Math 880 Lagrange Inversion Formula Fall 2012

Inversion of Formal Power Series. We extend the ring of formal power series C[z] to
the field of formal Laurent series C((x)):

C(z) = {Z@N apz® | NeZ,a € @} .

These are the series in z, 2~! with a lowest term 2=, but not necessarily a highest term. We
define the operator [2"] which extracts the 2™ coefficient of a series: [z"] (3, arz®) = an.

LEMMA: (i) For h(z) € C((x)), we have [z~ ]h/(x) = 0.
(ii) For f(x) € 2C[x] with [z']f(z) # 0, and i € Z, we have:
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Proof. (i) Obvious from the definition of derivative: (z*) = kz*~! for k € Z.
(ii) For i # —1, this follows from (i), since f(z)'f'(x) = < (f(x)"*'). For i = —1 and

i+l
f(x) = Zk21 ayz”:
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— <x71+%+%x+”->(1—1‘(%4—%%—%“')4-”'),
from which [z~ f(z)! f'(x) = 1 is evident. O

LAGRANGE INVERSION THEOREM: Let f(z), g(z) € zC[z] be inverses: f(g(x)) = . Then:

1
fl@)m
In particular, if f(x) = z/¢(x) and g(z) = x ¢(g(x)), then:
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Proof. Let g(x) =} ;5 b;z'. Since f = g~', we have:

v =g(f(z)) =) _bif(2)',
i>1
and taking the derivative gives:

1= b (f(a))) = ibif ()1 f (x).
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We wish to move the b, term to be the coefficient of f(z)~! f/(x). Thus, we divide by f(z)™

f(i)n = S ibf) (@)
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Applying the Lemma to each term, we have the first formula: [z71|[1/f(2)"] = nby,.
For the second formula, take f(x) = x/¢(z) so that x = f(g(x)) = g(z)/P(g(x)) is
equivalent to g(z) = x ¢(g()). Now, evidently [z~ !]h(z) = [z ] (2"h(z)), so:
_l -1 1 _l nfli_l n—1 n

Reference: Richard Stanley, Enumerative Combinatorics, Vol. 2, Ch. 5.

Inversion of Analytic Functions. We give an analytic proof of Lagrange Inversion.
Consider a function f(u) of a complex variable u, holomorphic in a neighborhood of u = 0.
Suppose f(0) = 0 and f’(0) # 0, so by the Inverse Function Theorem, f(u) is one-to-one
inside a small circle C defined by |u| = €, and there is a unique inverse function g(z) defined
near z = 0 with g(f(u)) = u. Applying the Cauchy Residue Theorem and then a change of
variables u = g(¢), ¢ = f(u), d¢ = f'(u) du, we have:'
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Expanding f{u()“_)z = J;((;‘)) 1_2} T = ]}((5)) > nsol f(zu))”, we get the Taylor series:
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Here the third equality is integration by parts, and the fourth is the Residue Theorem.

Generalization: For inverse functions with g(f(x)) = x, we can use the same reasoning
to expand h(g(z)) for any h(x) with h(0) = 0, obtaining:
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" h(ale) = o
'For a function defined by a Laurent series g(¢) = ZnEZ bn (¢ — z)™ which is holomorphic on the disk D
defined by |¢ — 2| <8, the Cauchy residue is: g(2) = bo = 75 §._. _, 2 dg.

Now let f(u) be holomorphic on a simply connected region @ C C bounded by a simple closed curve C,
With f(Q) C D. Let u=wu1,...,un € Q be the solutions of f(u) = z, where u; has multiplicity m;. Then

= % ff () —du = = >N mi counts solutions. For h(u) holomorphic, = % f{u()wz h(u)du = SN mih(u;).




