
Math 880 Bigraded Classes & Stirling Cycle Numbers Fall 2016

Bigraded classes. Following Flajolet-Sedgewick Ch. III, we define a bigraded class A to
be a set of combinatorial objects a ∈ A with two measures of magnitude, a primary measure
|a| = n called simply the “size”, and a secondary measure ||a|| = k called the “weight” or
“parameter”, or a “statistic on A”. Usually we consider labeled bigraded classes Ã, in which
each object a ∈ Ã has n = |a| atoms having all the labels 1, 2, . . . , n, as well as the weight
||a|| unrelated to the labels: in particular, a permutation of the labels should not change

either |a| or ||a||. We have the counting numbers A
(k)
n = #{a ∈ Ã with |a| = n, ||a|| = k}.

The classic example is the labeled class P̃ =
∐

n≥0 Sn comprising all permutations w ∈
Sn, with size |w| = n and weight ||w|| = cyc(n) = number of cycles of w. In this case the

counting numbers are the Stirling cycle numbers:
[
n
k

]
= P

(k)
n = #{w ∈ Sn | cyc(w) = k}.

We take the bivariate generating function:

Ã(x, t) =
∑
n,k≥0

A(k)
n

xn

n!
tk =

∑
a∈Ã

x|a|

|a|!
t||a|| .

All the constructions available for labeled graded classes extend to the bigraded case.
In particular, we endow the labeled product Ã ∗ B̃ with the additive weight function
||(aS , bT )|| = ||a||+ ||b||, where aS means a ∈ Ã with its atoms relabeled by the set S.

We have the Labeled Bigraded Product Priniciple: for C̃ = Ã∗B̃, the bivariate generating
function is C̃(x, t) = Ã(x, t) · B̃(x, t). The proof is very similar to the single-graded case:

Ã(x, t) · B̃(x, t) = (
∑
p≥0

∑
i≥0

A(i)
p

xp

p!
ti) · (

∑
q≥0

∑
j≥0

B(j)
q

xq

q!
tj)

=
∑
n,k≥0

 n∑
p=0

k∑
i=0

(
n

p

)
A(i)

p B
(k−i)
n−p

 xn

n!
tk

=
∑
n,k≥0

C(k)
n

xn

n!
tk = C̃(x, t).

The second inequality uses the change of index variables n = p + q and k = i + j, so that(
n
p

)
1
n! = 1

p!q! . The third equality is because each element (aS , bT ) ∈ C̃(k)
n corresponds to the

choice of S ⊂ [n], a ∈ Ã(i)
p , b ∈ B̃(k−i)

n−p .
Similarly, the constructions Seqj , Seq, Setj , Set, Cycj , Cyc can be performed on

bigraded classes, and give the same formulas for the bivariate generating functions.

Counting cycles in permutations. The class of labeled cycles of length n is Cycn [̃1],

where [̃1] is the single-element labeled graded class, with bivariate exponential generating
function n!

n
xn

n! t = xn

n t, since a cycle is the same as a permutation of [n] up to rotation
equivalence. Here xn

n! indicates the size n, while t = t1 indicates that a single cycle has
weight 1.

Allowing cycles of any length gives generating function
∑

n≥1
xn

n t = t log( 1
1−x). Realiz-

ing any permutation as a set of k labeled cycles gives the bivariate generating function of
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P̃ =
∐

n≥0 Sn = Set(Cyc[̃1]):

P̃ (x, t) =
∑
n,k≥0

[n
k

] xn
n!
tk =

∑
k≥0

1

k!

(
t log( 1

1−x)
)k

= exp
(
t log( 1

1−x)
)

=
1

(1− x)t
.

We can get several interesting specializations of this bivariate function. First, taking
t = 1 gives us the single-variable exponential generating function:

P̃ (x) = exp
(

log( 1
1−x)

)
=

1

1− x
.

Indeed, we can realize permutations either as sets of cycles or as labeled sequences: P̃ ∼=
Set(Cyc[̃1]) ∼= Seq([̃1]); and the above computation is the generating function version.

Next, fixing k and taking the tk coefficient gives the single-variable generating function:

P̃ (k)(x) =
∑
n≥0

[n
k

] xn
n!

=
1

k!

(
t log( 1

1−x)
)k
.

This does not give an explicit formula for the Stirling cycle numbers, but it allows complex
analytic methods to give the asymptotic approximation:

[
n
k

]
∼ (n−1)!

(k−1)! (log n)k−1 as n→∞.
This means that for large n, the fraction of n-permutations which have k cycles is very

close to (logn)k−1

n(k−1)! .

Finally, fixing n and taking the coefficient of xn

n! gives the generating function Pn(t) =∑n
k=1

[
n
k

]
tk. The Taylor Coefficient Formula gives:

Pn(t) =
dn

dxn
P̃ (x, t)

∣∣∣∣
x=0

=
dn

dxn

(
1

(1− x)t

)∣∣∣∣
x=0

= t(t+1)(t+2) · · · (t+n−1) = tn.

That is:
n∑

k=1

[n
k

]
tk = tn.

Substituting −t for t and factoring out signs changes rising powers to falling:

n∑
k=1

(−1)n−k
[n
k

]
tk = t(t−1) · · · (t−n+1) = tn .

Compare this with our formula involving Stirling partition numbers:1

n∑
k=1

{
n

k

}
tk = tn.

These formulas mean that (−1)n−k
[
n
k

]
and

{
n
k

}
are the change-of-basis coefficients between

the usual power basis 1, t, t2, t3, . . . for the polynomials in t, and the falling power basis
1, t, t2, t3, . . . . Hence, if for anyN we define lower-triangular matricesM1 =

(
(−1)n−k

[
n
k

])N
n,k=1

1Bijective proof. The right side tn counts all functions f : [n] → [t] for t ∈ N, each of which can be
factored into a surjective function, surj(n, k) = k!

{
n
k

}
; and a choice of image,

(
t
k

)
= 1

k!
tk.
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and M2 =
({

n
k

})N
n,k=1

, then these are inverse matrices: M1M2 = I = (N×N) identity ma-
trix. This is equivalent to the formula:∑

j≥0

(−1)n−j
[
n

j

]{
j

k

}
=

{
1 if n = k
0 if n 6= k.

Similarly, M2M1 = I is equivalent to:∑
j≥0

(−1)j−k
{
n

j

}[
j

k

]
=

{
1 if n = k
0 if n 6= k.

These formulas can also be proved by the Involution Principle, the first using the same

∞/00 Involution used for tn =
∑n

j=1(−1)n−j
[
n
j

]
tj on p. 5.

The second can be proved using the Lonely/Crowded Involution. The left side counts
permuted set partitions: an unordered partition S1 t · · · t Sj = [n], numbered so that
min(S1) < · · · < min(Sj), along with a permutation w ∈ Sj , and given the sign (−1)j−k.
The involution will define a new permuted set partition (S′, w′). Take the smallest a ∈ [n]
such that, for a ∈ Si, the cycle of sets Si∪Sw(i)∪Sw(w(i))∪· · · contains at least two elements.
If Si = {a} is a singleton, then join it with the next set on its cycle: S′i = Si ∪ Sw(i) and
w′(i) = w(w(i)). If Si is not a singleton, split it into two sets along the same cycle:
S′i = {a} and S′w′(i) = Si−{a}, with w′(w′(i)) = w(i). This changes the sign (−1)j−k by
incrementing/decrementing j while leaving n, k fixed. If there is no such a, then this is
the unique fixed point consisting of all singleton sets and w = id. In the signed count∑

j≥0(−1)j−k
{

n
j

}[
j
k

]
, I pairs up and cancels all terms except the fixed point, which gives

the right side.

Cycle formula. We give another proof of:

tn =
n∑

k=1

(−1)n−k
[n
k

]
tk .

For a whole number value t ∈ N, the left side tn can be interpreted as the number of:

• injective functions f : [n]→ [t]

• proper t-colorings of the complete graph Kn

• sequences (a1, . . . , an) of ai ∈ [t] with ai 6= aj for i < j

• vectors in the hyperplane complement Fn
t −

⋃
i<j Hij , where Ft is a finite field, and

Hij is the hyperplane having the i, j coordinates equal.

We can obtain the right side from the fourth interpretation, by using Mobius inversion
(generalized PIE) on the lattice L(B) of subspaces V ∈ Fn

t generated by the braid arrange-
ment B =

⋃
i<j Hij . We give this the partial order of reverse inclusion: U ≤ V means

U ⊃ V , so that the minimal element is the entire space 0̂ = Fn
t . This poset is isomorphic
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to Πn, the set partitions S = {S1, . . . , Sk} with S1 t · · · t Sk = [n], ordered by refinement.
Note that under this isomorphism, dim(V ) is equal to `(S) = k.

Using the functions f, g : L(B)→ Z given by:

f(V ) = #V = tdim(V ), g(V ) = #(V −
⋃

H 6⊃V
H)

where the union runs over all hyperplanes H = Hij not containing V . Then:

f(U) =
∑
V⊂U

g(V ) ⇐⇒ g(U) =
∑
V⊂U

µ(U, V )f(V ) =
∑
V⊂U

µ(U, V )tdim(W ),

where µ(W,U) is the Mobius function of L(B) defined by µ(U,U) = 1 and
∑

U≤V≤W µ(U, V ) =
0 for U < W . In particular:

tn = #(Fn
t −

⋃
i<j

Hij) = g(0̂) =
∑

V ∈L(B)

µ(0̂, V ) tdim(V ) =
∑
S∈Πn

µ(0̂, S) t`(S).

The above expression is called the characteristic polyomial of the subspace arrangement: in
fact, the chromatic polynomial of any graph is equal to the characteristic polyomial of the
corresponding graphical hyperplane arrangement.

Taking the t1 term of the above expression, corresponding to the maximal element
1̂ = V = Ft(1, . . . , 1), we find that µ(0̂, 1̂) = µ(Fn

t , 0) = (−1)n−1(n−1)!, and from the prod-
uct poset structure of the interval [0̂, S] for S = {S1, . . . , Sk} with `(S) = k and ni = #Si,
we easily find that µ(0̂, S·) = (−1)n−k

∏
i(ni−1)!. Therefore:

tn =
∑
S∈Πn

(−1)n−`(S)
(`(S)∏
i=1

(ni−1)!
)
t`(S) .

Now, we can construct any permutation by partitioning [n] into subsets of size n1, . . . , nk,
and putting the elements of each block into an ni-cycle in one of (ni−1)! ways. Thus, for a
given k = `(S), the above expression counts all permutations with of [n] with k cycles, and
we have:

tn =

n∑
k=1

(−1)n−k
[n
k

]
tk.

We obtain yet another formula for tn from the second and third interpretations above.
A conjunction of conditions ai = aj can be regarded as a set of pairs {i, j} in the powerset

℘
(

[n]
2

)
, a Boolean poset. Ordinary PIE corresponding to the poset ℘

(
[n]
2

)
gives:

tn =
∑

G⊂Kn

(−1)e(G)tc(G),

where G runs over all graphs on n labeled vertices, with e(G) edges and c(G) connected
components. Comparing this to the previous formula, each pair {i, j} can be considered as
a relation i ∼ j, and a set of pairs generates an equivalence relation corresponding to a set
partition in Πn. Note that each S ∈ Πn corresponds to cn1 · · · cnk

sets in ℘
(

[n]
2

)
, where cj

is the number of connected graphs on j labeled vertices, so there are much fewer terms in
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the Πn formula, and much fewer still in the k = 1, . . . , n formula.

Bijective proof of cycle formulas. We first prove the positive formula:

tn =
n∑

k=1

[n
k

]
tk.

The left side counts permutation partitions: that is, an ordered set partition of [n] into
sets (S1, · · · , Sk), where Si may be empty, along with (w1, . . . , wk), where wi ∈ SSi is a
permutation of the set Si. (One may picture this as an arrangement of n distinct flags on t
flagpoles.) The right side counts pairs (w, f) ∈

∐
w∈Sn

Fw, where F = {functions f : [n]→
[t]} and Fw means the functions invariant under w, i.e. f is constant on each cycle of w,
so that |Fw| = tcyc(w).

There is an easy bijection between these objects which proves the formula. Given a
permutation partition (S1, . . . , Sk;w1, . . . , wk), let f(j) = i for j ∈ Si, and let w = w1 · · ·wk.
Conversely, given (w, f), let Si = f−1(i), and let wi be the permutation w restricted to Si.

We may also consider this as an example of Polya’s Method (or Burnside’s Lemma)
counting orbits of group actions. Dividing both sides by n! gives:((

t

n

))
=

1

n!

n∑
k=1

[n
k

]
tk.

The left side counts multisets with n objects of t kinds, which is the quotient of F under
the natural action of Sn. Now Burnside’s Lemma gives:∣∣∣∣ FSn

∣∣∣∣ =
1

|Sn|
∑
w∈Sn

|Fw|,

where Fw is the set of functions invariant under w. This translates directly to the two sides
of the multiset formula.

Finally, we give an involution proof of the signed formula

tn =
n∑

k=1

(−1)n−k
[n
k

]
tk.

Now the left side counts injective functions E = {f : [n] ↪→ [t]}, while the right side is the
signed count of

∐
w∈Sn

Fw, where we define sgn(w, f) = (−1)n−k, where w has k cycles.
Now we define a sign-reversing involution

I :
∐

w∈Sn

Fw →
∐

w∈Sn

Fw

with fixed-point set (
∐

w∈Sn
Fw)I = (id, E), which will prove the formula. For (w, f) ∈∐

w∈Sn
Fw with f injective, let I(w, f) = (w, f); since f is constant on all cycles of w,

it must have only 1-cycles, so w = e and (w, f) ∈ (id, E). If f not injective, suppose
f(a) = f(b) for minimal a, b ∈ [n]; then define I(w, f) = (w(ab), f), multiplying w by the
transposition (ab), so that w(ab) = (cd)w for c = w(a), d = w(b). This reverses sign,
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since if a, b lie in the same cycle of w, then w(ab) cuts this cycle into two; if a, b lie on
different cycles, then w(ab) joins these cycles into one. Thus, I will cancel all non-injective
(w, f) ∈

∐
w∈Sn

Fw on the right side of the formula, leaving only the injective (id, E) on
the left side. We call this the∞/00 Involution because it splits a figure-eight cycle into two
cycles, and vice versa: it is useful because it toggles every reasonable definition of sign for
w, incrementing/decrementing both the number of cycles and the number of transpositions.

This argument may also be seen as an example of counting orbits, this time with signs.
Dividing by n! gives: (

t

n

)
=

1

n!

n∑
k=1

(−1)n−k
[n
k

]
tk.

The left side counts n-element subsets of [t], which is the quotient of E under the free action
of Sn. Also E ∼= (id, E) = (

∐
w∈Sn

Fw)I , so by the Involution Principle:∣∣∣∣ ESn

∣∣∣∣ =
1

|Sn|
|(
∐

w∈Sn

Fw)I | =
1

|Sn|
∑
w∈Sn

(−1)n−cyc(w) |Fw|,

which clearly translates to the signed cycle formula.
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