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abstract. A result of Zelevinsky states that an orbit closure in the space of repre-

sentations of the equioriented quiver of type Ah is in bijection with the opposite cell

in a Schubert variety of a partial flag variety SL(n)/P . We prove that Zelevinsky’s

bijection is a scheme-theoretic isomorphism, which shows that the degeneracy schemes

of Fulton and Buch are reduced and Cohen-Macaulay in arbitrary characteristic.

Among all algebraic varieties, the best understood are the flag varieties and their
Schubert subvarieties. They first appear as interesting examples, but acquire a
general importance in the theory of characteristic classes of vector bundles.

Fulton [8] and Buch-Fulton [6] have recently given a theory of “universal de-
generacy loci”, characteristic classes associated to maps among vector bundles,
in which the role of Schubert varieties is taken by certain degeneracy schemes.
The underlying varieties of these schemes arise in the theory of quivers: they
are the orbit-closures in the space of representations of the equioriented quiver
Ah. Many other classical varieties also appear as such quiver varieties, such
as determinantal varieties and the variety of complexes (cf. §1.4). The same
quiver varieties also arise in Deligne-Langlands theory for the p-adic general
linear group [19]: the intersection homology of these varieties gives the p-adic
analog of Kazhdan-Lusztig polynomials (which, by Zelevinsky’s result below,
become identical to ordinary Kazhdan-Lusztig polynomials).

It turns out that a separate theory is not necessary to understand these
spaces (for this particular quiver). By a remarkable but little-known result of
Zelevinsky [20], all the above quiver varieties can be identified set-theoretically
with open subsets of Schubert varieties. In this paper, we prove a scheme-
theoretic strengthening of Zelevinksy’s identification: the “naive” determinantal
conditions defining each quiver variety generate the same ideal as the Plucker
equations defining the corresponding Schubert variety. Since the latter ideal
is well understood via Standard Monomial Theory, we conclude that the corre-
sponding quiver schemes are reduced and their singularities are identical to those
of Schubert varieties. In particular, the quiver varieties in arbitrary character-
istic are normal, Cohen-Macaulay, etc. These properties give a more concrete
interpretation to the intersection theory in Fulton and Buch’s work.

Our results extend early work by Hochster-Eagon [10], Kempf [12], and
Deconcini-Strickland [7]. Musili-Seshadri [16], proved the above scheme-theoretic
identification for the variety of complexes. Some of the consequences of our iden-
tification were known for more general quiver varieties by work of Abeasis, Del
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1



Fra, and Kraft [3],[1]: that the quiver varieties are Cohen-Macaulay with ratio-
nal singularities over a field of characteristic zero, and that the determinantal
conditions generate the reduced ideals of the quiver varieties of codimension
one. Our methods are similar to those of Gonciulea and Lakshmibai [9].

1 Zelevinsky’s bijection

In this section we establish the set-theoretic identification between quiver vari-
eties and Schubert varieties. In §1.4, we give several examples, including Fulton’s
degeneracy schemes.

1.1 Quiver varieties

For the basic results below on quivers, we follow Abeasis-del Fra [2] and Zelevin-
sky [19]. Fix an h-tuple of non-negative integers n = (n1, . . . , nh) and a list of
vector spaces V1, . . . , Vh over an arbitrary field k with respective dimensions
n1, . . . , nh. Define Z, the variety of quiver representations (of dimension n, of
the equioriented quiver of type Ah) to be the affine space of all (h−1)-tuples of
linear maps (f1, . . . , fh−1) :

V1
f1→ V2

f2→ · · · fh−2→ Vh−1
fh−1→ Vh .

If we endow each Vi with a basis, we get Vi
∼= kni and

Z ∼= M(n2×n1)×· · · × M(nh×nh−1),

where M(l×m) denotes the affine space of matrices over k with l rows and m
columns. The group

Gn = GL(n1) × · · · × GL(nh)

acts on Z by

(g1, g2, · · · , gh) · (f1, f2, · · · , fh−1) = (g2f1g
−1
1 , g3f2g

−1
2 , · · · , ghfh−1g

−1
h−1),

corresponding to change of basis in the Vi.
Now, let r = (rij)1≤i≤j≤h be an array of non-negative integers with rii = ni,

and define rij = 0 for any indices other than 1 ≤ i ≤ j ≤ h. Define the set

Z◦(r) = {(f1, · · · , fh−1) ∈ Z | ∀ i<j, rank(fj−1 · · · fi : Vi → Vj) = rij}.
(This set might be empty for a bad choice of r.)

Proposition. The Gn-orbits of Z are exactly the sets Z◦(r) for r = (rij) with

rij − ri,j+1 − ri−1,j + ri−1,j+1 ≥ 0, ∀ 1≤ i≤j≤h.

2



Proof. This is a standard result of algebraic quiver theory [5], [4], first stated
in this form by Abeasis-del Fra and Zelevinsky. Since this theory is not well
known among geometers, we recall it here.

Consider the abelian category R of quiver representations defined as follows.

An object of R is a sequence of linear maps (V1
f1→ · · · fh−1→ Vh), where the Vi

are any vector spaces of arbitrary dimension. A morphism of R from the object

(V1
f1→ · · · fh−1→ Vh) to the object (V ′

1

f ′
1→ · · · f ′

h−1→ V ′
h) is defined to be an h-tuple of

linear maps (φi : Vi → V ′
i ) such that each of the following squares commutes:

Vi
fi→ Vi+1

φi ↓ ↓ φi+1

V ′
i

f ′
i→ V ′

i+1

Direct sum of objects is defined componentwise, and it is known by the
Krull-Schmidt Theorem [4] that any object R ∈ R can be written uniquely as
a direct sum of indecomposable objects. By elementary linear algebra, these
indecomposables are seen to be

Rij = (0 → · · · → 0 →k∼→ · · · ∼→k→ 0 → · · · → 0)
Vi Vj

for 1 ≤ i ≤ j ≤ h (corresponding to the positive roots of the root system Ah).
That is, there are unique multiplicities mij ∈ Z+ with

R ∼=
⊕

1≤i≤j≤h

mijRij .

Our variety Z consists of representations with fixed (Vi) and all possible
(fi). Two points of Z are in the same Gn-orbit exactly if they are isomorphic as
objects in R. So the orbits correspond to arrays (mij)1≤i≤j≤h with mij ∈ Z+

and ni =
∑

k≤i≤l mkl.
We can compute the rank numbers r = (rij) from the multiplicities m =

(mij):
rij =

∑
k≤i≤j≤l

mkl,

and conversely
mij = rij − ri,j+1 − ri−1,j + ri−1,j+1

Hence the arrays (rij) with the stated conditions classify the Gn-orbits on Z. •

We define the quiver variety as the algebraic set

Z(r) = {(f1, · · · , fh−1) ∈ Z | ∀i, j, rank(fj−1 · · · fi : Vi → Vj) ≤ rij}.

It will follow from Zelevinsky’s theorem (§1.3) that Z(r) is an irreducible variety
and is the Zariski closure of Z◦(r) (provided the base field k is infinite).
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1.2 Schubert varieties

Given n = (n1, · · · , nh), for 1 ≤ i ≤ h let

ai = n1 + n2 + · · · + ni, and n = n1 + · · · + nh .

For positive integers i ≤ j, we shall frequently use the notations

[i, j] = {i, i + 1, . . . , j}, [i] = [1, i], [0] = {} .

Let kn ∼= V1⊕· · ·⊕Vh have basis e1, . . . , en compatible with the Vi. Consider
its general linear group GL(n), the subgroup B of upper-triangular matrices,
and the parabolic subgroup P of block upper-triangular matrices

P = {(aij) ∈ GL(n) | aij = 0 whenever j ≤ ak < i for some k} .

A partial flag of type (a1 < a2 < · · · < ah = n) (or simply a flag) is a
sequence of subspaces U. = (U1 ⊂ U2 ⊂ · · · ⊂ Uh = kn) with dim Ui = ai. Let
Ei = V1 ⊕ · · · ⊕Vi = 〈e1, . . . , eai〉, and E′

i = Vi+1 ⊕ · · · ⊕Vh = 〈eai+1, . . . , en〉, so
that Ei ⊕ E′

i = kn. The flag variety Fl is the set of all flags U. as above.
Fl has a transitive GL(n)-action induced from kn, and P = StabGL(n)(E.),

so we may identify Fl ∼= GL(n)/P , g·E. ↔ gP . The Schubert varieties are the
closures of B-orbits on Fl. Such orbits are usually indexed by certain permuta-
tions of [n], but we prefer to use flags of subsets of [n], of the form

τ = (τ1 ⊂ τ2 ⊂ · · · ⊂ τh = [n]), #τi = ai .

(A permutation w : [n] → [n] corresponds to the subset-flag with τi = w[ai] =
{w(1), w(2), . . . , w(ai)}. This gives a one-to-one correspondence between cosets
of the symmetric group W = Sn modulo the Young subgroup Wn = Sn1 × · · ·×
Snh

, and subset-flags.)
Given such τ , let Ei(τ) = 〈ej | j ∈ τi〉 be a coordinate subspace of kn, and

E.(τ) = (E1(τ) ⊂ E2(τ) ⊂ · · ·) ∈ Fl. Then we may define the Schubert cell

X◦(τ) = B · E(τ)

=
{

(U1 ⊂ U2 ⊂ · · ·) ∈ Fl
∣∣∣∣ dim Ui ∩ kj = # τi ∩ [j]

1 ≤ i ≤ h, 1 ≤ j ≤ n

}
and the Schubert variety

X(τ) = X◦(τ)

=
{

(U1 ⊂ U2 ⊂ · · ·) ∈ Fl
∣∣∣∣ dim Ui ∩ kj ≥ # τi ∩ [j]

1 ≤ i ≤ h, 1 ≤ j ≤ n

}
where kj = 〈e1, . . . , ej〉 ⊂ kn.

We define the opposite cell O ⊂ Fl to be the set of flags in general position
with respect to the spaces E′

1 ⊃ · · · ⊃ E′
h−1:

O = {(U1 ⊂ U2 ⊂ · · ·) ∈ Fl | Ui ∩ E′
i = 0}.

In fact, O = B− ·E., the orbit of the standard flag in Fl under the group B− of
lower triangular matrices. We also define Y (τ) = X(τ) ∩ O, an open subset of
X(τ) and Y ◦(τ) = X◦(τ)∩O. By abuse of language, we call Y (τ) the opposite
cell of X(τ), even though it is not a cell.
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1.3 The bijection ζ

We define a special subset-flag τmax = (τmax
1 ⊂ · · · ⊂ τmax

h = [n]) corresponding
to n = (n1, . . . , nh). We want each τmax

i to contain numbers as large as possible
given the constraints [aj−1] ⊂ τmax

j for all j (here a0 = 0). Namely, we define
τmax
i recursively by

τmax
h = [n]; τmax

i = [ai−1] ∪ {largest ni elements of τmax
i+1}.

Furthermore, given r = (rij)1≤i≤j≤h indexing a quiver variety, define a subset-
flag τr to contain numbers as large as possible given the constraints

# τr
i ∩ [aj ] =

{
ai − ri,j+1 for i ≤ j

aj for i > j

Namely,

τr
i = { 1 . . . ai−1︸ ︷︷ ︸

ai−1

. . . . . . . ai︸ ︷︷ ︸
rii−ri,i+1

. . . . . . . ai+1︸ ︷︷ ︸
ri,i+1−ri,i+2

. . . . . . . ai+2︸ ︷︷ ︸
ri,i+2−ri,i+3

. . . . . . . . . . n︸ ︷︷ ︸
ri,h

}

where we use the visual notation

· · · · · · a︸ ︷︷ ︸
b

= [a−b+1, a].

Recall that aj = aj−1 + nj and 0 ≤ rij − ri,j+1 ≤ nj , so that each τr
i is an

increasing list of integers. Also rij −ri,j+1 ≤ ri+1,j −ri+1,j+1, so that τr
i ⊂ τr

i+1.
Thus τr is indeed a subset-flag. See §1.4 for examples.

Now define the Zelevinsky map

ζ : Z → Fl
(f1, . . . , fh−1) �→ (U1 ⊂ U2 ⊂ · · ·)

where

Ui = {(v1, . . . , vh) ∈ V1⊕· · ·⊕Vh = kn | ∀ j ≥ i, vj+1 = fj(vj)}.

In terms of coordinates, if we identify the linear maps (f1, . . . , fh−1) with the
matrices (A1, . . . , Ah−1), and identify Fl ∼= GL(n)/P , we have

ζ(A1, . . . , Ah−1) =


I1 0 0 0 · · ·
A1 I2 0 0 · · ·

A2A1 A2 I3 0 · · ·
A3A2A1 A3A2 A3 I4 · · ·

...
...

...
...

 mod P

where Ii is an identity matrix of size ni.
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Theorem. (Zelevinsky [20])
(i) ζ is a bijection of Z onto its image Y (τmax): ζ : Z

∼→ Y (τmax).
Also,

(∗) Y (τmax) = {(U1 ⊂ U2 ⊂ · · ·) | ∀ i, Ei−1 ⊂ Ui, Ui ∩ E′
i = 0}.

(ii) ζ restricts to a bijection from Z(r) onto Y (τr): ζ : Z(r) ∼→ Y (τr).
Also,

(∗∗) Y (τr) =

{
(U1 ⊂ U2 ⊂ · · ·)

∣∣∣∣∣ ∀ i ≤ j, dim Ui ∩ Ej ≥ ai − ri,j+1,

Ei−1 ⊂ Ui, Ui ∩ E′
i = 0

}
.

Proof. Obviously ζ is injective. To prove (i), we first show equation (∗). The
inclusion ⊂ is clear. For the inclusion ⊃, consider a flag U. with Ei−1 ⊂ Ui for
all i. Since acting by B does not change dim Ui∩kj , we may suppose U. = E.(µ)
for some µ = (µ1 ⊂ · · · ⊂ µh = [n]) with [ai−1] ⊂ µi for all i. By definition
#τmax

i ∩ [j] is as small as possible given [ai−1] ⊂ τmax
i , so

dim Ui ∩ kj = #µi ∩ [j] ≥ #τmax
i ∩ [j],

which shows (∗).
Now we show that ζ(Z) is equal to the right hand side of (∗). The inclusion

ζ(Z) ⊂ RHS(∗) is clear, so we show ζ(Z) ⊃ RHS(∗). Each Ui is tansverse to
E′

i, so Ui is the graph of a linear map

(fi,i+1, . . . , fi,h) : Ei → E′
i = Vi+1 ⊕ · · · ⊕ Vh.

Since Ei−1 ⊂ Ui, we have fij(Ei−1) = 0, and we may consider fij : Vi
∼=

Ei/Ei−1 → Vj . Any element of Uj can be written (v1, . . . , vj , fj,j+1(vj), . . .). Let
i < j. Any (v1, . . . , vh) ∈ Ui is also an element of Uj , so vj+1 = fj,j+1(vj).
Taking fi = fi,i+1, we find U. = ζ(f1, . . . , fh−1).

The proof of (ii) is similar. Equation (∗∗) follows just as before. Now
consider a flag U. = ζ(f1 . . . fh−1) ∈ ζ(Z) = Y (τmax). Then

dim Ui ∩ Ej = dimEi−1 + dim Ker(fjfj−1 · · · fi)
= dimEi−1 + dimVi − rank(fjfj−1 · · · fi)
= ai − rank(fjfj−1 · · · fi).

Hence U. ∈ ζ(Z(r)) ⇔ U. ∈ RHS(∗∗) = Y (τr). •

Corollary. ([2], [19]). For each r, Z◦(r) is an open dense Gn-orbit in Z(r).

Proof. Arguing as in the proof of (ii) above, we find that ζ(Z◦(r)) ⊃ Y ◦(τr).
But it is known that Y ◦(τr) is Zariski open and dense in Y (τr). •

Remarks. (i) The map ζ is an algebraic isomorphism onto its image, since it is
clear from the coordinate definition that ζ is injective on points and on tangent
vectors.
(ii) For each r, X◦(τr) is an orbit of P . If we embed Gn into P as block-diagonal
matrices, then ζ is a Gn-equivariant map. Now, clearly ζ(Z◦(r)) ⊂ Y ◦(τr).
Also the Z◦(r) are a complete list of Gn-orbits on Z and the Y ◦(τr) are disjoint
subsets of Y (τmax) ∼= ζ(Z). We conclude that ζ(Z◦(r)) = Y ◦(τr).
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1.4 Examples

Example. A small generic case. Let h = 4, n = (2, 3, 2, 2),

r =

2 2 0 0
3 1 1

2 2
2

m =

0 2 0 0
0 0 1

0 1
0

where rij and mij are written in the usual matrix positions. Note that rij is
obtained by summing the entries in m weakly above and to the right of mij .

Then we get (a1, a2, a3, a4) = (2, 5, 7, 9), n = 9, and

τmax = (89 ⊂ 12589 ⊂ 1234589 ⊂ [9]), τr = (45 ⊂ 12459 ⊂ 1234589 ⊂ [9]),

which correspond to the cosets in W/Wn

wmax = 89|125|34|67, wr = 45|129|38|67.

(The minimal-length representatives of these cosets are the permutations as
written; the other elements are obtained by permuting numbers within each
block.) The partial flag variety is Fl = {U1 ⊂ U2 ⊂ U3 ⊂ k9 | dim Ui = ai}, and
the Schubert varieties are:

X(τmax) =
{

U.
∣∣∣∣ k2 ⊂ U2

k5 ⊂ U3

}
, X(τr) =

{
U.

∣∣∣∣ U1⊂k5⊂U3, k2⊂U2

dim U2 ∩ k5 ≥ 4

}
.

The opposite cells Y (τ) are defined by the extra conditions Ui ∩ E′
i = 0.

Example. Fulton’s universal degeneracy schemes [8]. Given m > 0, let Z be the
affine space associated to the quiver data h = 2m, n = (1, 2, . . . , m, m, . . . , 2, 1).
For each w ∈ Sm+1, Fulton defines a “degeneracy scheme” Ωw = Z(r) as follows.
(Here Ωw = Z(r) is a variety. We will define scheme structures for quiver
varieties in §2.) Denote i = 2m + 1 − i, and define r = r(w) = (rij) and
m = (mij) by:

rij = rji = i

rij = # [i] ∩ w[j]
mij =

{
1, (i, j) = (w(k), k), ∃k ≤ m
0, otherwise

for 1 ≤ i, j ≤ m. The associated Schubert varieties Y (τr) are given by τr =
(τr

1 ⊂ · · · ⊂ τr
1
) or by cosets w̃ = w̃1| · · · |w̃1 ∈ W/Wn

τr
i = [ai−1] ∪ {a

w−1(1)
, a

w−1(2)
, . . . , a

w−1(i)
},

τr
i

= [ai −1] ∪ {a1, a2, . . . , am}

w̃i = [ai−2 +1, ai−1] ∪ {a
w−1(i)

}
w̃m = [am−1+1, am−1] ∪ {a

w−1(m+1)
}

w̃j = [aj−2+1, aj−1]

for 1 ≤ i ≤ m, 1 ≤ j ≤ m−1. Furthermore τmax = τr(w) and w̃max = w̃r(w) for
w = e ∈ Sm+1, the identity permutation.
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Example. For a given h and n, the variety of complexes is defined as the
union C = ∪rZ(r) over all r = (rij) with ri,i+2 = 0 for each i. The subvarieties
Z(r) correspond to the multiplicity matrices m = (mij) with mij = 0 for all
i + 2 ≤ j, and mii + mi−1,i + mi,i+1 = ni for all i. Musili-Seshadri [16] find
the irreducible components (maximal subvarieties) of C, and show that each
component is isomorphic to the opposite cell of some Schubert variety.

Example. The classical determinantal variety of k × l matrices of rank ≤ m

(where m ≤ k, l) is D = Z(r) for r =
(

l m
0 k

)
, and m =

(
l−m m

0 k−m

)
. Also

n = k + l,

τmax = ([k + 1, n] ⊂ [n]), τr = ([m + 1, l] ∪ [n − m + 1, n] ⊂ [n])

X(τmax) = Fl = Gr(l,kn), X(τr) ∼= {U ∈ Gr(l,kn) | dim U ∩ kl ≥ l − m},
D = Z(r) ∼= Y (τr) = {U ∈ Gr(l,kn) | dim U ∩ kl ≥ l − m, U ∩ E′ = 0},

where E′ = 〈el+1, el+2, . . . , en〉.

2 Plucker coordinates and determinantal ideals

In this section we prove the scheme-theoretic version of Zelevinsky’s bijection.
From now on, we assume our field k is infinite.

2.1 Coordinates on the opposite big cell

Consider the opposite cell O ⊂ GL(n)/P . It is easily seen that O consists of
those cosets which have a unique representative A of the form

A = (akl) =


I1 0 0 · · · 0

A21 I2 0 · · · 0
A31 A32 I3 · · · 0
...

...
...

...
Ah1 Ah2 Ah3 · · · Ih

 mod P,

where Ii is the identity matrix of size ni, and Aij is an arbitrary matrix of size
ni × nj . That is, O is an affine space with coordinates akl for those positions
(k, l) with 1 ≤ l ≤ ai < k ≤ n for some i. Its coordinate ring is the polynomial
ring

k[O] = k[akl].

For a matrix M ∈ M(k× l) and subsets λ ⊂ [k], µ ⊂ [l], let detMλ×µ be the
minor with row indices λ and column indices µ. Now let σ ⊂ [n] be a subset
of size #σ = ai for some i. Define the Plucker coordinate pσ ∈ k[O] to be the
ai-minor of our matrix A with row indices σ and column indices the interval
[ai]:

pσ = pσ(A) = detAσ×[ai].
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Define a partial order on Plucker coordinates by:

σ ≤ σ′ ⇐⇒
σ = {σ(1) < σ(2) < · · · < σ(ai)},

σ′ = {σ′(1) < σ′(2) < · · · < σ′(ai)},
σ(1) ≤ σ′(1), σ(2) ≤ σ′(2), · · · , σ(ai) ≤ σ′(ai).

This is a version of the Bruhat order.

Proposition. Let τ = (τ1 ⊂ · · · ⊂ τh = [n]) be a subset-flag and Y (τ) the
intersection of the Schubert variety X(τ) with the opposite cell O. Then the
(reduced) vanishing ideal I(τ) ⊂ k[O] of Y (τ) ⊂ O is generated by those Plucker
coordinates pσ which are incomparable with one of the pτi:

I(τ) = 〈pσ | ∃ i, #σ = ai, σ �≤ τi〉.

Proof. This follows from well-known results of Lakshmibai-Musili-Seshadri in
Standard Monomial Theory (see e.g. [16],[13]).

2.2 The main theorem

Denote a generic element of the quiver space Z = M(n2×n1)×· · ·×M(nh×nh−1)
by (A1, . . . , Ah−1), so that the coordinate ring of Z is the polynomial ring in
the entries of all the matrices Ai. Let r = (rij) index the quiver variety Z(r) =
{(A1, . . . , Ah−1) | rankAj−1 · · ·Ai ≤ rij}.

Let J (r) ⊂ k[Z] be the ideal generated by the determinantal conditions
implied by the definition of Z(r):

J (r) =
〈

det(Aj−1Aj−2 · · ·Ai)λ×µ

∣∣∣∣ j > i, λ ⊂ [nj ], µ ⊂ [ni]
#λ = #µ = rij + 1

〉
.

Clearly J (r) defines Z(r) set-theoretically.

Theorem. J (r) is a prime ideal and is the vanishing ideal of Z(r) ⊂ Z. There
are isomorphisms of reduced schemes

Z(r) = Spec(k[Z] /J (r)) ∼= Spec(k[O] / I(τr)) = Y (τr).

That is, the quiver scheme Z(r) defined by J (r) is isomorphic to the reduced
variety Y (τr), the opposite cell of a Schubert variety.

Corollary. For a ring R, consider the polynomial ring R[O] = R[akj ] and the
ideal J (r)R ⊂ R[O] generated by the same determinants as above. Define the
scheme Z(r)R = Spec(R[O]/J (r)R).
(i) If k is an arbitrary field, then Z(r)k is reduced, irreducible, Cohen-Macaulay,
normal, and has rational singularities.
(ii) If R is a noetherian ring, then Z(r)R is reduced (resp. irreducible, Cohen-
Macaulay, normal) exactly when Spec(R) is reduced (irreducible, Cohen-Macaulay,
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normal).

Proof of Corollary. (i) Let k be the algebraic closure of k. Then the de-
sired properties of Z(r)k follow from the corresponding properties of Schubert
varieties (see e.g. [11], [15], [17]). But this implies these properties for Z(r)k as
well, since Z(r)k → Z(r)k is a faithfully flat morphism. (See [14], §21.E.)
(ii) By [15], the morphism Z(r)Z → Spec(Z) is faithfully flat, so Z(r)R →
Spec(R) is as well ([14], §3.C). Now, the fibers of this latter morphism are re-
duced, Cohen-Macaulay, and normal by (i), so the corresponding properties hold
for the total space Z(r)R exactly when they hold for the base ([14], §21.E). Fi-
nally, Z(r)R → Spec(R) is a closed surjective morphism with irreducible fibers
of the same dimension, and it is elementary that the total space is irreducible
exactly when the base is irreducible (see [18], §I.6.3).

Proof of Theorem. The map of §1.3, ζ : Z
∼→ Y (τmax) ⊂ O is an algebraic

isomorphism onto its image, so the restriction homomorphism ζ∗ : k[O] → k[Z]
is surjective.

Now, ζ maps Z(r) isomorphically onto Y (τr), so we have

Z(r) = Spec(k[Z] / J̃ (r)) ∼= Spec(k[O] / (ζ∗)−1J̃ (r))
= Spec(k[O] / I(τr)) = Y (τr).

where J̃ (r) ⊂ k[Z] denotes the (reduced) vanishing ideal of Y (τr).
We must show J (r) = J̃ (r). Since clearly J (r) ⊂ J̃ (r), we are left with

the other inclusion, which is equivalent to

(ζ∗)−1J (r) ⊃ (ζ∗)−1J̃ (r) = I(τr).

We prove this in the next section.

2.3 Proof of the main theorem

Let A ∈ O be the generic matrix of §2.1. We define ideals I0, I1, I2 ⊂ k[O]
generated by certain minors of A:

I0 = (ζ∗)−1J (r)

= (ζ∗)−1

〈
det(Aj−1Aj−2 · · ·Ai)λ×µ

∣∣∣∣ j > i, λ ⊂ [nj ], µ ⊂ [ni]
#λ = #µ = rij + 1

〉
.

I1 =
〈

det Aλ×µ

∣∣∣∣ i ≤ j, λ ⊂ [aj +1, n], µ ⊂ [ai]
#λ = #µ = rij +1

〉

I2 = I(τr) =
〈

detAσ×[ai]

∣∣∣∣ 1 ≤ i ≤ h−1, σ ⊂ [n]
#σ = ai, σ �≤ τr

i

〉
To finish the proof of Theorem 2.2, we will show

I0 ⊃ I1 ⊃ I2 .

10



Lemma 1. Let X = (xij) and Y = (ykl) be matrices of variables xij , ykl

generating a polynomial ring. Let JX (resp. JY ) be the ideal generated by all
r+1-minors of X (resp. Y ). Then JX and JY both contain all r+1-minors of
the product XY .

Proof.
det(XY )λ×µ =

∑
ν

detXλ×ν detYν×µ. •

Lemma 2. Let (A1, . . . , Ah−1) be a generic element of Z, and for j > i let
Jji be the ideal generated by all r + 1-minors of the nj × ni product matrix
Aj−1 · · ·Ai. Then Jji contains all r+1-minors of the (n−aj−1) × ai matrix

Ã(ji) =


Aj−1· · ·A1 Aj−1· · ·A2 · · · Aj−1· · ·Ai

Aj· · ·A1 Aj· · ·A2 · · · Aj· · ·Ai

...
...

...
Ah−1· · ·A1 Ah−1· · ·A2 · · · Ah−1· · ·Ai


Proof. Note that we can factor the matrix

Ã(ji) =


Ij−1

Aj

...
Ah−1· · ·Aj

 · Aj−1· · ·Ai · (Ai−1· · ·A1, Ai−1· · ·A2, · · · , Ai−1, Ii).

Now apply Lemma 1 twice. •

Lemma 3. I0 ⊃ I1 .

Proof. For generic elements A ∈ O and (A1, . . . , Ah−1) ∈ Z, we have by
definition ζ∗(f(A)) = f(ζ(A1, . . . , Ah−1)) for any polynomial f in the matrix
entries. Now let λ ⊂ [aj−1+1, n], µ ⊂ [ai], #λ = #µ = rij + 1, and consider a
generator det Aλ×µ of I1. Then

ζ∗(detAλ×µ) = det ζ(A1, . . . , Ah−1)λ×µ = det Ã
(ji)
λ′×µ

where λ′ ⊂ [n − aj−1] is a translate of λ. By Lemma 2, det Ã
(ji)
λ′×µ ∈ J (r), so

I1 = 〈detAλ×µ〉 ⊂ (ζ∗)−1J (r) = I0. •

Lemma 4. (Gonciulea-Lakshmibai) Let A be a generic element of O. Let
1 ≤ t ≤ ai, 1 ≤ s ≤ n, and σ = {σ(1) < σ(2) < · · · < σ(ai)} ⊂ [n] with
σ(ai− t+1) ≥ s. Then pσ(A) belongs to the ideal of k[O] generated by t-minors
of A with row indices ≥ s and column indices ≤ ai.

Proof. Choose σ′ ⊂ [s, n] ∩ σ with #σ′ = t, and let σ′′ = σ\σ′. Then the
Laplace expansion of pσ(A) with respect to the rows σ′, σ′′, gives

pσ(A) = det Aσ×[ai] =
∑

λ′∪λ′′=[ai]

± detAσ′×λ′ det Aσ′′×λ′′ ,
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where the sum is over all partitions of the interval [ai]. The first factor of each
term in the sum is of the form required. •

Lemma 5. I1 ⊃ I2 .

Proof. Let σ ⊂ [n] with #σ = ai, σ �≤ τr
i for some i, 1 ≤ i ≤ h−1. Now, τr

i

has the largest possible entries such that

τr
i (ai − ri,j+1) ≤ aj , ∀ j ≥ i,

so σ �≤ τr
i must violate this condition for some j:

σ(ai − ri,j+1) ≥ aj + 1, ∃ j ≥ i.

Hence by Lemma 4, pσ(A) is in I1. •

The Main Theorem 2.2 is therefore proved.
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