Math 411.002 Linear Mappings, Twofold Symmetry Fall 2020

Linear mappings and matrices. We consider a linear mapping

$$
L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},
$$

which we can picture as a motion of the plane, moving each vector v to $L(v)=w$, for example stretching vectors to twice their length from the origin. Linear means that L respects vector addition and scalar multiplication:

$$
L\left(v_{1}+v_{2}\right)=L\left(v_{1}\right)+L\left(v_{2}\right) \quad \text { and } \quad L(r v)=r L(v) \text { for } r \in \mathbb{R} .
$$

Thus, once we know the outputs of the basis vectors $L(1,0)=(a, b)$ and $L(0,1)=(c, d)$, we can compute $L(x, y)$ for any $v=(x, y)$:

$$
\begin{aligned}
L(x, y) & =L(x(1,0)+y(0,1))=x L(1,0)+y L(0,1) \\
& =x(a, b)+y(c, d)=(a x+c y, b x+d y) .
\end{aligned}
$$

The matrix of L, denoted $[L]$, records the outputs of the basis in its columns:

$$
[L]=\left[\begin{array}{c|c}
\mid & \mid \\
L(1,0) & L(0,1) \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{l|l}
a & c \\
b & d
\end{array}\right] .
$$

We define matrix multiplication of $[L]$ times the column vector $v=(x, y)=\left[\begin{array}{l}x \\ y\end{array}\right]$ to give the output $L(v)$:

$$
L(x, y)=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+c y \\
b x+d y
\end{array}\right] .
$$

Example: Let $L(x, y)=(2 y,-x-3 y)$, so that:

$$
L(1,0)=(0,-1), \quad L(0,1)=(2,3), \quad[L]=\left[\begin{array}{r|r}
0 & 2 \\
-1 & 3
\end{array}\right] .
$$

We can picture this mapping as taking the unit square with sides $(1,0)$ and $(0,1)$ to the red image parallelogram with sides $(0,-1)$ and $(2,3)$:

Given two linear mappings L, M, we can do one after the other to get the composition mapping $L \circ M$ defined by: $(L \circ M)(v)=L(M(v))$. We define matrix multiplication so that it gives the matrix of the composition:

$$
[L \circ M]=[L] \cdot[M] .
$$

This is the main meaning of matrix multiplication.
To avoid fussy notation we drop the brackets, so that L can denote both the linear mapping and its matrix, and • denotes composition of mappings as well as matrix multiplication.

Diagonalization. A better way to picture a linear mapping L is as stretching or flipping certain vectors. An eigenvector v is a nonzero vector which gets multiplied by a scalar λ, called the eigenvalue of v :

$$
L(v)=\lambda v \quad \text { for } \quad \lambda \in \mathbb{R} .
$$

If $\lambda>0$, this means L stretches or shrinks v; if $\lambda<0$, it also flips v over.
Given L, how to find such special vectors? First, we find the eigenvalues. Recall that a linear mapping M is singular when it crushes some non-zero vector to zero, and this is equivalent to the vanishing of the determinant:

Some $v \neq 0$ has $M(v)=0 \Longleftrightarrow \operatorname{det}(M)=\operatorname{det}\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]=a d-b c=0$.
(Geometrically, the determinant measures the area of the image parallelogram of M, which is zero when the paralleleogram collapses to a line segment.) Now, a scalar λ is an eigenvalue of some eigenvector when:

$$
\text { Some } \begin{aligned}
v \neq 0 \text { has } L(v)=\lambda v & \Longleftrightarrow \text { some } v \neq 0 \text { has } L(v)-\lambda I(v)=0 \\
& \Longleftrightarrow \operatorname{some} v \neq 0 \text { has }(L-\lambda I)(v)=0 \\
& \Longleftrightarrow \operatorname{det}(L-\lambda I)=0,
\end{aligned}
$$

where I is the identity mapping $I(v)=v$. Thus, the eigenvalues are precisely the roots of the polynomial function $p(\lambda)=\operatorname{det}(L-\lambda I)$, the characteristic polyonmial of L, so we can find all the eigenvalues without knowning any eigenvectors! Once we have such a root λ, we can use Gaussian elimination to solve for the unknown vector v in the linear system $[L-\lambda I] \cdot v=0$.

Once we have the eigenvalues λ_{1}, λ_{2} and the basis of eigenvectors v_{1}, v_{2}, we can picture L as stretching these two axes by their respective eigenvalues, as if L were the diagonal matrix $D=\left[\begin{array}{ccc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$. Indeed, if we form the change-of-basis matrix $P=\left[v_{1} \mid v_{2}\right]$ with $P(1,0)=v_{1}, P(0,1)=v_{2}$, we get:

$$
[L]=P D P^{-1}=P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] P^{-1},
$$

because:
$P D P^{-1}\left(v_{1}\right)=P\left(D\left(P^{-1}\left(v_{1}\right)\right)\right)=P(D(1,0))=P\left(\lambda_{1}(1,0)\right)=\lambda_{1} v_{1}=L\left(v_{1}\right)$,
and similarly for $L\left(v_{2}\right)$.
Example: Continuing with $L=\left[\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right]$, the characteristic polynomial is:

$$
p(\lambda)=\operatorname{det}(L-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right]=\lambda^{2}-3 \lambda+2 .
$$

This has roots $\lambda_{1}=1, \lambda_{2}=2$, so these must be the eigenvalues.
To find the eigenvector for $\lambda_{1}=1$, we must solve $\left(L-\lambda_{1} I\right)\left(v_{1}\right)=0$:

$$
\left[\begin{array}{cc}
-\lambda_{1} & 2 \\
-1 & 3-\lambda_{1}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We row-reduce this system of two linear equations in two variables:

$$
\left[\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right]{ }^{-1} \Longleftrightarrow\left[\begin{array}{rr}
1 & -2 \\
-1 & 2
\end{array}\right] 2+1 \Longleftrightarrow\left[\begin{array}{rr}
1 & -2 \\
0 & 0
\end{array}\right] .
$$

That is, the system is equivalent to $x-2 y=0$, or $v_{1}=(x, y)=(2 y, y)$. Taking $y=1$ gives $v_{1}=(2,1)$, which indeed has $L\left(v_{1}\right)=\lambda_{1} v_{1}=v_{1}$. Similarly, we get the other eigenvector $v_{2}=(1,1)$ with $L\left(v_{2}\right)=\lambda_{2} v_{2}=2 v_{2}$.

$$
L=\left[\begin{array}{rr}
0 & 2 \\
-1 & 3
\end{array}\right]=P D P^{-1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right]
$$

Orthogonal mappings. We measure distances and angles in the plane \mathbb{R}^{2} using the dot product, defined geometrically on vectors $v, w \in \mathbb{R}^{2}$ as $v \cdot w=|v||w| \cos \left(\theta_{v w}\right)$, where $\left|\mid\right.$ means length and $\theta_{v w}$ is the angle between vectors; and defined algebraically as:

$$
v \cdot w=(a, b) \cdot(c, d)=a c+b d .
$$

The dot product is different from the matrix product: if we consider v, w as 2×1 column vectors, we cannot multiply them. However, consider the transpose operation which exchanges rows with columns:

$$
v^{T}=\left[\begin{array}{l}
a \\
b
\end{array}\right]^{T}=\left[\begin{array}{ll}
a & b
\end{array}\right] .
$$

Then $v^{T} \cdot w$, the product of 1×2 and 2×1 matrices, is a 1×1 matrix, a scalar, and in fact it is the dot product: $v^{T} \cdot w=v \cdot w$.

Geometrically, two vectors are perpendicuar (orthogonal) when $v \cdot w=0$, and v is a unit vector (length one) when $v \cdot v=1$. The standard basis $e_{1}=(1,0)$ and $e_{2}=(0,1)$ is orthonormal, meaning e_{1}, e_{2} are are both unit vectors and are orthogonal to each other.

A linear mapping $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is orthogonal or rigid if it preserves distances and angles, taking any shape to a congruent image shape: for example a rotation. Clearly, an orthogonal mapping must take the standard basis to another orthonormal basis:

$$
R\left(e_{1}\right) \cdot R\left(e_{1}\right)=R\left(e_{2}\right) \cdot R\left(e_{2}\right)=1, \quad R\left(e_{1}\right) \cdot R\left(e_{2}\right)=R\left(e_{2}\right) \cdot R\left(e_{1}\right)=0
$$

It turns out this is enough for R to be orthogonal, and this gives a simple matrix criterion for orthogonal mappings. Define transpose of a matrix to exchange all columns with rows:

$$
R=\left[\begin{array}{l|l}
a & c \\
b & d
\end{array}\right], \quad R^{T}=\left[\begin{array}{ll}
\frac{a}{a} & b \\
c & d
\end{array}\right] .
$$

Now, for $R\left(e_{1}\right)=(a, b), R\left(e_{2}\right)=(c, d)$, the matrix product $R^{T} \cdot R$ is the matrix of all dot products of these columns:
$R=\left[\begin{array}{l|l}a & c \\ b & d\end{array}\right]$ is orthogonal $\Longleftrightarrow R^{T} \cdot R=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$.
That is, $R^{T} \cdot R=I$ and $R^{-1}=R^{T}$.
For example $\operatorname{Rot}_{\alpha}$, the counterclockwise rotation by angle α, has matrix:

$$
\operatorname{Rot}_{\alpha}=\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right], \quad \operatorname{Rot}_{\alpha}^{-1}=\operatorname{Rot}_{-\alpha}=\left[\begin{array}{r}
\cos \alpha \\
\sin \alpha \\
-\sin \alpha \\
\cos \alpha
\end{array}\right]=\operatorname{Rot}_{\alpha}^{T} .
$$

Twofold symmetry. A symmetry of an object X is an invertible mapping from X to itself which preserves the structure of X. If X is a geometric object in the plane, a symmetry is an orthogonal mapping $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $R(X)=X$. The most familiar form of symmetry is bilateral, in which $R=F$ is a flip or reflection which exchanges the identical halves of X :

This has eigenvectors $F\left(e_{1}\right)=e_{1}$ and $F\left(e_{2}\right)=-e_{2}$ (if you tilt your head), and matrix $F=\left[\begin{array}{r|r}1 & 0 \\ 0 & -1\end{array}\right]$.

A general flip has $F\left(v_{1}\right)=v_{1}$ and $F\left(v_{2}\right)=-v_{2}$ for some orthonormal eigenvectors $v_{1}=(c, s)=(\cos \alpha, \sin \alpha)$ and $v_{2}=(-s, c)$. We compute its matrix using the eigenvector change-of-basis matrix $P=\left[\begin{array}{c|c}c & -s \\ s & c\end{array}\right]$:

$$
F=\mathrm{Fl}_{\alpha}=P\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] P^{-1}=\left[\begin{array}{cc}
c^{2}-s^{2} & 2 c s \\
2 c s & -c^{2}+s^{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right]
$$

A flip F is a twofold symmetry, meaning that it is its own inverse, $F^{-1}=$ F, so that $F(F(v))=v$ or equivalently $F^{2}=F \cdot F=I$. Is there any other kind of orthogonal twofold symmetry R with $R^{2}=I$? For any such R, its eigenvalues $R(v)=\lambda v$ must satisfy $v=I(v)=R(R(v))=\lambda^{2} v$, so $\lambda^{2}=1$ and $\lambda= \pm 1$. Thus, the possible diagonal forms for R are:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

The first is the identity matrix, the trivial symmetry. The second is the
 each case $R=R^{-1}=R^{T}$.

We construct an object X having $R=\operatorname{Rot}_{\pi}$ as its only non-trivial symmetry. Starting with a completely asymmetric object X_{\circ}, we combine it with its rotated image $R\left(X_{\circ}\right)$, producing a 2 -bladed propeller or pinwheel $X=X_{\circ} \cup R\left(X_{\circ}\right)$.

We know R is a symmetry because:

$$
R(X)=R\left(X_{\circ}\right) \cup R\left(R\left(X_{\circ}\right)\right)=R\left(X_{\circ}\right) \cup X_{\circ}=X
$$

Twofold symmetry in space. Any linear mapping $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has characteristic polynomial $p(\lambda)=\operatorname{det}(R-\lambda I)$ of degree 3 , which must have a real root, and hence a real eigenvalue $\lambda \in \mathbb{R}$ with $R(v)=\lambda v$ for some eigenvector v. If R is orthogonal, we must have $|v|=|R(v)|=|\lambda||v|$, so that $|\lambda|=1$ and $\lambda= \pm 1$.

If $\lambda=1$ with no -1 eigenvalues, then R is a rotation around the axis v; if we complete $v_{1}=v$ to an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$, and take the change-of-basis matrix $P=\left[v_{1}\left|v_{2}\right| v_{3}\right]$, then v_{1} is fixed and v_{2}, v_{3} are rotated by some angle α :

$$
R=P\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] P^{-1} .
$$

The other possibility is $\lambda=-1$, in which case:

$$
R=P\left[\begin{array}{rcc}
-1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] P^{-1} .
$$

This is a roto-reflection: a rotation around an axis, combined with a reflection across the plane orthogonal to the axis; for $\alpha=0$, it is just a reflection.

Now consider a twofold orthogonal symmetry, i.e. $R^{2}=I, R^{-1}=R$. The non-trivial diagonal forms are:

$$
R_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right], \quad R_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \quad R_{3}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

Each of these corresponds to a type of twofold symmetry in space, the symmetry of an object $X=X_{\circ} \cup R\left(X_{\circ}\right)$ for one of the $R=R_{i}$. The first is bilateral symmetry (reflection); the second is propeller symmetry (180° rotation); but the third is "point symmetry" (180° roto-reflection), a type seldom seen in natural or manufactured objects.

For examples in chemistry, the site http://symmetry.otterbein.edu/gallery has nice pictures of symmetric molecules; set Point Group Type to " C_{1}, C_{s}, C_{i} ". The molecule cyclohexane- $-\mathrm{Br}_{2} \mathrm{Cl}_{2}$ has point symmetry; click the picture to rotate around.

