Math 411.002 Linear Mappings, Twofold Symmetry Fall 2020

Linear mappings and matrices. We consider a linear mapping
L:R? » R?

which we can picture as a motion of the plane, moving each vector v to
L(v) = w, for example stretching vectors to twice their length from the ori-
gin. Linear means that L respects vector addition and scalar multiplication:

L(vi+v2) = L(v1) + L(v2) and L(rv) =rL(v) for r eR.

Thus, once we know the outputs of the basis vectors L(1,0) = (a,b) and
L(0,1) = (¢, d), we can compute L(zx,y) for any v = (x,y):

L(z,y) = L(x(1,0)+y(0,1)) = xL(1,0)+ yL(0,1)
= z(a,b) +y(c,d) = (ax+cy,br+dy).

The matriz of L, denoted [L], records the outputs of the basis in its columns:

We define matrix multiplication of [L] times the column vector v = (z,y) =|1]
to give the output L(v):

. a c| | x . ax+cy
Ly = [b d] [y} - [b:c—l—dy]'
EXAMPLE: Let L(z,y) = (2y, —x—3y), so that:

L(1,0) = (0,-1), L(0,1) = (2,3), [L]=[_?|§]~

We can picture this mapping as taking the unit square with sides (1,0) and
(0,1) to the red image parallelogram with sides (0, —1) and (2, 3):
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Given two linear mappings L, M, we can do one after the other to get
the composition mapping L o M defined by: (L o M)(v) = L(M(v)). We
define matrix multiplication so that it gives the matrix of the composition:

LoM] = [L]-[M].

This is the main meaning of matrix multiplication.

To avoid fussy notation we drop the brackets, so that L can denote both
the linear mapping and its matrix, and - denotes composition of mappings
as well as matrix multiplication.

Diagonalization. A better way to picture a linear mapping L is as stretch-
ing or flipping certain vectors. An eigenvector v is a nonzero vector which
gets multiplied by a scalar A, called the eigenvalue of v:

L(v) =Xv for A eR.

If A > 0, this means L stretches or shrinks v; if A < 0, it also flips v over.
Given L, how to find such special vectors? First, we find the eigenvalues.

Recall that a linear mapping M is singular when it crushes some non-zero

vector to zero, and this is equivalent to the vanishing of the determinant:

a ¢

Some v #0 has M(v) =0 <= det(M):det{bd

] = ad—bc = 0.
(Geometrically, the determinant measures the area of the image parallelo-

gram of M, which is zero when the paralleleogram collapses to a line seg-
ment.) Now, a scalar A is an eigenvalue of some eigenvector when:

Some v # 0 has L(v) = \v <= some v # 0 has L(v) — A (v) = 0
<= some v # 0 has (L—A[)(v) =0
< det(L—M\I) = 0,

where I is the identity mapping I(v) = v. Thus, the eigenvalues are precisely
the roots of the polynomial function p(\) = det(L—AI), the characteristic
polyonmial of L, so we can find all the eigenvalues without knowning any
eigenvectors! Once we have such a root A, we can use Gaussian elimination
to solve for the unknown vector v in the linear system [L—\I]-v = 0.

Once we have the eigenvalues A1, Ao and the basis of eigenvectors vy, vs,
we can picture L as stretching these two axes by their respective eigenvalues,
as if L were the diagonal matrix D = [*01 XOQ]. Indeed, if we form the change-

of-basis matrix P = [v1 | ve] with P(1,0) = vy, P(0,1) = vg, we get:

_ a4 A0 | pa
(L] = PDP = P{O)\JP :



because:
PDP7 (vy) = P(D(P(v1))) = P(D(1,0)) = P(A\(1,0)) = Moy = L(vy),
and similarly for L(vq).

ExampLE: Continuing with L = { (1) g}, the characteristic polynomial is:
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p(A) = det(L—AI) = det[ 3.1

} =N —3\+2.

This has roots A1 = 1, Ao = 2, so these must be the eigenvalues.
To find the eigenvector for A\; = 1, we must solve (L—\1I)(vy) = 0:

-1 2 x| |-1 2||x| |0
1 3=X||y| |1 2|yl |Oo|
We row-reduce this system of two linear equations in two variables:
-1 2|94 1 -2 1-2
[_1 2] = [_1 Q]D'H — [0 0}

That is, the system is equivalent to x — 2y = 0, or v1 = (z,y) = (2y,v).
Taking y = 1 gives v; = (2,1), which indeed has L(v;) = Ajv; = vy.
Similarly, we get the other eigenvector ve = (1,1) with L(ve) = Agvg = 20s.
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Orthogonal mappings. We measure distances and angles in the plane
R? using the dot product, defined geometrically on vectors v,w € R? as
v-w = |[v||w| cos(Byy ), where | | means length and 6, is the angle between
vectors; and defined algebraically as:

v-w = (a,b)-(c,d) = ac—+ bd.

The dot product is different from the matrix product: if we consider v, w
as 2x1 column vectors, we cannot multiply them. However, consider the
transpose operation which exchanges rows with columns:

oF = mT = [a b].

Then v7-w, the product of 1x2 and 2x1 matrices, is a 1x1 matrix, a scalar,
and in fact it is the dot product: vT- w = v - w.

Geometrically, two vectors are perpendicuar (orthogonal) when v-w = 0,
and v is a unit vector (length one) when v-v = 1. The standard basis
e1 = (1,0) and ez = (0, 1) is orthonormal, meaning e, ey are are both unit
vectors and are orthogonal to each other.

A linear mapping R : R? — R? is orthogonal or rigid if it preserves
distances and angles, taking any shape to a congruent image shape: for
example a rotation. Clearly, an orthogonal mapping must take the standard
basis to another orthonormal basis:

R(el)-R(el) = R(€2)~R(62) = 1, R(el)-R(eg) = R(€2)'R(61) = 0.

It turns out this is enough for R to be orthogonal, and this gives a simple
matrix criterion for orthogonal mappings. Define transpose of a matrix to
exchange all columns with rows:

_lale T |lab
n=[5fd] =[]

Now, for R(e1) = (a,b), R(e2) = (c,d), the matrix product RT- R is the
matrix of all dot products of these columns:

R= [‘”C] is orthogonal <= RT.R — [‘Zb]-[“'ﬂ - {1 0} - I

bld

That is, RI“-R =T and R~ = RT.
For example Rot,, the counterclockwise rotation by angle «, has matrix:

cosa —sina _ cosa sin o
Roty, = | _. , Rot;! = Rot_, = . = Rot?.
sinae  cos« —sina cos«o



Twofold symmetry. A symmetry of an object X is an invertible mapping
from X to itself which preserves the structure of X. If X is a geometric
object in the plane, a symmetry is an orthogonal mapping R : R? — R?
with R(X) = X. The most familiar form of symmetry is bilateral, in which
R = F is a flip or reflection which exchanges the identical halves of X:
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This has eigenvectors F(e1) = e; and F(ez) = —egy (if you tilt your head),
and matrix F' = [(1] ‘_(1)].

A general flip has F(v1) = v; and F(vy) = —vg for some orthonormal
eigenvectors v; = (¢, s) = (cosa,sina) and vy = (—s,c). We compute its

—S|.
cl®

matrix using the eigenvector change-of-basis matrix P = {g

F = Tl, = P[l 0} p1 — [02—82 2cs ] _ [005204 sin2a].

0 -1 2cs —c?+s? sin 2 —cos 2«

A flip F is a twofold symmetry, meaning that it is its own inverse, F~! =
F, so that F(F(v)) = v or equivalently F? = F.F = I. Is there any other
kind of orthogonal twofold symmetry R with R? = I? For any such R, its
eigenvalues R(v) = Av must satisfy v = I(v) = R(R(v)) = A?v, s0 A2 =1
and A = +1. Thus, the possible diagonal forms for R are:

o) o) B

The first is the identity matrix, the trivial symmetry. The second is the
bilateral symmetry above. The third is a % rotation Rot,;. Note that in
each case R = R~' = R”.

We construct an object X having R = Rot, as its only non-trivial sym-
metry. Starting with a completely asymmetric object X,, we combine it
with its rotated image R(X,), producing a 2-bladed propeller or pinwheel
X =X, UR(X,).

X,

R(X,)

We know R is a symmetry because:

R(X) = R(X.,)UR(R(X,)) = R(X.)UX, = X.



Twofold symmetry in space. Any linear mapping R : R? — R3 has
characteristic polynomial p(A) = det(R — AI) of degree 3, which must have
a real root, and hence a real eigenvalue A € R with R(v) = Av for some
eigenvector v. If R is orthogonal, we must have |v| = |R(v)| = |A||v|, so that
[A| =1 and A = +£1.

If A = 1 with no —1 eigenvalues, then R is a rotation around the axis
v; if we complete v; = v to an orthonormal basis {v1,v2,v3}, and take
the change-of-basis matrix P = [vy |va|v3], then vy is fixed and ve, v are
rotated by some angle a:

1 0 0
R = P|0 cosa —sina | P~
0 sina cosa
The other possibility is A = —1, in which case:
-1 0 0
R = P| 0 cosa —sina | P71

0 sina cos«o

This is a roto-reflection: a rotation around an axis, combined with a reflec-
tion across the plane orthogonal to the axis; for a = 0, it is just a reflection.
Now consider a twofold orthogonal symmetry, i.e. R? = I, R~! = R.
The non-trivial diagonal forms are:
-1 0 0 ]
0-1 0].

0 0-1

1 0 O 1 00
Ri=10 10|, Ro=|0-1 0|, Rg=
0 0-1 0 0-1

Each of these corresponds to a type of twofold symmetry in space, the sym-
metry of an object X = X, U R(X,) for one of the R = R;. The first
is bilateral symmetry (reflection); the second is propeller symmetry (180°
rotation); but the third is “point symmetry” (180° roto-reflection), a type
seldom seen in natural or manufactured objects.

For examples in chemistry, the site http://symmetry.otterbein.edu/gallery
has nice pictures of symmetric molecules; set Point Group Type to “C1, Cs, C;”.
The molecule cyclohexane-BraCly has point symmetry; click the picture to
rotate around.
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