
Math 411.002 Linear Mappings, Twofold Symmetry Fall 2020

Linear mappings and matrices. We consider a linear mapping

L : R2 → R2,

which we can picture as a motion of the plane, moving each vector v to
L(v) = w, for example stretching vectors to twice their length from the ori-
gin. Linear means that L respects vector addition and scalar multiplication:

L(v1+v2) = L(v1) + L(v2) and L(rv) = rL(v) for r ∈ R.

Thus, once we know the outputs of the basis vectors L(1, 0) = (a, b) and
L(0, 1) = (c, d), we can compute L(x, y) for any v = (x, y):

L(x, y) = L
(
x(1, 0) + y(0, 1)

)
= xL(1, 0) + yL(0, 1)

= x(a, b) + y(c, d) = (ax+cy, bx+dy).

The matrix of L, denoted [L], records the outputs of the basis in its columns:

[L] =

 | |
L(1, 0) L(0, 1)
| |

 =

[
a c
b d

]
.

We define matrix multiplication of [L] times the column vector v = (x, y) =
[
x
y

]
to give the output L(v):

L(x, y) =

[
a c
b d

]
·
[
x
y

]
=

[
ax+cy
bx+dy

]
.

Example: Let L(x, y) = (2y,−x−3y), so that:

L(1, 0) = (0,−1), L(0, 1) = (2, 3), [L] =

[
0 | 2
−1 | 3

]
.

We can picture this mapping as taking the unit square with sides (1, 0) and
(0, 1) to the red image parallelogram with sides (0,−1) and (2, 3):
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Given two linear mappings L,M , we can do one after the other to get
the composition mapping L ◦M defined by: (L ◦M)(v) = L(M(v)). We
define matrix multiplication so that it gives the matrix of the composition:

[L ◦M ] = [L] · [M ].

This is the main meaning of matrix multiplication.
To avoid fussy notation we drop the brackets, so that L can denote both

the linear mapping and its matrix, and · denotes composition of mappings
as well as matrix multiplication.

Diagonalization. A better way to picture a linear mapping L is as stretch-
ing or flipping certain vectors. An eigenvector v is a nonzero vector which
gets multiplied by a scalar λ, called the eigenvalue of v:

L(v) = λv for λ ∈ R.

If λ > 0, this means L stretches or shrinks v; if λ < 0, it also flips v over.
Given L, how to find such special vectors? First, we find the eigenvalues.

Recall that a linear mapping M is singular when it crushes some non-zero
vector to zero, and this is equivalent to the vanishing of the determinant:

Some v 6= 0 has M(v) = 0 ⇐⇒ det(M) = det

[
a c
b d

]
= ad− bc = 0.

(Geometrically, the determinant measures the area of the image parallelo-
gram of M , which is zero when the paralleleogram collapses to a line seg-
ment.) Now, a scalar λ is an eigenvalue of some eigenvector when:

Some v 6= 0 has L(v) = λv ⇐⇒ some v 6= 0 has L(v)− λI(v) = 0

⇐⇒ some v 6= 0 has (L− λI)(v) = 0

⇐⇒ det(L−λI) = 0,

where I is the identity mapping I(v) = v. Thus, the eigenvalues are precisely
the roots of the polynomial function p(λ) = det(L−λI), the characteristic
polyonmial of L, so we can find all the eigenvalues without knowning any
eigenvectors! Once we have such a root λ, we can use Gaussian elimination
to solve for the unknown vector v in the linear system [L−λI]·v = 0.

Once we have the eigenvalues λ1, λ2 and the basis of eigenvectors v1, v2,
we can picture L as stretching these two axes by their respective eigenvalues,
as if L were the diagonal matrix D =

[
λ1 0
0 λ2

]
. Indeed, if we form the change-

of-basis matrix P = [v1 | v2] with P (1, 0) = v1, P (0, 1) = v2, we get:

[L] = PDP−1 = P

[
λ1 0
0 λ2

]
P−1,
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because:

PDP−1(v1) = P (D(P−1(v1))) = P (D(1, 0)) = P (λ1(1, 0)) = λ1v1 = L(v1),

and similarly for L(v2).

Example: Continuing with L =
[
0 2
−1 3

]
, the characteristic polynomial is:

p(λ) = det(L−λI) = det

[
−λ 2
−1 3−λ

]
= λ2 − 3λ+ 2.

This has roots λ1 = 1, λ2 = 2, so these must be the eigenvalues.
To find the eigenvector for λ1 = 1, we must solve (L−λ1I)(v1) = 0:[

−λ1 2
−1 3−λ1

][
x
y

]
=

[
−1 2
−1 2

][
x
y

]
=

[
0
0

]
.

We row-reduce this system of two linear equations in two variables:[
−1 2
−1 2

]

	 −1 ⇐⇒
[

1 −2
−1 2

]y

+1 ⇐⇒
[

1 −2
0 0

]
.

That is, the system is equivalent to x − 2y = 0, or v1 = (x, y) = (2y, y).
Taking y = 1 gives v1 = (2, 1), which indeed has L(v1) = λ1v1 = v1.
Similarly, we get the other eigenvector v2 = (1, 1) with L(v2) = λ2v2 = 2v2.

L =

[
0 2
−1 3

]
= PDP−1 =

[
2 1
1 1

][
1 0
0 2

][
1 −1
−1 2

]
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Orthogonal mappings. We measure distances and angles in the plane
R2 using the dot product, defined geometrically on vectors v, w ∈ R2 as
v ·w = |v||w| cos(θvw), where | | means length and θvw is the angle between
vectors; and defined algebraically as:

v · w = (a, b) · (c, d) = ac+ bd.

The dot product is different from the matrix product: if we consider v, w
as 2×1 column vectors, we cannot multiply them. However, consider the
transpose operation which exchanges rows with columns:

vT =

[
a
b

]T
= [ a b ].

Then vT ·w, the product of 1×2 and 2×1 matrices, is a 1×1 matrix, a scalar,
and in fact it is the dot product: vT · w = v · w.

Geometrically, two vectors are perpendicuar (orthogonal) when v ·w = 0,
and v is a unit vector (length one) when v · v = 1. The standard basis
e1 = (1, 0) and e2 = (0, 1) is orthonormal, meaning e1, e2 are are both unit
vectors and are orthogonal to each other.

A linear mapping R : R2 → R2 is orthogonal or rigid if it preserves
distances and angles, taking any shape to a congruent image shape: for
example a rotation. Clearly, an orthogonal mapping must take the standard
basis to another orthonormal basis:

R(e1) ·R(e1) = R(e2) ·R(e2) = 1, R(e1) ·R(e2) = R(e2) ·R(e1) = 0.

It turns out this is enough for R to be orthogonal, and this gives a simple
matrix criterion for orthogonal mappings. Define transpose of a matrix to
exchange all columns with rows:

R =

[
a | c
b | d

]
, RT =

[
a b
c d

]
.

Now, for R(e1) = (a, b), R(e2) = (c, d), the matrix product RT · R is the
matrix of all dot products of these columns:

R =

[
a | c
b | d

]
is orthogonal ⇐⇒ RT·R =

[
a b
c d

]
·
[
a | c
b | d

]
=

[
1 0
0 1

]
= I.

That is, RT·R = I and R−1 = RT .
For example Rotα, the counterclockwise rotation by angle α, has matrix:

Rotα =

[
cosα − sinα
sinα cosα

]
, Rot−1α = Rot−α =

[
cosα sinα
− sinα cosα

]
= RotTα .
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Twofold symmetry. A symmetry of an object X is an invertible mapping
from X to itself which preserves the structure of X. If X is a geometric
object in the plane, a symmetry is an orthogonal mapping R : R2 → R2

with R(X) = X. The most familiar form of symmetry is bilateral, in which
R = F is a flip or reflection which exchanges the identical halves of X:

This has eigenvectors F (e1) = e1 and F (e2) = −e2 (if you tilt your head),

and matrix F =
[
1 | 0
0 |−1

]
.

A general flip has F (v1) = v1 and F (v2) = −v2 for some orthonormal
eigenvectors v1 = (c, s) = (cosα, sinα) and v2 = (−s, c). We compute its

matrix using the eigenvector change-of-basis matrix P =
[
c | −s
s | c

]
:

F = Flα = P

[
1 0
0 −1

]
P−1 =

[
c2−s2 2cs

2cs −c2+s2
]

=

[
cos 2α sin 2α
sin 2α −cos 2α

]
.

A flip F is a twofold symmetry, meaning that it is its own inverse, F−1 =
F , so that F (F (v)) = v or equivalently F 2 = F ·F = I. Is there any other
kind of orthogonal twofold symmetry R with R2 = I? For any such R, its
eigenvalues R(v) = λv must satisfy v = I(v) = R(R(v)) = λ2v, so λ2 = 1
and λ = ±1. Thus, the possible diagonal forms for R are:[

1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0

0−1

]
.

The first is the identity matrix, the trivial symmetry. The second is the
bilateral symmetry above. The third is a 1

2 rotation Rotπ. Note that in
each case R = R−1 = RT .

We construct an object X having R = Rotπ as its only non-trivial sym-
metry. Starting with a completely asymmetric object X◦, we combine it
with its rotated image R(X◦), producing a 2-bladed propeller or pinwheel
X = X◦ ∪R(X◦).

We know R is a symmetry because:

R(X) = R(X◦) ∪R(R(X◦)) = R(X◦) ∪X◦ = X.
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Twofold symmetry in space. Any linear mapping R : R3 → R3 has
characteristic polynomial p(λ) = det(R − λI) of degree 3, which must have
a real root, and hence a real eigenvalue λ ∈ R with R(v) = λv for some
eigenvector v. If R is orthogonal, we must have |v| = |R(v)| = |λ||v|, so that
|λ| = 1 and λ = ±1.

If λ = 1 with no −1 eigenvalues, then R is a rotation around the axis
v; if we complete v1 = v to an orthonormal basis {v1, v2, v3}, and take
the change-of-basis matrix P = [ v1 | v2 | v3 ], then v1 is fixed and v2, v3 are
rotated by some angle α:

R = P

[
1 0 0
0 cosα −sinα
0 sinα cosα

]
P−1.

The other possibility is λ = −1, in which case:

R = P

[−1 0 0
0 cosα −sinα
0 sinα cosα

]
P−1.

This is a roto-reflection: a rotation around an axis, combined with a reflec-
tion across the plane orthogonal to the axis; for α = 0, it is just a reflection.

Now consider a twofold orthogonal symmetry, i.e. R2 = I, R−1 = R.
The non-trivial diagonal forms are:

R1 =

[
1 0 0
0 1 0
0 0 −1

]
, R2 =

[
1 0 0
0 −1 0
0 0 −1

]
, R3 =

[−1 0 0
0 −1 0
0 0 −1

]
.

Each of these corresponds to a type of twofold symmetry in space, the sym-
metry of an object X = X◦ ∪ R(X◦) for one of the R = Ri. The first
is bilateral symmetry (reflection); the second is propeller symmetry (180◦

rotation); but the third is “point symmetry” (180◦ roto-reflection), a type
seldom seen in natural or manufactured objects.

For examples in chemistry, the site http://symmetry.otterbein.edu/gallery
has nice pictures of symmetric molecules; set Point Group Type to “C1, Cs, Ci”.
The molecule cyclohexane-Br2Cl2 has point symmetry; click the picture to
rotate around.
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