If you get significant help from a reference or a person, give explicit credit.

NOTES. Consider a poset (\mathcal{P}, \leq) with minimal element $\hat{0}$. A rank function $\mathrm{rk} : \mathcal{P} \to \mathbb{N}$ is defined by $\mathrm{rk}(\hat{0}) = 0$ and $\mathrm{rk}(a) + 1 = \mathrm{rk}(b)$ for every covering a < b.

A lattice \mathcal{L} is a poset having, for all $a,b \in \mathcal{L}$, a well-defined meet $a \wedge b = \inf\{a,b\}$ and join $a \vee b = \sup\{a,b\}$, and it is distributive if $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$, which is equivalent to $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$. Any finite distributive lattice \mathcal{L} is isomorphic to the order ideals of its subposet \mathcal{P} of join-irreducibles: that is, $\mathcal{L} \cong J(\mathcal{P}) \stackrel{\text{def}}{=} \{I \subset \mathcal{P} \text{ with } (b \in I \& a \leqslant b) \Rightarrow a \in I\}$, ordered by inclusion.

A lattice is semi-modular if $\mathrm{rk}(a)+\mathrm{rk}(b) \geqslant \mathrm{rk}(a \wedge b)+\mathrm{rk}(a \vee b)$. An atom is a covering element $a > \hat{0}$, and \mathcal{L} is atomic if every element is a join of atoms (not necessarily uniquely). A lattice is geometric if it is semi-modular and atomic; this is equivalent to the combinatorial structure known as a matroid.

We define the incidence algebra:

$$I(\mathcal{P}) = \{\alpha : \operatorname{Int}(\mathcal{P}) \to \mathbb{C}\} \cong \bigoplus_{a \leqslant b} \mathbb{C}[a, b], \qquad \alpha \cong \sum_{a \leqslant b} \alpha(a, b) [a, b],$$

all functions on the set $Int(\mathcal{P})$ of intervals $[a,b] = \{c \text{ with } a \leq c \leq b\}$, with product:

$$(\alpha \cdot \beta)(a,b) = \sum_{c \in [a,b]} \alpha(a,c) \, \beta(c,b), \qquad [a,b] \cdot [c,d] = \left\{ \begin{array}{l} [a,d] & \text{if } b = c \\ 0 & \text{otherwise.} \end{array} \right.$$

We can realize $I(\mathcal{P})$ as certain upper-triangular matrices: writing $\mathcal{P} = \{a_1, \ldots, a_n\}$ in non-decreasing order, $[a_i, a_j] \in I(\mathcal{P})$ is represented by the unit matrix $E_{ij} \in M_{n \times n}(\mathbb{C})$. The incidence algebra has identity element $\delta = \sum_{a \in \mathcal{P}} [a, a]$, zeta function $\zeta = \sum_{a \le b} [a, b]$, and Mobius function $\mu = \zeta^{-1}$, so that $\zeta \cdot \mu = \delta$ is equivalent to the recursion: $\mu(a, a) = 1$ and $\sum_{c \in [a, b]} \mu(a, c) = 0$.

We consider several standard semi-infinite posets \mathcal{P}_{∞} which contain a minimal element $\hat{0}$ as well as standard elements $\hat{1}, \hat{2}, \ldots$, and which have a natural equivalence relation $[a, b] \sim [c, d]$ which splits $\operatorname{Int}(\mathcal{P})$ into equivalence classes $\bar{0}, \bar{1}, \bar{2}, \ldots$, where \bar{n} is the equivalence class of $[\hat{0}, \hat{n}]$. We define the reduced incidence algebra:

$$R(\mathcal{P}_{\infty}) = \{ \alpha \in I(\mathcal{P}_{\infty}) \text{ with } \alpha(a,b) = \alpha(c,d) \text{ for } [a,b] \sim [c,d] \} = \bigoplus_{n=0}^{\infty} \mathbb{C} \, \overline{n}.$$

We can write α as a kind of generating function for the sequence $a_n = \alpha(\hat{0}, \hat{n})$:

$$\alpha = a_0 \bar{0} + a_1 \bar{1} + a_2 \bar{2} + a_3 \bar{3} + \cdots.$$

 $R(\mathcal{P}_{\infty})$ contains the identity δ , the zeta function ζ , and the Möbius function $\mu = \zeta^{-1}$. A binomial poset is a ranked poset \mathcal{P}_{∞} with a standard chain $\hat{0} < \hat{1} < \hat{2} < \cdots$, such that every interval [a,b] with length $\ell(a,b) = \operatorname{rk}(b) - \operatorname{rk}(a) = n$ has B(n) maximal chains. We let $[a,b] \sim [c,d]$ whenever $\ell(a,b) = \ell(c,d)$. The algebra $R(\mathcal{P})$ is isomorphic to the formal power series ring $\mathbb{C}[[x]]$, with \bar{n} corresponding to $x^n/B(n)$, so that:

$$\alpha \cong a_0 + a_1 x + a_2 \frac{x^2}{B(2)} + a_3 \frac{x^3}{B(3)} + \cdots$$

The posets \mathcal{D}_n of divisors of n have the semi-infinite union $\mathcal{P} = \mathcal{D}_{\infty} = \{1, 2, 3, \ldots\}$ ordered by divisibility. This has standard elements $\hat{n} = n$ (which do not lie on a chain), and the equivalence of intervals is $[a,b] \sim [c,d]$ whenever b/a = d/c, which induces equivalence classes $\bar{n} = \overline{[1,n]}$, making a basis of the reduced algebra $R(\mathcal{P}) = \bigoplus_{n \geq 1} \mathbb{C} \bar{n}$. We have $\bar{n}\bar{m} = \overline{nm}$, so $R(\mathcal{P})$ embeds in the ring of complex functions via $\bar{n} \cong n^{-s}$, where s is a complex variable, so that $\alpha \cong \sum_{n \geq 1} a_n/n^s$.

¹This is stronger than rank equivalence $\ell(a,b) = \ell(c,d)$ and isomorphism equivalence $[a,b] \cong [c,d]$.

1. Direct product of posets: $\mathcal{P} \times \mathcal{Q}$, with $(p,q) \leqslant (p',q')$ whenever $p \leqslant p'$ and $q \leqslant q'$. Prove: Möbius function of the product is the product of Möbius functions of \mathcal{P} and \mathcal{Q} :

$$\mu_{\mathcal{P}\times\mathcal{Q}}((p,q),(p',q')) = \mu_{\mathcal{P}}(p,p') \mu_{\mathcal{Q}}(q,q').$$

- **2.** For the poset $\mathcal{P} = \mathcal{D}_{18}$, the 6-element poset of divisors of $18 = 2 \cdot 3^2$ ordered by divisibility, work out the Möbius function $\mu(a,b)$ in several ways:
- **a.** Write a 6×6 matrix Z corresponding to $\zeta(a,b)=1$ for all $a\leqslant b$, and invert by Gaussian elimination on a double matrix $[Z\mid I]$, row reducing to $[I\mid M]$ so $M=Z^{-1}$.
- **b.** Write Z = I + N, for identity I and strictly upper-triangular N, nilpotent with $N^6 = 0$. By computer, expand the geometric series $M = (I + N)^{-1} = I N + N^2 \cdots$
- **c.** For each $a \in \mathcal{P}$, draw a copy of the Hasse diagram (a 1×2 rectangle). Mark $\mu(a, a) = 1$, then work upwards recursively using $\mu(a, b) = -\sum_{a \le x < b} \mu(a, x)$.
- **d.** Repeat (c) using the Weisner recurrence, within each [a,b] choosing some c > a:

$$\mu(a,b) = -\sum_{x} \mu(a,x)$$
 summed over $x \in [a,b]$ with $c \leqslant x \lessdot b$.

Do only for the [a, b] where Weisner uses fewer terms than the full recurrence. Also look up: when is the Weisner recurrence valid?

- e. Apply the product formula of #1 above to $\mathcal{D}_{18} \cong [0,1] \times [0,2]$, the direct product of two chains. Match this with Mobius' original formula for $\mu(n) = \mu(1,n)$: namely $\mu(n) = (-1)^k$ if n is the product of k distinct primes, and $\mu(n) = 0$ if n is divisible by a square number.
- **3.** Recall the Euler phi-function $\phi(n) = \#\{i \in [n] \text{ with } \gcd(i, n) = 1\}.$
- **a.** Find a summation formula for $\sum_{d|n} \phi(d)$, and use Mobius inversion for $\mathcal{P} = \mathcal{D}_{\infty}$ to express $\phi(n)$ in terms of $\mu(n) = \mu(1, n)$.
- **b.** Use the isomorphism of $R(\mathcal{D}_{\infty})$ with the ring of Dirichlet series to find an expression for $f(s) = \sum_{n \geq 1} \phi(n)/n^s$ in terms of the Riemann zeta function $\zeta(s) = \sum_{n \geq 1} 1/n^s$.
- **c.** Use (b) to show that $\phi(n)$ grows sufficiently fast that $\sum_{n\geqslant 1}\phi(n)/n^2$ is divergent. Thus, there is no $\varepsilon>0$ such that $\phi(n)=\mathrm{o}(n^{1-\varepsilon})$. (For a challenge, be as analytically rigorous about this as possible. Perhaps learn about Perron's formula.)
- **4.** Zaslavsky's Theorem (second part): Consider an affine hyperplane arrangement \mathcal{A} in \mathbb{R}^n with characteristic polynomial $\chi_{\mathcal{A}}(x) = \sum_{V \in \mathcal{L}(\mathcal{A})} \mu(\hat{0}, V) \, x^{\dim(V)}$. Then the hyperplane complement

$$\mathbb{R}^n \setminus \bigcup_{H \in \mathcal{A}} H$$

has b(A) bounded regions, where:

$$b(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(1).$$

Prove this using an appropriate Deletion-Restriction recurrence among $b(\mathcal{A})$, $b(\mathcal{A}')$, and $b(\mathcal{A}'')$, where we choose $H_{\circ} \in \mathcal{A}$ and take $\mathcal{A}' = \mathcal{A} \setminus \{H_{\circ}\}$, and

$$\mathcal{A}'' = \{ H \cap H_{\circ} \subset H_{\circ} \text{ for } H \in \mathcal{A}' \},$$

an arrangement of hyperplanes inside the (n-1)-dimensional space H_0 . Match this with the known Deletion-Restriction recurrence $\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A}'}(x) - \chi_{\mathcal{A}''}(x)$.

5. For a finite field $F = \mathbb{F}_q$, recall the q-Boolean poset $\mathcal{B}_n(q)$ of linear subspaces $V \subset F^n$ ordered by inclusion. The semi-infinite union $\mathcal{B}_1(q) \subset \mathcal{B}_2(q) \subset \cdots$ via $F^1 \subset F^2 \subset \cdots$ is the Boolean poset $\mathcal{P}_{\infty} = \mathcal{B}_{\infty}(q)$, with standard elements $\hat{n} = F^n$. The reduced incidence algebra $R(\mathcal{P}_{\infty})$ is isomorphic to $\mathbb{C}[[x]]$, with basis element \bar{n} corresponding to $x^n/[n]_q^1$, the ring of Eulerian generating functions:

$$f(x) = \sum_{n \ge 0} a_n \frac{x^n}{[n]_q!} = a_0 + a_1 x + a_2 \frac{x^2}{1+q} + a_3 \frac{x^3}{(1+q+q^2)(1+q)} + \cdots$$

a. Explain why \mathcal{P}_{∞} is a binomial poset with

$$B(n) = [n]_q^! = \#\mathrm{Flag}(\mathbb{F}_q^n) = [n]_q[n-1]_q \cdots [2]_q[1]_q, \quad \text{where } [n]_q = \frac{q^n-1}{q-1}.$$

b. Show the reciprocal of $\zeta = \sum_{n \geqslant 0} \frac{x^n}{[n]_q^1} \stackrel{\text{def}}{=} \exp_q(x)$ is the power series

$$\mu = \sum_{n>0} (-1)^n q^{\binom{n}{2}} \frac{x^n}{[n]_q!} \stackrel{\text{def}}{=} \operatorname{Exp}_q(-x),$$

and determine the Mobius function $\mu(U, V)$ for any $U \subset V$ in $\mathcal{B}_{\infty}(q)$.

Hint: Simplify $\zeta \cdot \mu$ with q-binomial thm $\prod_{i=1}^{n} (1 + q^{i-1}x) = \sum_{k=0}^{n} q^{\binom{k}{2}} \binom{n}{k}_q x^k$ (HW 5).

Note: We determined μ in class using the Weisner recurrence: $\mu_n = (-q^{\hat{n}-1})\mu_{n-1}$.

c. For an *n*-dimensional $V \in \mathcal{B}_n(q)$ and a fixed F^N , let

$$\alpha(V) = \#\{\text{linear } f: F^N \to V\} = q^{Nn}$$

$$\beta(V) = \#\{\text{surjective linear } f: F^N \to V\}$$

Show by linear algebra that $\alpha(V) = \sum_{W \subset V} \beta(W)$, and solve for $\beta(V)$ by Mobius inversion, a summation formula for the number of surjective $f: F^N \to F^n$.

Is
$$\beta(n)$$
 a good q-analog of $\sup(N, n) = \#\{\text{ surjective } f : [N] \rightarrow [n]\}$?

- **d.** Determine the number of injective linear mappings $f: F^n \hookrightarrow F^N$ directly by a simple product formula.
- **e.** Show by linear algebra that the number of surjective linear mappings $f: F^N \to F^n$ is equal to the number of injective linear mappings $f: F^n \hookrightarrow F^N$.
- **f.** Use the identity between the product in (d) and the sum in (c) to give another proof of the q-binomial theorm.