Give credit for significant help from a reference or person.

1. Consider the ring of symmetric polynomials in n=3 variables,

$$\Lambda^{(3)} = \mathbb{Q}[x_1, x_2, x_3]^{S_3},$$

with its bases m_{λ} (monomial), e_{λ} (elementary), h_{λ} (homogeneous), p_{λ} (power), indexed by partitions $\lambda = (\lambda_1 \geq \lambda_2 \geq \lambda_3)$. The degree k = 3 component $\Lambda_k^{(n)} = \Lambda_3^{(3)}$ has dimension p(k) = 3 indexed by the partitions $\lambda = (3), (2, 1), (1, 1, 1)$.

- **a.** By hand, write each basis of $\Lambda_3^{(3)}$ in terms of x_1, x_2, x_3 .
- **b.** Write e_{λ} , h_{λ} , p_{λ} in terms of the monomial basis m_{λ} , and verify the change-of-basis coefficients for the first two denoted in Stanley as $M_{\lambda\mu}$ (0-1 matrices) and $N_{\lambda\mu}$ (N-matrices). Which of these bases has a triangular relationship to m_{λ} , for an appropriate ordering of rows and columns?
- **c.** Recall the involution ω on $\Lambda_3^{(3)}$ defined by $\omega(e_{\lambda}) = h_{\lambda}$. Compute $[\omega]_m^m$, the 3×3 matrix of the linear mapping ω with respect to the monomial basis $m = \{m_{\lambda}\}$. Square the matrix to verify it is an involution. Verify that p_{λ} are eigenvectors with eigenvalues $\epsilon(\lambda) = \operatorname{sgn}(w_{\lambda})$, where w_{λ} is a permutation with cycle type λ .
- **d.** Inner product. Stanley defines the inner product (symmetric, bilnear, non-degenerate) on Λ by $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda \mu}$: that is, the monomial and homogeneous bases are orthogonal by definition. Find the 3×3 matrix J of the inner product with respect to the monomial basis of $\Lambda_3^{(3)}$, so that for $f, g \in \Lambda_3^{(3)}$ corresponding to 3×1 coordinate vectors $[f]_m, [g]_m \in \mathbb{C}^3$, we have:

$$\langle f, g \rangle = {}^t [f]_m \cdot J \cdot [g]_m$$

where the right side is a matrix product $(1 \times 3) \cdot (3 \times 3) \cdot (3 \times 1) = (1 \times 1)$. Verify that p_{λ} is an orthogonal, but not orthonormal, basis of $\Lambda_3^{(3)}$. (In fact, $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda \mu}$, where $z_{\lambda} = \# N_{\mathfrak{S}_3}(w_{\lambda})$ the number of permutations in \mathfrak{S}_3 which commute with a given permutation w_{λ} of cycle type λ .)

- **2.** Schur polynomials. Keeping n=3 variables, we defined $s_{\lambda}(x_1, x_2, x_3) = \sum_{T} x^T$ over $T \in \text{SSYT}_3(\lambda)$, the semi-standard Young tableaux T with shape λ and entries $T(i,j) \leq 3$. We expand $s_{\lambda} = \sum_{\mu} K_{\lambda\mu} m_{\mu}$ with change of basis coefficients given by the Kostka numbers $K_{\lambda\mu}$, the number of SSYT of shape λ and content μ (i.e. T contains μ_i entries equal to i).
- **a.** Enumerate the SSYT for all $|\lambda|=3$, and write out the Schur polynomials $s_{\lambda} \in \Lambda_3^{(3)}$ in terms of the monomial basis.
- **b.** For each $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ above, construct the irreducible representation V_{λ} of $\mathrm{GL}_3(\mathbb{C})$ inside the ring of polynomial functions on 3×3 matrices $X = (x_{ij})$, the ring $R = \mathbb{C}[X] = \mathbb{C}[x_{ij}]$ for $i, j \in [3]$. Define V_{λ} as the \mathbb{C} -span of the polynomials

$$\Delta^{I_1}_{[\lambda'_1]}(X) \, \Delta^{I_2}_{[\lambda'_2]}(X) \, \Delta^{I_3}_{[\lambda'_3]}(X) \,,$$

where $\Delta_J^I(X)$ is a minor of the matrix $X = (x_{ij})$, the determinant of the submatrix on rows I and columns J. Here the row-sets I_j are arbitrary, but all columns are

left-justified: $J_i = [\lambda'_i] = \{1, \dots, \lambda'_i\}$, where λ'_i is the length of the *i*th column. A matrix $A \in GL_3(\mathbb{C})$ acts via

$$(Af)(X) \stackrel{\text{def}}{=} f({}^t\!AX),$$

multiplying the argument X by the transposed matrix ${}^t\!A$.

Verify that a basis for V_{λ} is given by $\Delta_{[\lambda_1]}^{I_1}\Delta_{[\lambda_2]}^{I_2}\Delta_{[\lambda_3]}^{I_3}$ where I_1, I_2, I_3 run over the column entries of each semistandard tableau $T \in SSYT_3(\lambda)$. Thus the character

$$\chi_{\lambda}(x_1, x_2, x_3) = \operatorname{trace}(\operatorname{diag}(x_1, x_2, x_3) \mid V_{\lambda})$$

is equal to the Schur polynomial $s_{\lambda}(x_1, x_2, x_3)$.

- c. For each V_{λ} , let U_{λ} be the subspace of vectors with character $x_1x_2x_3$, corresponding to standard Young tableaux T. Show that U_{λ} is a representation of the permutation matrix group $\mathfrak{S}_3 \subset \mathrm{GL}_3(\mathbb{C})$, and that this gives all the irreducible representations of \mathfrak{S}_3 . (If necessary, look up the requisite facts about representations of finite groups.)
- **d.** Consider the vector space V of matrices $X \in M_3(\mathbb{C})$ with zero trace: $\operatorname{tr}(X) = 0$. Define the *adjoint action* of $\operatorname{GL}_3(\mathbb{C})$ by conjugation:

$$\rho(A)X = AXA^{-1}.$$

Find the character χ_V) (x_1, x_2, x_3) of this representation and write it in terms of Schur polynomials, and hence identify the representation in terms of the V_{λ} . *Hint:* Tensor by a power of the 1-dim determinant representation V_{111} .

e. Repeat (d) for the representation of $GL_n(\mathbb{C})$ on traceless $n \times n$ matrices, which is the *adjoint representation* on the Lie algebra of $SL_n(\mathbb{C})$. Write it in terms of Schur polyomials $s_{\lambda}(x_1, \ldots, x_n)$.