
Math 310.003 Symmetry in the Plane Fall 2018

Linear mappings and matrices. We consider linear mappings

L : R2 → R2,

which we can picture as motions of the plane, moving each vector v to
L(v) = w, for example rotating around the origin by some angle. Linear
means that L respects vector addition and scalar multiplication:

L(v1+v2) = L(v1) + L(v2) and L(rv) = rL(v) for r ∈ R.

Thus, once we know the outputs of the basis vectors L(1, 0) = (a, b) and
L(0, 1) = (c, d), we can compute L(x, y) for any v = (x, y):

L(x, y) = L(x(1, 0) + (y(0, 1)) = xL(1, 0) + yL(0, 1)

= x(a, b) + y(c, d) = (ax+cy, bx+dy).

The matrix of L, denoted [L], records the outputs of the basis in its columns:

[L] =

 | |
L(1, 0) L(0, 1)
| |

 =

[
a c
b d

]
.

We define matrix multiplication of [L] by a vector v to give the output L(v):

L(x, y) =

[
a c
b d

]
·
[
x
y

]
=

[
ax+cy
bx+dy

]
.

Given two linear mappings L,M , we can do one after the other to get
the composition mapping L ◦M defined by: (L ◦M)(v) = L(M(v)). We
define matrix multiplication so that it gives the matrix of the composition:

[L ◦M ] = [L] · [M ].

This is the main meaning of matrix multiplication.
To avoid fussy notation we drop the brackets, so that L can denote both

the linear mapping and its matrix, and · denotes composition of mappings
as well as matrix multiplication.

Symmetries. A symmetry of an object S is an invertible mapping from S to
itself which preserves the structure of S. We consider the example where S
is a rectangle in the plane, with the geometric structure of distance between
points. The symmetries are the rigid (distance-preserving) mappings from
S to itself, which are therefore linear mappings. Here are two examples:



The horizontal reflection A and the vertical reflection B both take S to
itself; by contrast, a 90◦ rotation takes S to a different rectangle, and is not
a symmetry. Taking the center of S as the origin, we can determine the
matrix of A by recording the outputs A(1, 0) = (−1, 0) and A(0, 1) = (0, 1),
so A =

[
−1 | 0
0 | 1

]
; and similarly B =

[
1 | 0
0 | −1

]
.

Are these all the symmetries? We also have inverse symmetries, but
A = A−1 and A · A = I: a reflection undoes itself, and doing it twice is
the same as doing nothing. (Here I is the identity mapping with I(v) = v,
having matrix

[
1 | 0
0 | 1

]
.) However, we can find a new symmetry by composing

the two known ones, doing the horizontal reflection after the vertical one:

C = A ·B =

[
−1 0

0 −1

]
.

What is the composite motion? Its matrix tells us that C(1, 0) = (−1, 0)
and C(0, 1) = (0,−1), so in fact C(v) = −v, and C takes each vector to its
opposite. Another way to describe this is as a 180◦ rotation. Now we have
all the symmetries.

Symmetry group. This means the set G = Sym(S) of all symmetries of
S, endowed with the operation of composition, doing one symmetry after
another to obtain a new symmetry. This allows us to think of G as a kind
of number system, but only with multiplication, no addition. The rectangle
symmetry group above is G = {I, A,B,C} with multiplication table:

· I A B C

I I A B C
A A I C B
B B I C A
C C B A I



Definition: A group is a set G with an opertion · which satisfies the same
axioms of multiplication as units in a ring:

• Closed: For A,B ∈ G we have A ·B ∈ G.

• Associative: A · (B · C) = (A ·B) · C.

• Identity: For A ∈ G we have A · I = I ·A = A.

• Inverses: For A ∈ G there is A−1 = B ∈ G with A ·B = B ·A = I.

Note that G does not have a zero element or any addition operation. Al-
though the above example satisfies the commutative law A ·B = B ·A, not
all groups do; a commutative group is called abelian (after Niels Abel).

Groups can arise from geometric symmetries as above, or from other
types of symmetries. In our example, we have G ⊂M2(R), the ring of 2× 2
matrices with real number entries, which guarantees it satisfies the group
axioms. However, G is not a subring since it is not closed under addition;
rather, G is a subgroup of all the invertible matrices, which form the general
linear group:

GL2(R) = {A ∈M2(R) such that A is invertible}.

Like every group, GL2(R) must be the symmetries of something. In fact,
it is the symmetries of the plane R2, all invertible mappings which preserve
(respect) the vector space structure of addition and scalar multiplication
(not the geometric structure of distance).

Permutations. The most basic type of symmetry is that of an unstructured
set S = {1, 2, . . . , n}. Then G = Sym(S) consists of all invertible mappings
A : S → S, without any structure restrictions. A convenient notation for
such a mapping is the two-line notation with the inputs i on the first line

and the outputs A(i) just below them: A =
(

1 2 · · · n
A(1) A(2) · · · A(n)

)
. For example:

I =

(
1 2 3 4
1 2 3 4

)
, A =

(
1 2 3 4
2 1 4 3

)
, B =

(
1 2 3 4
4 3 2 1

)
means I is the idenity with I(i) = i for all i; and A(1) = 2, A(2) = 1,
A(3) = 4, A(4) = 3. We can compose these to get a new permutation
C = A ◦B with C(i) = A(B(i)).

C = A ◦B =

(
1 2 3 4
2 1 4 3

)
◦
(

1 2 3 4
4 3 2 1

)
=

(
1 2 3 4
3 4 1 2

)
,

since C(1) = A(B(1)) = A(4) = 3 and C(2) = A(B(2)) = A(3) = 4, etc.
The group of all permutations of n objects, together with the composition

operation, is called the symmetric group G = Sn. To construct a random



permutation A, we have n choices for A(1), then n−1 choices remaining
for A(2) 6= A(1), then n−2 choices for A(3), etc., so the total number of
permutations is:

#Sn = n(n−1)(n−2) · · · 1 = n!

This is the main significance of the factorial function.
We can realize the symmetry group of our rectangle by labeling vertices:

Then any symmetry moves the 4 vertices to each other, and the motion of
the whole rectangle is determined by this permutation of {1, 2, 3, 4}. Thus,
the symmetries of the rectangle described previously in geometric terms can
also be written as the permutations I, A,B,C above. Thus our symmetry
group becomes a subgroup G ⊂ S4 and we can work out its multiplication
table in terms of permutations more easily than in terms of matrices.


