €2, ..., Qp 1 = €p ] — €p, O = 2€,; fundamental weights w; = €1 + € +
-+ + ¢; and simple coroots af = €f — €5, ..., ay, =€ | — €, al = €.
An element of the Weyl group W may be indexed by a signed permutation: a
map w : [1,n] — [1,2n] = {1,--- ,n,7A,---,1} such that |w| : i — |w(i)| is a
permutation of [1,n]. Such a w acts on X by w(e;) := €,(;), where we write
€ = —¢; for i € [1,n].

We can realize the fundamental representations V7 inside the coordinate
ring k[G] of polynomial functions on the affine variety G. (The group acts on
functions via left translation: (g-f)(A4) := f(¢'A) for f € k[G], 9,4 € G.)
That is, we have

V;I = Span<p‘r | T C [1a2n]a #T = i>a

where p, = p,(A) is the minor of the matrix A on the first ¢ columns and on
the rows 7.



To use the above model, it is most convenient to index the basis of the
fundamental-weight modules V4, not by LS-paths, but by certain lattice paths,
concatenations of coordinate steps

b= @, 7= e

for i € [1,n]. A subset 7 = {7(1) <--- <7(i)} C [1,2n] corresponds to the
lattice path 7(7) := 77 W x- - % 77(") | We write:

w[l,i] = 7w([1,4]) = 7' * 7% % -t
Any path obtained from x[1,¢] by repeated application of the lowering operators
fis.+-, fn is of the form =w(7) for some 7, and we say such paths 7(7) (or
subsets 7) are lattice-standard of shape w;. A basis for V% is given by {p, |
7 lattice-standard}. This basis has the triangularity property of Theorem 3.
For more details, see [2].
Similarly, a path II is lattice-standard for V;*,, if it can be constructed by

the usual formula, with the 7 replaced by dominant lattice-paths:
I = f1 (mlL i ™ e 2 (L o] e fir (L2770 ),

where 7[1,4]*™ := @[l ] - -x7[1, 4] (m factors). Every such path is a concate-
nation of lattice-standard tableaux for fundamental weights:

I = 7(7M)sm (7O s s (70D ) (7D ) s s (7(7mr))

where 7U™) C [1,2n], #70™) =i; for 1 <j <7, 1 <m < m;. A basis of Vi'm
is given by:

{p(pravy @ @ prmn ) | (7Yoo 7'™0)) s lattice-standard},

the restriction of standard tensor-monomials via the map p. Alternatively, we
can realize V;*, inside k[G], with a basis of monomials in the minors p;:

Vim = Spany {p,an -+ prome | (7D .o 7MY s Tattice-standard ).

Example. Let G = Sps, i = (2,1,2), m = (1,1,1). For conciseness, we
denote the lattice-path 7@« 0« 7€ % - - - by the list abc - - -. The lattice-standard
tableaux for V% are {1,2,2,1}, meaning {n', 72, 7% 7'}; with crystal graph:

18522301 por V., the lattice-standard tableaux are: {12,12,22, 21,21},

meaning {72, w72, .- }; with crystal graph: 12 T2 95 195 107 f3 97,

For V{*,,, we can construct the 17 lattice-standard tableaux of the form
IT= f3(12% f2 (1% f312)) in steps, starting from the right end of the expression
for II:

(12} 2 (12,12} 1% {121,112} & {112,112, 212, 212, 222, 221}

B (12112,12112, 12212, 12212, 12222, 12221}

10



%2 (12112, 12112, 12212, 12212, 12222, 12221,
12112,12112, 12212, 12212, 12212, 12212,
12222, 12222, 12221, 12221, 12221 } .

A list like 12221 represents the lattice-path II = 7ls 2% 72«2 x 7L, which
can be divided into lattice-standard paths for fundamental weights as: II =
7(12)*7(2) *7(21). To illustrate the action of the lowering operator f;, we write
under each tableau the value of (77, ) = —1,0, or +1 for each coordinate step
7/, and we emphasize the step which is flipped by f; (that is, the step where
the path rises for the last time from the minimum value of (7 (¢), ) ):

12112 4 12212 4 12222 A 12221 4 g6 o
tttt T At A+ -

The 17 standard tableaux index a basis for Vi'm» which we can realize inside
k[G], the coordinate ring of G C GL4. That is, k[G] is the polynomial ring
k[wij]i je[1,4, where X = (x;;) a generic matrix, modulo the ideal generated by
the supra-diagonal coordinates of X EX? — E: that is, modulo the polynomials

—T41%12 — T31%22 + T21T32 + T11242, —T41213 — T31223 + T21233 + T11243,
—T41%14 — T31T24 T T21X34 +T11T44 — 1, —T42%13 —T32T23 +T22%33 +T12%43 — 1,
—T42%14 — T32%24 + T22T34 + T12%44, —T43%14 — T33%24 + T23%34 + T13%44.

(This ideal has a small square-free Grobner basis in the degree-lex order, so
it is reduced.) For example, the tableau 12221 corresponds to the following
polynomial in k[G]:

P12221 = P12P2P21 = ($11$32 - 25315612) c 31 ¢ (56215642 - $41£C22)~

(Recall 2=13,1=4.)

2 Combinatorics of tableaux

In this section, we regard the word i = (41,...,i,) as given, and for J C [1,7r],
we abbreviate w(i(.J)) as w(J). For example, sw(J) means s - w(i(J)).

2.1 The main lemma

Lemma 7 Consider a long list of Weyl group cosets
(T115- - s Trpy) = (T1,- -« , TN)

possessing a lifting

(Jll D "'Der,,.):(Jl D) DJN),
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meaning that each subword i(JJ(-;)) is reduced and T, = w(JJ(-;)) mod Wy, . Sup-
pose that for some consecutive elements T, = Tk_1, Tjrpy = Tk, Tjrpr = TKH,
and for some simple reflection s we have either:

(@) sw(JP) <w(P) and stk 27k or
(b) sw(JI(gr/l)) > w(JI(gJ:l)) and s < Tk.

Then the long list of cosets
(T1, o s TK—1, STK, TKAL -+ 5 TN)

also possesses a lifting (j1 D...D jN), with (respectively):
(a’) sw(.]}(g,)) < w(.]}(g’)); or
®) s > w(T)).
Proof. Cf. [19, Pf of Thm 10.1]. We will prove the lemma under assumption (a).
For (b), replace < by > and K —1 by K +1. First suppose sw(JI(g )) < w(JI(g )).
Then we must have st = 7x, and we may take J = Ji for all k.
On the other hand, suppose sw(JI(g )) > w(JI(g )). We have

sw(Jith) < w(/i) 2 wlIR),

and by the Zigzag Lemma [5, Prop 5.9],

sw/) < w(7iy).
Thus by the subword definition of Bruhat order, there is a reduced Jj, C J I(Ql
with ‘

w(Jge) = sw( /).
Furthermore for all L > K there are reduced subwords J; C ‘]I(gzl with

w(Tg) =w(T;),

and we may take the sets J; to be decreasing as L increases. Now define jL =Jr
for L < K and J, = (Jp \[1,j])UJ} for L > K.
Now

w(TZ) = wTw( Ik Ni+1,41) = s - w(i) - w(Txnli+1,5),
and by our supposition the latter product is reduced (length of product = sum
of lengths). Hence j[(g ) is a reduced word, and w(j([g )) = sw(JI(g )) = sTk.
Similarly the appropriate initial segment of Jy for any other L is a reduced

lifting of 77,. Therefore (J; D -+ D jN) is a lifting of (71,...,87Kk,... ,7n) as
required. Property (a’) follows from the above along with our supposition. e

12



2.2 Root operators

Lemma 8 Leti € [1,n].

(a) If I is a liftable tableau, and e;(I1) exists, then e;(TI1) is liftable.

(b) If I is a liftable tableau, and e;(IT), f;(II) both exist, then f;(I1) is liftable.
(c) If 11 is a liftable tableau with respect to i, and f;, (I1) exists, where i1 is the
first letter of i, then f;, (I1) is liftable.

Proof. Tt is clear by [18] that e;(II), f;(IT) are always tableaux if they are defined,
so in each case we need only show liftability.
(a) Suppose
M= (711, Trp,) = (T1,. -+ ,TN)
with lifting
(.]11 Do DerT)Z(Jl RN :).]N).

It is easily seen (cf. [17, Prop 4.2]) that
S Tlyeeo s TRy STKy oo 3 STLy TLA1, -« - T or
ei(m_{(l K1, STK LyTLH, - TN)

(’7’1,... yTK—1,TKySTK -« ,STL,TL+1,...TN)
for some indices 1 < K < L < N with
STK S TR, ... ,8TL < TL and STI41 > TLH-

We must show that this list of cosets has a lifting.

First, suppose L # N, so that 74 = 7 exists, and let 7, = 7j/,». Then
sw(JiH) > w(JiH) and st < 77, so we can apply Lemma 7(b) to the lifting
(J1 D ---) at positions L, L+1. Using condition (b’) we can repeat this at
positions L—1, L, and so on leftward, thus producing a lifting of e;(II).

On the other hand, suppose L = N. If sw(Jg )) > w(.],g] )), then 7y = s7n,
and we may again repeatedly apply the Lemma starting at positions N—1, N.
If sw(J](\? )) < w(J](\? )), we cannot directly apply the Lemma, but instead take
Jn C Jy so that w(j](\? )) = sw(JJ(\? )). Then (J; D --- D Jy1 D Jy) is a lifting
of (11,...,7N-1, 87N ), to which we can apply the Lemma starting at positions
N—1, N. In each case, we produce a lifting of ¢;(TI).

(b) We have

f'(H)_ (7-17---7TK—1,STK,---,STL,TL.H,.-.TN) or
i (T1yeeo yTKAySTKy« oy STLyTLy TLA1s -« - TN )

for 1 < K <L < N with
STr—1 < TK-1 and STK 2 TKy--- ,STL 2> TL.-

Since e;(II) also exists, we must have K > 1, so that we may repeatedly apply
Lemma 7(a) analogously to the previous argument, starting at positions K —1,
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K and proceeding rightward to produce a lifting of f;(II).

(c) Let Jx = Jjipy. As before, if K > 1 or sw(Jl(j’)) < w(Jl(j/)), we use Lemma
7(a) immediately. Otherwise if K = 1 and sw(Jl(j )) > w(.]l(] )), take J; =
J1U{1} (reduced): this gives a lifting (J; D J2 D -+ D Jn) of (s71,72,... ,7n),
to which we apply Lemma 7(a). e

Proof of Theorem 1. We use induction on 7, the number of letters of the
word i = (41,...,%.). For r = 0 and i the empty word, the only constructable
or liftable tableau is the trivial path 7°. Now assume the Theorem for the word
(T2y .. yip).

Constructable = liftable. Suppose 1I = lell (7 % lej (m22...)) is con-

structable. By induction TI' = f2(7*2...) is liftable. Then 7™ * II’ is clearly

2
also liftable, and so is IT = lell (721 % IT') by Lemma 8(c).
Liftable = constructable. Suppose II = (m1,...,7,) has lifting (J11 D

-+). Since w(Jl(;)) = s;, or id, the cosets mod W), in the LS-chain 7 must

be 1 = (Siy,---,8i;,1d,...,id). Thus we may write ezfp(H) = eéi () =
(7™ 7h, ..., ml) for some [y, since if the initial segment were not 7!, we could
apply e;; once more (§1.2). But II' = (n},... ,n) is liftable by Lemma 8(a),
and is therefore constructable by induction. Hence II = lell (72 % IT') is also

constructable. e

2.3 Demazure operators

We show that the number of liftable tableaux is given by the Demazure character
formula. This is the combinatorial version of Theorem 5. For a set 7 of tableaux,
define the formal character (or multi-variate generating function)

char(7) := Z eVt
neT

For i € [1,n], a tableau Iy with e;(IIp) undefined is called an i-head. An
i-string is the set S of all tableaux generated under f; by some i-head Ilj:
S = {My, f;(Iy), f(o), ... , f}(Iy)}, where [ is maximal with f!(Ily) defined.
In fact [ = (wt(Ilp), o)) > 0. (See [18].) Thus any é-string S with head Iy has
character

char(S) = eVtWo) 4 ewtMo)=as 4 4 gsiwt(llo),

Suppose a set of tableau 7 is a disjoint union of i-heads and i-strings. Let
FT={fil)| LeT, >0}

Then it is clear that
char(f77) = A;(char 7).

Lemma 9 Let T be the set of standard tableau of shape (Aa, ..., \r). Then the
set of concatenations ™ x T is a disjoint union of i1-heads and i,-strings.
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Proof. Let m = w1, e = ¢;,, f = fi,. First we show: if 71 Il € 7% 7 with
e(m1 x II) defined, then e(m; * IT), f(m = II) € m * 7. By [18, §2.6] we have
e(m * IT) = mp = (eIl) or (emy) * IT; but ey is undefined, so the first alternative
must hold. Also eIl € T by Lemma 8(a), so e(m *II) € m 7.

Next we show: if m x I € m x T with e(m; = II) and f(m * II) are both
defined, then f(m *II) € m * 7. First, recall that the operator e reflects a part
of 1 * I before the first minimum point of the function ¢ — ((m; * I1)(¢), o),
and the operator f reflects a part of 71 x Il after the last minimum point of the
function. Thus f acts on the path at a later point than e acts.

Now consider f(my *II) = (fm1) * I or 71 % (fII). We know that e(m II) =
71 * (ell), so that e acts after the first segment of m *II; and f acts later than e.
Thus we must have the second alternative: f(m *II) =71« (fII). But fll € T
by Lemma 8(b), so f(m *xII) € my 7. @

Corollary 10 The formal character of the set of standard tableaux of shape
(Al,... ,Ar) 18
Mgy (XM A (22 A, (€M) ).

Proof. Let T be the set of standard tableaux for the (is,...,%4,). The set
of standard tableaux for (i1,... i) is 7/ = f (7™ = T), so that char7’ =
A;, (eMchar 7). The result now follows by induction. e

2.4 Combinatorial excellent filtration

The ordinary Demazure modules V) (w) and their duals play a central role in the
theory of B-modules. For example, consider the twisted dual Demazure module
ky, @V’ (y) for dominant weights p1, v € X T. It was conjectured by A. Joseph and
proved by O. Mathieu [25] (in the general case, and by P. Polo in some special
cases) that this module has an excellent filtration, namely a filtration by B-
modules whose quotients are isomorphic to Vy*(w) for various A € X*, w € W.
This implies that k}, @V, (y) inherits the favorable homological properties of the
V¥ (w). More generally, Mathieu proved that twists of our generalized Demazure
modules kj, @ V;*,, have excellent filtration. For a survey, see [27].

In this section, we prove Theorem 2, which is a combinatorial analogue of
Mathieu’s result. We first formulate and prove a more precise result for the
special case of a twisted ordinary Demazure module k}, @ V,*(y). (Note that we
do not distinguish between tableaux for this module and for its dual.)

Let C(A,w) denote the crystal graph on the set {f? --- f,;r’fr)‘} of standard
tableaux for V) (w), where w = s;, - - - s;,. is any reduced decomposition. This set
of tableaux is known to be independent of the choice of reduced decomposition.
In fact, it is precisely the set of LS-paths 7 = (71 > -+ ;0 < a1 ---) such that
w > 7 mod Wy. See [7], [17].

Further, let C(u,v,y) be the crystal graph on the set {7 *x}, where =
runs over standard tableaux for V, (y). Recall that each edge in a crystal graph
is assigned a color i = 1,... ,n. We will show that for dominant p,v, the
C(p,v,y) is isomorphic as an edge-colored graph to a disjoint union of various
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C(A,w). There is one such component C(A,w) for each path 7* %7 which
is dominant, i.e., which stays completely within the dominant Weyl chamber:
that is, (u + 7(t), ;) > 0 for all ¢t € [0,1] and all &. The X corresponding to
a dominant path is its weight: A\ = wt(n#x7) = p + wt(r). To compute the
corresponding w requires some definitions.

The second part of the following lemma is due to Deodhar [14, Lemma 11.1].

Lemma 11 (i) For u,w € W, the set {v/w | v’ < u} has unique mazimal and
minimal elements.
(i) Let W' C W be the parabolic subgroup generated by some subset of the
simple roots. For z <y € W, the set {v'z | v € W', vz < y} has a unique
mazximal element.

Proof. For a set A C W, we write w=maxAifw e Aand w >y forallye A
(that is, w is the unique Bruhat-maximal element of A). Similarly for min A.
We will repeatedly use the Zigzag Lemma [5, §5.11]:

If © <y, then sz < max(y,sy) and min(z,sz) < sy,
where s is any simple reflection, and similarly for xs and ys.

(i) Induction on ¢(u). The case ¢(u) = 0 is trivial. Take su > u, and assume
w'w < wjw for all v’ < u. We claim v”w < max(ujw, suyw) for all v” < su, so
that max(ujw, sujw) is the unique maximum of {u"w | v’ < su}.

From the subword definition of Bruhat order, any u” < su has either: u”
u, so that v”w < wjw; or su” < u, so that su”w < ujw, and u”w = s(su”w)
max(ujw, sujw) by the Zigzag Lemma. This proves the claim.

The proof that {v/w | v' < u} has a unique minimum is almost the same:
Again take su > u. If upw < w'w for all v’ < u, then min(uqw, supw) < u”w
for u” < su.

<
<

(ii) We follow Deodhar [14, Lemma 11.1], correcting several misprints. We
denote (W'2)<, = {u'z | v’ € W', w2 < y}. Also let W™ C W be the set
of minimal coset representatives of W/\W, and write y = wyo with w € W’
and yo € W™, Suppose, without loss of generality, that z = zo € W™ (since
(W'uz)<y = (W'z)<y for any u € W’). Now we proceed by induction on £(yo).
For £(yo) = 0, we have yo = 20 = e, and max(W'z)<y,w = w. Next suppose
£(yo) > 0, and choose a simple root s with yo < yos. Note that yos € W™in since
otherwise there is a simple root s’ € W’ with £(s'yos) = €(yo) — 2 = ¢(s'yo) — 3.
Note also that wyps < wyo, since: £(wyos) = L(w)+L(yos) = (w)+L(yo)—1 =
L(wyo) — 1.

Case (a): 208 < zo. The facts noted above for yg also hold for z;. We have
zos = min(zps, z0) < yos, and by induction we may let w'zps = max(W'208) <wyos-
Then we claim w'zg = max(W'z0)<wy,- First, w'zos < wyps, so w'zg <
max(wyos, wyo) = wyp. Now suppose uzg < wyg for v € W’. Then uzps =
min(uzos, uzg) < wyps and by definition of w’, we have uzps < w’zps. Thus
u < w and uzg < w'zp.

Case (b): 295 > 29 and zgs € W™ We have zp = min(zo, 205) <
Yos, so by induction we may let w'zg = max(W'zp)<wyys. We claim w'zg =
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max(W'zo)<wy,. First, w'zg < wyo just as before. Also note that, as before,
for any u € W’ we have uzgs > uzg. Now suppose uzg < wyg for u € W’. Then
uzg = min(uzps, uzo) < wyps and by definition of w’, we have uzo < w'zp.

Case (c): 295 > 2o and zps ¢ W™, First note: there exists a sim-
ple root s € W’ with s'z9s < z0s, so £(s'zgs) = £(z0); but szg > zp, so
szps' > min(2g, 208’) = z9. Hence szps’ = z3. Now, as in case (b), we may
let w' = max(W'z0)<wyos. Define v’ := max(w’,w’'s’). Then we claim w” =
max(W’ zo)<wy,- First, w”’zp = max(w'zg, w'z0s) < max(wyo, wyos) = wyo.
Now suppose uzg < wyg for u € W’. If us’ < u, then uzg > us’zg = uzgs and
us'zop = min(uzo, uzps) < wyps, so by the definition of w’, we have us'zg <
w'zg. Hence u < w”, and uzg < w”zp. On the other hand, if us’ > w,
then uzg = min(uzo, uzps) < wyps, so by the definition of w’, we have again
uzg < w'zop < w'zy. @

Now, given p,v,y as above, and a path 7 : [0,1] — Xg, let W(t) :=
Stabw (1 + 7(t)) denote the stabilizer of the point p + w(t) € Xg. This is
the parabolic subgoup of W generated by the simple reflections s; such that
w+m(t) lies on the corresponding wall of the dominant Weyl chamber. Let
[0,1) = I, U--- U1, be the decomposition of [0,1] into the minimal number of
disjoint intervals such that W (¢) is constant for all ¢ in each interval I;. We
enumerate the intervals so that for j < j/, the ¢ in I; are smaller than those in
L.

For an LS-path 7 = (71 >--- ;0<ay <---) with 7" * 7 dominant, we let A\ =
p+ wt(7), and we define w(r) (modulo W) inductively as follows. Intuitively,
we start with w = id; then we travel along the path 7#m from its endpoint A to
1, and every time we hit a wall, we multiply w by the corresponding reflection
if this makes w longer. However, at the end of our trip, if p itself is on a wall,
we only multiply by the corresponding reflection s if s times the initial direction
of 7 is smaller than y. Formally, we define:

wq = max(W(ly)), we :=max(W(Ip1)-wy), .., we :=max(W(l) ws),

wy = max{uws | v < wur}; w(w) :=w; .

Here u; := max{u € W([1) | ury <y mod W,}. We explain why wu; is well-
defined. The path 7# % m has a segment in direction 71(v) from p into the
fundamental chamber. Thus if s; € W(I;) = Wy, we have (7(v),«)) > 0, and
s;71 > 11 mod W,. That is, we may take 71 to be minimal in the coset W (I1)m,
so that we may use the Lemma to define w37 = max{u'n | v’ € W(I;), v'my <
y}. (Note: In the Kac-Moody setting, in which W may be infinite, we can show
that W (I;) is always finite, and the above definition of w(n) is still valid.)
The following result is a refinement of the Littlewood-Richardson rule of [17].

Proposition 12 The crystal graph of k, ® V,,(y) has as its connected compo-
nents the crystal graphs of ordinary Demazure modules Vy(w). Specifically, it
is the disjoint union:

C(Ma Vvy) = HC(H+Wt(7T)7w(7T))7
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running over all standard tableaux w for V,(y) such that m#*m is dominant.

Proof. (a) First the containment D. Fix apath 7 = (71 > -+ > 7,0 < a1 <
- < ag = 1) with with y > 7 mod W), and 7* * 7 dominant. We must show
that for some (and hence for any) reduced word w(w) = s;,---s;., the path
lell = fil:(w“ x ), if defined, is of the form 7# * 6 with § = (o1 > --- ;0 < b1 <
) and y > o1 mod Wy. We may choose our reduced word compatible with
the partial products wy, in the definition of w(w). That is, for any p, we have
Wk > 8;,+* 8i, > Wiy1 for some k.

Claim: f" --f (m# x m) = 7 * 0, for some 0, with 6,(t) = =(t) for t €
Iy U--- U ;. This follows by descendmg mductlon on p. Indeed, assume the
Claim for a given p (with p > 1), and suppose wy > 8;,---8;, > wgy1. Then
ont € Iy U--- Ul the function ¢ — (u +0,(t), o) ) = (u+7(t),a) ) is
non-negative, and it attains its minimum value 0 at the right endpoint of I.
Hence by definition, the operator f ?~! does not change the path 7# % 6, within
the interval t € I LI --- U I}, and the clalm holds for p — 1.

Finally, y > o follows immediately from the claim and the definition of wu;.

(b) Now the opposite containment C. Consider any path 7# %6 (not neces-
sarily dominant), and consider the unique dominant path 7 % 7 such that
lell - le: (m# x ) = w0 for some reduced word s;,---s;, =: w and [; > 0. We
must show that w(m) > w.

If 7# % 0 is itself dominant, there is nothing to prove. Otherwise, let Ij1,
k > 1, be the interval where u+6(t) first exits the fundamental chamber. We will
use decreasing induction on k to show the stronger statement wy > s;,- - s;,..

By the definition of the lowering operators, we have pu + 0(t) = p + «(t) for
t < the first point of exit of ## * 6 from the fundamental chamber. Thus, for
t € I, u+ 0(t) lies on all the walls which are crossed in interval Ij11. Thus

there exists a product e7'* ---e"* of e; with s; € W(I), such that 7# x 0" :=

et et (mh % 0) lies inside the dominant chamber for ¢ € Iy U--- U Ix41. By
induction, 7 x 6’ = flp e fl" (m# % ), where wyy1 > s, -+ 5;,.. We thus have
TR0 = fit e fI lep fl (m# % 1), where wy, > sj, - sja S, - - 8, provided

only that k > 1. if k =1, we may assume that u; > s;, ---s;,, and the conclu-
sion again follows. e

Examples. We write (1a172a2 -+ ) for an LS-chain (73 >---;0<a; <---) of
V., so a chain (71;0< 1) with extremal weight 71 (v) is written simply (71).

(i) G = SL3, u = 2ws, v = wy + wa, ¥y = $152. There are four components
of C(u,v,y): m™= (s182), C(we,id); 7 = (8152%82), C(2w1,id); 7 = (s1),
C(w1+2ws,id); 7w = (id), C(w1+3ws,s2). Note that for m = (s1) we have
W(I1) = (s2), but som< y, so w(mw) = id.

(i) G = SLs, p = 2w, v = 2wy + 3wa, y = s152. The path 7= (s152 % $1 % e)
corresponds to C(2wi +wa, s182). Note that 6 = faofi fa(nH x 1) € Clu,v,y),
but this is no contradiction, since § = fi fa (" * ).

Proof of Theorem 2. This follows immediately by the definition of constructable-
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standard tableaux and repeated application of the previous Proposition.

2.5 Raghavan-Sankaran operators

We define certain raising operators on liftable tableaux, different from the root
operators above, which we will need in our proof of Theorem 4. (Cf. [26], [20,
54].)

__ Given a tableau II and a simple reflection s, define 5(II) as follows. Let
II=(r,...,7n). If for some 1 < K < N we have

TL > 8T1,... ,TK = STK, TK+ < STK{1,

take S(II) to have the same rational numbers in its LS-chains as II has, but
change the cosets to

(H):(STl,... sy STK s TKHy - -+ ,TN).

®)

(In case stk = Tip and these cosets form part of the same LS-chain, for
consistency of notation we must combine these two into a single segment: that
is, omit 74 and its corresponding rational number.)

Proposition 13 If1II is a liftable tableau, then S(II) is also a liftable tableau.

Proof. First we show that S(II) is a tableau. Suppose the coset 7x in the
definition of S(II) occurs in the jth LS-chain 7; of II: that is, 7x = 7j,. Then
sI) = (s(m), ... ,8(m;), T, - .. , 7). We thus need to show that if 7 = (71 >
<+ > 750 < ap <---)is an LS-chain, then §(7) = (s > -+ > s7p, > 701 >
<+ > 750 <ap---) is also an LS-chain.

If L = q, then 5(m) = €'°P(w), where e is the raising root operator corre-
sponding to s. I L < g,let 7’ = (3 > -+ > 71150 < a1 < - <ap < 1),
which is an LS-chain by [17, Lemma 3.1]. Then once again 5(7’) = €*°P(7’), so
that §(n’) is an LS-chain, and this easily implies that $(7) is also an LS-chain.
Therefore s(II) is a tableau.

Now to see that s(II) is liftable, we use Lemma 7(b) repeatedly, starting
with the positions L, L+1 (or N—1, N if L = N) and proceeding leftward.
(Cf. the proof of Lemma 8(a).) e

3 Linear independence

3.1 LS-path basis

In order to show the independence of the set {pr} of standard monomials in
Vi:"m, we first establish independence for a set {vrr} in V;m which we call the
LS-path basis.

First we recall the analogous basis {vs} of V) referred to in Theorem 3. Let

$; be the operators of §2.5. Note that wt5;(w) = wtm — lay; for | € Zy. For an

19



LS-chain 7 of shape A, define integers {1 (7), l2(7), ... by

~wtm — wt 5, () _ wtsy, () — wt 85,85, ()

h(r) = WSy o ,

(673 Qi

That is, wtm — wt §;, (m) = l1(7)y,, etc. Note that this depends on our fixed
word i = (i1,...,4,). For (I1,...,l;) = (I1(x), ... ,L.(m)), define

i l L
v =F; - Fmuy € V),

where F; € g are negative root vectors. Now, let wpyax (i) be the unique Bruhat-
maximal element in the set {w(J) | J C [1,7]}; that is, wmax(i) is the Weyl
group element generated by a longest reduced subword of i. (See [13, Lemma
1].) Our definition of {v,} is a slight generalization of [20, Definition 3], since i
need not be reduced. Recall [20, Theorem 2:

Proposition 14 Let w = wyax(i). The set {vi}, where ™ runs over all LS-
chains m = (11 > 12 > ;0 < a1 < ---) with w > 71, forms a basis of

V)\ (w)
We shall need one technical property of the v,.

Lemma 15 Let ' = 5;(w), | = (wtm — wtn')/ay, and 6 < 7 in the lexico-
graphic order on LS-chains (§1.3). Suppose either of the following holds:

(i) k < l; or (i) the Raghavan-Sankaran operator coincides with ordinary re-
flection: ' =35;(w) = si(w). Then

Ur, if 0 =7n" and k =1,
k
Fi (ver) = Z xvp, otherwise,
o<m

where 0 runs over LS-chains less than .

Proof. The first case of the conclusion, FF¥(vg/) = vy, follows directly from the
definition of v,. The second case of the conclusion follows easily from either
hypothesis together with [20, Lemma 3(ii)]. e

Now we extend the above construction to generalized Demazure modules.
For a tableau IT of shape (A1, ... , \.), we have 8;, (I) = 71 +II’ for some tableau
I’ of shape (A, ..., \.); and 5, (II') = 7?2 % I, etc. Then define integers

wt IT — wt s;, (IT) wt IT" — wt 5, (IT")

Ll(H) = o 5 LQ(TF) = o 5 etc.
11 2

(Recall that wt IT denotes the endpoint of II considered as a path, i.e., the sum
of the weights of the LS-chains in II.)
Now for (L1,...,L,) = (L1(I1),..., L.(IT)), let

v = FY (oa, @ F2 (v, @ - Fl7 (0y,) )
The {vnr} coincide with the {v,} in the case where Vj m is an ordinary Demazure

module V) (w).
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3.2 Independence of {p,}

Let w; = Wmax(ij, ... ,ir), the longest Weyl group element which can be gener-
ated from a tail subword of i. Then clearly Vim C Vi, (w1) ®---®@ Vi, (w,). We
will write vfrj) = v&”"" /i) By Proposition 14, the vectors

vl @@},

where each m; = (71 > ---) varies over all LS-chains with w; > 71, form a basis
of V)\l (U)l) ®X---® V)\,,,(wr).

Proposition 16 For a standard tableau I1 = (my,... ,m.), let us write vy €
Vim in terms of the above basis of Vi, (w1) ®---® Vi, (w;). Then we have the
triangular relation:

o<II

where © = (01, ... ,0,) runs over all tableaux less than 11 in lexicographic order.

Proof. (Cf. [20, Proof of Lemma 3].) We use induction on r, the number of
letters in i. For » = 1, there is nothing to prove. Now suppose r > 2, and we
know the Proposition for the word (is, ... ,i,). Let s = s;, and take II' = 5(II),
where

0= (m,...,m), ' = (3(m),. .. ,8(m5), T, -, ),

and
M =3(m) = s(m), 5(r2) = s(m), ... y8(mja) = s(mjm).

By induction, we may assume

VI = Uy @ Vg(ry) @@ V() @+ & Upr,. + Z X Uy, Vg, @R vy,
o<Ir

where © = (7*1,6,,...,6,). Then
v = Fj! (o),
where I = hq + -+ + hy for

wt 1 — Wt s(mp—
,...,hk_lz ! ( 1)7hk:

(79 [e7% Qrgy

wtm — wts(m) wt g — wt S(7mg)

hy =

The terms of vy are obtained by distributing the [y operations Fill1 arbitrarily
among the r factors of each term in vy .

We find the maximal term in vy by repeatedly applying Lemma 15. By
hypothesis (ii) of the Lemma, the maximal first factor of a term in vy is
Fﬁl(vs(m)) = ¥n,; the maximal second factor is v.,; and so on through the
(k — 1)th factor. Now, assuming the previous maximal factors have been
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achieved, we apply hypothesis (i) of the Lemma to find that the maximal kth
factor is Fﬁ’“ (Vs(ry)) = Vpi,- But then all [; operations F;, have been used, and
the subsequent terms are unchanged from vyy/. o

Recall that the set {pn} inside V;%,, consists of monomials in any basis {pr}
of the Vi which is triangular with respect to {v,}.

Corollary 17

(i) The set {vn1}, where II runs over the standard tableaux of shape (A1, ..., \),
is linearly independent in Vi m.

(ii) The set {pn}, where II runs over the standard tableaux of shape (A1, ..., ),
restricts to a linearly independent set in Vi’

Proof. Part (i) follows immediately from the triangularity of the set {v} with
respect to the basis {v,(,? ® - ® 1)7(:“)} Part (ii) follows similarly, using in addition

the triangularity of {p,} with respect to {v.}. e

4 Spanning

The independence of the set {pn} in V}*,, along with the Demazure formula
for standard tableaux (§2.3), gives a lower bound for the dimension of Viim- In
this section, we use geometry to find an upper bound for this dimension which
coincides with the lower bound, showing that {pr} is a basis.

4.1 The Demazure module as a space of sections

We relate the generalized Demazure module V; i, and the Bott-Samelson variety
Z; via a succession of three mappings (see [23]). First, let U; denote the one-
dimensional unipotent subgroup of G whose Lie algebra is kF;. We have an
embedding

¢1 : Uilx"'XUi,,._’(Pi ><'~'XPZ‘7,)/Br:Zi

whose image defines a Zariski-dense open cell in Z;.

Second, let P; O B be the maximal parabolic subgroup whose Weyl group is
generated by all the simple reflections except s;. Let Gr(i) = Gr(i,G) := G/P;
be the G-Grassmannian, and define the multiple G-Grassmannian

Gr(i) = Gr(il) X oo X GI‘(Z}),

on which G acts diagonally (simultaneously on each factor). The Bott-Samelson
variety embeds B-equivariantly into this space:

@ : 74 — Gr(i)
(pla"' 7pr) = (plpilap1p2pi2;~~' 7P1P2"'Prpi,,.)~

(The configuration variety Z; m can be realized as the projection of Z; C Gr(i)
to those factors of Gr(i) for which m; > 0.)
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Third, for a weight A = mw;, define a line bundle on Gr(i) as £ := G il k3,
so that L, is the minimal ample line bundle on Gr(i). We thus obtain a line
bundle Lim = L, ® --- ® Ly, on Gr(i), which is very ample (resp. semi-
ample) precisely when all m; > 0 (resp. all m; > 0). The restriction of £ m to
Z; C Gr(i) is easily seen to be isomorphic to the line bundle £; y on Z; defined
in §1.4. Recall that we may identify H°(Gr(i), L)) = VY, so that Gr(i) —
P(H(Gr(i), £,)*) 2 P(V3), gP; — g-vx. Thus we have the natural map

o3 : Gr(i) - P(Vy, ®--@Vy,)

~

(glﬁiu'-' 7g7"P’ir) = g1, ®"'®g7"v)\r'
Now, composing ¢3 o ¢2, we have a map
Zy = P(Vy, ®---®Vy,),

whose image is by definition Z; m. If we compose all three mappings ¢z o0 ¢20¢1,
we see that:

P(Vy, ®@---@Vy,) D Spang(Zim)

Spany (U, (v, ®Ui, (va, @+ Uy vx,+)))
P( Wy, (Ux\l @ g, (U)Q @ U4, U, )) )
P(Vim)

That is, we have the map ¢ = ¢30¢y : Z; — P(Vj m) whose image spans P(V; ).
Dually, we have the injective linear map ¢*, which factors as:

Vvi:km(_>H0(Zi,m7 »ci,m) — HO(Ziv ‘Ci,m)~

4.2 Geometric Demazure formula

We now use Demazure’s character computations with P!-fibrations [3] to finish
our proof of Theorems 4, 5, and 6, on the model of [20, §8].

Our proof proceeds by induction on 7, the number of letters in i. For r =0,
all statements are trivial. Now let r > 1, ¢ = iy, and i’ = (i2,...,4,), m’ =
(m27 v 7m7")'

From the definitions, we easily see that H°(Z;, £; m) = H(P;/B, ), where

B * 0 B * *
E=P x (k)\1®H (Zi’;»ci’,m/)) =P, x ( /\1®Vvi/7m/),

a vector bundle over P;/B. (The last equality is by induction.) Now restrict the
P;-action on this vector bundle to an action of G; = SLs, the group whose Lie
algebra is generated by E;, F;. Take B; = BN G}, so that P;/B = G;/B; = P!.

The inclusion vy, ® Vir m' C Vim dualizes to a short exact sequence of B;-
modules 0 — Ker — Vi, — ki @V, — 0, which leads to a long exact

sequence in cohomology of bundles over P*:
- — HY(P', G; x Ker) — H'(P',G; X Vi) — H'(P1,E) — ---
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B;
Since Vim is a G;-module, it induces a trivial vector bundle, and H*(P!, G;x
B;
Vi,m) = 0. Since trivially H*(P!, G; x Ker) = 0, we thus get:
HY(P',&)=0 fori>0.

From the Leray spectral sequence of the fibration Z; — P;/B, and induction, it
follows that Hi(Zi,ELm) =0 for 7 > 0.

Now, the character ring of G; is R; &2 k[xl, a polynomial ring in one variable,
with the quotient map R — R;, e — ) From elementary computations
with S La-bundles we have Demazure’s formula [3] for the G;-character char; of
the cohomology of £, in terms of the fiber of £ above eB; € G;/B;:

char; HO(P!, £) — char; H' (P!, £) = A, char;(€|cp,),
where A; : R; — R; is the map induced from A; : R — R. But the negative H'

term vanishes, and by specializing the polynomials to z = 1 we find
dimHO(Zi,Eim) = dim H°(PY, €)
= A Chari(kil 0 ‘/i’,m’)|x=1
= Ail (e)\lAiz (e)\z T ))|e’\=17

where the last equality is by induction. However, we also know:

dim HO(Zi,,CLm) Z dlm HO(ZLm,,CLm) by §4.2
> dim V{*, by §4.2
> dim Sban(pn | I a standard tableau)
#{standard tableaux} by Cor 17
Agy (€M A (€2 ) oy by Cor 10

Comparing expressions, we conclude that all the above inequalities are in fact
equalities, meaning

H(Zi, Lim) = H*(Zim, Lim) = Vi'm = Span(pm),

and the Demazure character formula holds for all four of these spaces. This
implies the projective normality of Z; and Z; m with respect to L;m by [4, Ch
I1, Ex 5.14].

Finally, the vanishing of the higher cohomology of L; w over Z; m follows
from a standard argument involving the map ¢ : Z; — Zim (see, e.g. [20, §8],
[22, Prop 28]). Using HO(ZLm, Lim) = H°(Z;, Lim), and the normality of Z; m,
we apply Kempf’s Lemma [9] to deduce H*(Z; m, Lim) = H(Zi, Lim) for all
1 > 0. But we have already shown that the right hand side vanishes.

This completes the proof of Theorems 4, 5, and 6
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