If you get significant help from a reference or a person, give explicit credit.

Notes

The Grassmannian $Gr(k, F^n)$ is the parameter space whose points correspond to k-dimensional subspaces V in the n-dimensional vector space F^n over a given field F. We specify a subspace $V = \operatorname{Span}_F(v_1, \ldots, v_k)$ by a $k \times n$ matrix of row vectors, with change-of-basis symmetry group $\operatorname{GL}_k(F)$. This matrix can be normalized by making a given $k \times k$ submatrix into the identity, in columns $I = \{i_1 < \cdots < i_k\} \subset [n]$, provided the determinant of this submatrix is nonzero:

$$V = GL_k C \begin{bmatrix} ----v_1 ---- \\ ----v_2 ---- \\ \vdots \\ ----v_k ---- \end{bmatrix} = \begin{bmatrix} * * \cdots 1 \cdots 0 \cdots 0 \cdots * * \\ * * \cdots 0 \cdots 1 \cdots 0 \cdots * * \\ \vdots \\ * * \cdots 0 \cdots 0 \cdots 1 \cdots * * \end{bmatrix}$$

The *'s denote k(n-k) free parameters in F defining a coordinate chart U_I of the Grassmannian, an F-manifold (nonsingular algebraic variety): $Gr(k, F^n) = \bigcup_I U_I$.

We define the Schubert cell decomposition $\operatorname{Gr}(k, F^n) = \coprod_I X_I$ by letting X_I consist of those $V \in U_I$ which have no *'s to the right of any 1 (row-echelon form). Thus, X_I is an affine space of dimension $\operatorname{wt}(I) = \sum_{j=1}^k (i_j - j)$. We can define X_I geometrically in terms of the standard basis $\{e_1, \ldots, e_n\}$ of F^n and the standard coordinate subspaces $E_T = \operatorname{Span}(e_1, \ldots, e_T)$:

$$V \in X_I \iff \dim(V \cap E_r) = \#(I \cap [r]) \text{ for } r = 1, \dots, n.$$

That is, I = [k] forces $V = E_k$, and larger I makes $V \in X_I$ stick out further from the standard subspaces, until $I = \{n-k+1, \ldots, n\}$ corresponds to generic V's in the open set $X_I = U_I$. The topological closure \overline{X}_I is defined by the closed conditions: $\dim(V \cap E_r) \geqslant \#(I \cap [r])$ for $r = 1, \ldots, n$. We keep track of how cells fit together using Bruhat degeneration order: define $I \leqslant J$ to mean $X_I \subset \overline{X}_J$, or equivalently $\overline{X}_I \subset \overline{X}_J$.

EXAMPLE: For $Gr(2, F^4)$, we have:

$$U_{34} = X_{34} = \begin{bmatrix} * & * & 1 & 0 \\ * & * & 0 & 1 \end{bmatrix} = \{ V \mid V \cap E_2 = 0, \dim(V \cap E_3) = 1 \},$$

$$U_{14} = \begin{bmatrix} 1 & * & * & 0 \\ 0 & * & * & 1 \end{bmatrix}, X_{14} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & 1 \end{bmatrix} = \{V \mid E_1 \subset V \subset E_3\}.$$

Here are the cells with defining conditions, vertical dashes indicating Bruhat order:

$$X_{34} = (V \cap E_2 = 0)$$

$$|$$

$$X_{24} = (\dim(V \cap E_2) \geqslant 1, V \not\leftarrow E_3)$$

$$/$$

$$X_{23} = (E_1 \not\leftarrow V \subset E_3)$$

$$X_{14} = (E_1 \subset V \not\leftarrow E_3)$$

$$/$$

$$X_{13} = (E_1 \subset V \subset E_3, V \neq E_2)$$

$$|$$

$$X_{12} = (V = E_2)$$

The closure of each cell is defined by keeping the closed conditions on V such as $\dim(V \cap E_2) \geq 1$, and ignoring the open conditions such as $V \not = E_3$. The Bruhat order relations $\overline{X}_I \subset \overline{X}_J$ are thus evident from these closed conditions. To verify in coordinates that $\{1,3\} \leq \{1,4\}$, we show each plane $V_{\circ} \in X_{13}$ is approached by planes in X_{14} : we give a continuous $\mathcal{V}: F \to \operatorname{Gr}(2,F^4)$ with $\mathcal{V}(t) \in X_{14}$ for $t \neq 0$, and $\mathcal{V}(0) = V_{\circ}$.

$$V_{\circ} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 1 & 0 \end{bmatrix}, \qquad \mathcal{V}(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 1 & t \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a/t & 1/t & 1 \end{bmatrix} \text{ for } t \neq 0.$$

Next we consider the flag manifold $\operatorname{Flag}(F^n)$, the parameter space of flags

$$V_{\bullet} = (0 \subset V_1 \subset \cdots \subset V_{n-1} \subset F^n), \quad \dim(V_k) = k.$$

We specify V_{\bullet} by a basis $\{v_1, \ldots, v_n\}$ of F^n , with $V_k = \operatorname{Span}(v_1, \ldots, v_k)$; the basis forms an $n \times n$ matrix of row vectors. The change-of-basis symmetry group B of V_{\bullet} consists of all lower-triangular matrices (with non-zero diagonal entries) in $\operatorname{GL}_n(F)$, since we can add a multiple of v_i to any later basis vector v_j with j > i, leaving each V_k invariant. We get a Schubert cell decomposition indexed by permutations $w \in \mathfrak{S}_n$: $\operatorname{Fl}(F^n) = \coprod_w X_w$, where X_w consists of V_{\bullet} whose B-reduced form is a permutation matrix w with 1 in positions (i, w(i)), and free parameters * in the positions (i, j) of the Röthe diagram:

$$D(w) = \{(i, j) \mid j < w(i), \ i < w^{-1}(j)\}.$$

Thus $\dim(X_w)$ is an affine space of dimension #D(w).

PROBLEMS

1. For a permutation $w \in \mathfrak{S}_n$, define the inversion number

$$inv(w) = \#\{(i, j) \mid i < j \text{ and } w(i) > w(j)\}.$$

Prove that #D(w) = inv(w). *Hint:* Bijection.

Note: The inversion number is also equal to the length $\ell(w)$, the minimum number ℓ of adjacent transpositions $s_i = (i, i+1)$ in a decomposition $w = s_{i_1} \cdots s_{i_\ell}$. Also $u \leq w$ whenever u is equal to a subword of this decomposition, for example $s_1 s_3 \leq s_1 s_2 s_3 s_1$.

- **2a.** Compute the Gaussian binomial coefficient $\begin{bmatrix} 6 \\ 3 \end{bmatrix}_q = \#\operatorname{Gr}(3, \mathbb{F}_q^6)$ as the number of 3×6 V-basis matrices divided by the number of 3×3 change-of-basis matrices; also as a quotient of q-integers $[n]_q = \frac{q^n-1}{q-1}$; and finally as a polynomial by dividing through (with computer).
- **b.** There are $\binom{6}{3} = 20$ sets $I = \{i_1, i_2, i_3\} \subset [6]$ indexing the Schubert cells, in bijection with partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge 0)$ with $\lambda_1 \le 6-3$: the Young diagrams fit in a 3×3 rectangle. List all I's and λ 's, along with the size measure $q^{\text{wt}(I)} = q^{|\lambda|} = \#X_I$. Here $\text{wt}(I) = |\lambda| = \dim(X_I)$. Compare with part (a).
- **3a.** Verify the q-Binomial Theorem:

$$\prod_{i=1}^{n} (1+q^{i}x) = \sum_{k=0}^{n} q^{\binom{k+1}{2}} \binom{n}{k}_{q} x^{k}$$

for the special case n = 3. Multiply out by hand!

- **b.** Prove the q-Binomial Theorem for all n by writing the lefthand side as a bivariate generating function for the class of all subsets $I \subset [n]$, then using our expansion illustrated in Prob. 1, $\binom{n}{k}_q = \sum_I q^{\text{wt}(I)}$, where the sum is over all $I = \{i_1 < \dots < i_k\}$.
- **4.** Find q-analogs of the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ using two analogs of deletion.
- **a.** Consider the mapping $Gr(k, F^n) \to Gr(k, F^{n-1}) \coprod Gr(k-1, F^{n-1})$ which takes V to $V' = V \cap E_{n-1}$, intersecting with the coordinate subspace E_{n-1} . Make this a bijection by keeping track of lost information needed to reconstruct the rowellon basis of V from V'. Deduce a recurrence for $\binom{n}{k}_q$.
- **b.** Let $P: F^n \to F^{n-1}$ be the projection map along e_1 , so that $P(e_i) = e_i$ for $i = 2, \ldots, n$. Consider the mapping $Gr(k, F^n) \to Gr(k, F^{n-1}) \coprod Gr(k-1, F^{n-1})$ of V to V' = P(V). Again make this a bijection, and find a different recurrence for for $\binom{n}{k}_q$.

5a. For each Schubert cell $X_w \subset \operatorname{Flag}(F^3)$ corresponding to $w \in S_3$, write the B-reduced matrix form for V_{\bullet} corresponding to the Röthe diagram D(w). For $F = \mathbb{F}_q$, explicitly verify:

$$\#\operatorname{Flag}(\mathbb{F}_q^3) = \frac{\#\operatorname{GL}_3(\mathbb{F}_q)}{\#B} = [3]_q[2]_q[1]_q = \sum_{w \in S_3} q^{\operatorname{inv}(w)}.$$

- **b.** For each Schubert cell closure \overline{X}_w above, describe its flags $V_{\bullet} = (V_1 \subset V_2)$ in terms of their relation to the standard flag $E_1 \subset E_2$. For example, the minimal cell closure is: $\overline{X}_{123} = X_{123} = \{E_{\bullet}\} = \{V_{\bullet} \mid V_1 = E_1, V_2 = E_2\}$. By examining the implications among the defining conditions for the \overline{X}_w 's, arrange the w's according their Bruhat degeneration order, defined by $\overline{X}_w \subset \overline{X}_u$.
- **c.** The Bruhat order covering relations u < w correspond to minimal containments $\overline{X}_u \subset \overline{X}_w$, having dim $X_u = \dim X_w 1$. For each minimal containment in Flag (F^3) and any $(V_{\bullet}) \in X_u$, we can show the relation by giving a continuous family $\mathcal{V}: F \to \mathrm{Fl}(F^3)$ with $\mathcal{V}(t) \in X_w$ for $t \neq 0$ and $\mathcal{V}(0) = V_{\bullet}$.

Example: I claim $u = 132 \le w = 231$. By row-echelon reduction for $t \ne 0$:

$$\mathcal{V}(t) = B \cdot \left[\begin{array}{ccc} 1 & -t & 0 \\ 0 & a & 1 \\ 0 & 1 & 0 \end{array} \right] = B \cdot \left[\begin{array}{ccc} -1/t & 1 & 0 \\ a/t & 0 & 1 \\ 1 & 0 & 0 \end{array} \right] \in X_{231}, \quad \mathcal{V}(0) = B \cdot \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & a & 1 \\ 0 & 1 & 0 \end{array} \right] \in X_{132}.$$

Problem: Similarly prove the covering u = 213 < w = 312.

d. A combinatorial construction for the coverings u < w is based on their permutation matrices: for a pair of 1's making an inversion in w (i < j and w(i) > j), move them to form a non-inversion pair in $u = (i, j) \cdot w$.

Problem: Find an additional condition on the matrices so that u < w is a covering, with inv(u) = inv(w) - 1. For example, why does $213 = (2,3) \cdot 312$ give a covering, while $123 = (1,3) \cdot 321$ does not?