Math 880 Rational Generating Functions Spr 2017

Coefficients of Rational Functions. Consider a rational generating function:
P(x)
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so that x = T2 50 Are the distinct roots of Q(x). Suppose P(x)/Q(x) has negative degree,
meaning deg P(z) < deg Q(z).

F(z) =

THEOREM 1: (i) There exist p;(k), polynomials in k of degree less than d;, so that:

f(k) =Y pi(k)yf forall k>0,

satisfying the recurrence: f(k) = —ay f(k—1) — -+ — aqf(k—d) for k > d.
(i) If Q(x) = (1 — z)9, then f(k) is a polynomial in k of degree at most d (or exactly d if
P(z)/Q(z) is in lowest terms).

(iii) If Q(z) = [[;(1—a™), then f(k) is a quasi-polynomial, meaning there exist polynomials
Ji(k), ..., fm(k) such that f(k) = f;(k) for all k =¢ mod m, where m = lem{m;}

Note: A rational function with higher-degree numerator than denominator can be written
as R(z) + %, where R(z) is a polynomial and 58 =50 f(k)z" is as in the Theorem.

Adding R(z) only changes the first few coefficients f(k), namely k < deg R(x).

Proof of Theorem. (i) The formula for f(k) follows from the partial fraction expansion:

P(z) _ Pi(x)
[T —~yx)d Z (1 — i)’

together with the negative binomial series 1/(1—x)?% = Zk>0((z))a:k, having coefficient se-
quence: ({) = (*571) = (*}*]") = L(k+1)(k+2) -+ (k+d—1), a polynomial in k of degree
d—1. The recurrence follows from (1 4 ajz + -+ + aqgz?) 3,5, f(k)z¥ = P(z), whose z*-
coefficient is zero for k > d. Now (ii) and (iii) follow, when 7;’s are 1 or roots of unity. O
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Diophantine homogeneous linear systems. Encode a system of m homogeneous linear
equations in n variables by an mxn integer matrix ® € M,,x,(Z), and consider the set of
non-negative integer solutions:

& = {a=(a1,...,a,) e N" | D = 0}.

This set is a monoid, meaning & is closed under vector addition (but not subtraction).

Denote the vector space of real solutions by V = {v € R" | v = 0}, having dimension
d = n —rank(®), and let C =V NRZ, be the infinite wedge-shaped region cut out of V' by
the positive octant in R™. Thus, &£ is the set of Z"-lattice points in C' C V C R".

More generally, a d-dimensional polyhedral cone C' C V =2 R? is the intersection of finitely
many half-spaces HI = {v € V' | v-€ > 0}, such that C contains an open subset of V', but C
does not contain any line. A face of C is the intersection of C' with any hyperplane H, = €=,
provided C' C HS. Each face is a lower-dimensional cone, including {0} C C, and we call
C itself the unique d-dimensional face. A face of dimension 1 is called an extremal ray, and
we may write C as the convex span of its extremal rays: C = R>poq + -+ + R>ypa. A
d-dimensional simplicial cone o C V is the intersection of d half-spaces o = H;‘; n---N H:;,
where {€1,..., €4} is a basis of V; and the extremal rays {a, ..., aq} of o also form a basis.



Combinatorics of triangulation. A triangulation of C'is a set I' of simplicial cones which
form a conical simplicial complex decomposing C': that is, C' = |, 0; any face of o € T' is
also in I'; and the intersection of any o, 7 € I is also in T

We can produce a triangulation using the poset £(C), the faces of C' ordered by inclusion,
with minimal element the one-point cone 0 = {0}, and atoms given by the extremal rays
R; = R>oav; for i = 1,...,r. One possibility for T' is the order complex A(L(C)), but this
introduces new extremal rays for simplicial cones, one through the center of each face of C.

To make I efficiently small, we want bigger simplicial cones using only the extremal rays

Ry,..., R, of C. For each minimal containment of faces F' C F’, an edge of the Hasse diagram
of L(C), we label it with the smallest ¢ such that F' = F + R;; and for every maximal chain
of £(C) with an increasing sequence of labels i; < -+ < 14, we form the simplicial cone

oc=R; +---+ R;,; then we take these as the maximal ¢ €I

We decompose the triangulation into boundary and internal faces: I' = 0I' LIT°. Here OT
denotes the cones 7 € T" inside the boundary of C, for example the extremal rays. Also, I'°
denotes the remaining internal cones, whose interiors lie in the interior of C; this includes
every maximal cone of I'. We also complete the poset with a top element: r=Tu {1}

We will need the Mobius function of I', which we compute using the topology of the order
complex A = A(f‘) Recall that for an interval [o, 7] C I', we extend the chain o < 7 upward
and downward by saturated chains to get an associated simplex v,, = (0 < - - <o’ <0 <
T <7 <---<1) € A; then link(vs) = A(s,t), the order complex of the open interval (s, t),
and plo, 7] = X(link(vg)), the reduced simplicial Euler characteristic. Now, a transverse
slice through C' is a convex polytope homeomorphic to a (d—1)-ball, so the poset f‘—{f), i} is
isomorphic to a triangulation of this ball, Iisa triangulation of the double cone over this ball
(still a ball); and the order complex A is the barycentric subdivision of this triangulation.
Since A is a ball (in particular a simplicial manifold with boundary), the link of v, is either!
a homology sphere of dimension ¢(o,7)—2 (if v,, is an internal simplex); or it is a homology
ball (if v,, is a boundary simplex, including [o, 7] = [0, 1]). In fact, vy, is on the boundary
of A whenever o € 9" and 7 = 1, so that vy, = (0 <--- <0’ <o < 1); thus:

ulo,r] = { (1)) ifoel®orT <1
’ 0 else.
Here ((o,7) is the length of a saturated chain from o to 7 in I'. In terms of the dimensions
of simplicial cones o C C, we thus have: p[o, 1] = (=1)4 4@+ if 5 € T else plo, 1] = 0.

Generating functions. We transform the data of a = (aq,...,a,) € £ into a multivariate
generating function in Cl[zq,...,z,]]:
B(x) = BE(z1,...,2,) = »_X* = Y afl--al.
acf acé

All coefficients are 0 or 1, so we can determine £ completely from E(x). We can also obtain
more useful generating functions of £ by specializing the variables in F(x).
To determine E(x), we use the triangulation I' obtained above. For each simplicial cone
o €T, let:
& = oNZ" C CNZ" = €&.

Normalize the extremal rays R = R>oa of C so that a is the shortest nonzero vector of R
which lies in &; Stanley calls these a’s the completely fundamental set CF(C). Rearranging
indices, we may write 0 = Rsgo; + -+ + R>pay, where d’ = dim(c), but the inclusion

ISee R.J. Daverman, Decompositions of Manifolds (2007), §11.12.



E; C Nay + - -+ + Nag need not be an equality. We must consider the finite set of lattice
points in the parallelopiped at the corner of o:

D, = {Beé& |B=car+ - +cpaqy for 0 <¢ <1},

so that & = D, + Na; + - - - + Nag . Equivalently, we have the rational generating function:

/

Eo(x) = (Zﬁemxﬂ) 1_[1 171xai '
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THEOREM 2: Let I' be a triangulation of the d-dimensional cone C, so that £ = U, &,

and let I'° denote the internal simplices of I'. Then the generating function of £ is:

E(x) = Y ()" OE, (x).
oel°
Proof. Let 0 denote the interior of a cone o € I', an open subset of o, and let £2 = &£ N o?.

Then we have:
& =1 ¢,
o<t

and this holds also for 7 = 1 € T if we set & =& and & = (). Performing Mobius inversion:
ET(X) = ZUST E;(X),
EX(x) = X,<rploT]Es(X).

In particular, using our evaluation of the Mdbius function of I', we have:

0= B(x) = Bi(x) + X,cinlo 1] Bo(x)
= Bx) + X,ere (-1 IMITE, (x).
The desired formula for F(x) follows. O

Note that each d-dimensional cone o is internal, and contributes a term +FE,(x) to E(x).

Reciprocity. THEOREM 3: Consider the rational power series F'(z) = Sg; = k>0 f(k)ak,

where f(k) = >, pi(k)y} as in Theorem 1. Define f(k) by the same formula for all k € Z, and
let Fi(z) =35, f(=k)a*. Then F(1) = —F(x), meaning the power series of the rational
function F(1) is —F ().

Proof. Consider the doubly-infinite series Y-, ., f(k)z* in C[[z,z7']], the vector space of
formal Laurent series. We can formally multiply these series by polynomials, so we have:

QY Skt = 3 gk,

where g(k) = Y, qi(k)yF for some polynomials ¢;(k). Since Q(z) >, f(k)z* = P(z), we
know that g(k) = 0 for sufficient large k >> 0; but this can only mean that every ¢;(k) is the
zero-polynomial, and therefore g(k) = 0 for all k. That is, in C[[z, 2z~ !]], we have:

—Q@) Y J=Re™ = Q) [kt = P).
Substituting 2! for z in C[[z, z~1]], we obtain:

~QE )Y, -kt = P,



This also holds in the ring L = C[[z]][z 7] = {3_,~ y ax2® | N € Z}, a subspace of C[[z,z~]].
Indeed, L is a field containing an isomorphic copy of the rational functions C(z), so we have
—Q(%)F(z) = P(1) in C(z) as desired. a

As in Theorem 2, consider & = CNZ" for a d-dimensional cone C'C V, and define C° to be
the interior, an open subset of C' and of V; and let £° = C°NZ"™. (Stanley denotes £° as £.)
Then we have the following reciprocity relation between generating functions of £ and £°.

THEOREM 4: E() = (—1)?E°(x), meaning the power series of the rational function E(1) =
E(y o 50) is (DB @, wn).
Proof. For d =1, £ =N, £° =Ny, E(z) = 1=, we have: E(1) = 1_11/1 =% = —E°(x).
For C' = 0, a d-dimensional simplicial cone, we have Eq(x) = (3 sep, xP) Hle L~ and
it is easy to see that Ep(x) = (3 5.5, xP) Hle =7, where:

D, = {fef|B=crar+ - +cqayfor0<c¢ <1}

D, = {Be€|B=cras+ - +cqayfor 0<c; <1},

Thus we compute:

_ d
Eo(i) = (Zﬁepgx B) Hi:l 1_1(—%
— d —xi
- (ZBGDU X 5) [Tieh =5
_ d
(=17 (ZBGDU xA 'B) [Ticy ljxai7

where A = a1 + - + ay.

Now consider the transformation ¢ : V' — V| ¢(v) = A — v. Take the abelian group
ZE, generated by the monoid &,, so that &, = o N ZE,. Also consider the parallelopiped
e = {c1a1 + -+ + cgaq for 0 < ¢; < 1}, so that D, = m, N ZE, and ¢(ZE,) = ZE,. Then:

¢(DU) = ¢(WU)Q¢(ZS) = ¢(7TJ)QZ€ = ﬁcr'

That is, Dy, = {A — B | B € Dy}, so the above formula reduces to:
d 0
Eo(}) = (-1 (Tsep, ¥) [T i = E0).

Finally, consider a general cone C with triangulation I'. Then the interior of C is a disjoint

union of the interiors ¢® for o € I'?, and £ = [[, <o &5 Then we compute:

) = Yeero(-1)TIIE(L) = 3, cpo(—1) RO (—1)8@ B (x)
= (D' Xper Bs(x) = (-1)/EYx). 0
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