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Coefficients of Rational Functions. Consider a rational generating function:

F (x) =
P (x)

Q(x)
=
∑
k≥0

f(k)xk ∈ C[[x]],

Q(x) =
∏

i
(1− γix)di = 1 + a1x+ · · ·+ adx

d,

so that x = 1
γ1
, 1
γ2
, . . . are the distinct roots of Q(x). Suppose P (x)/Q(x) has negative degree,

meaning degP (x) < degQ(x).

Theorem 1: (i) There exist pi(k), polynomials in k of degree less than di, so that:

f(k) =
∑

i
pi(k)γki for all k ≥ 0,

satisfying the recurrence: f(k) = −a1f(k−1)− · · · − adf(k−d) for k ≥ d.

(ii) If Q(x) = (1 − x)d, then f(k) is a polynomial in k of degree at most d (or exactly d if
P (x)/Q(x) is in lowest terms).

(iii) If Q(x) =
∏
j(1−xmj ), then f(k) is a quasi-polynomial, meaning there exist polynomials

f1(k), . . . , fm(k) such that f(k) = fi(k) for all k ≡ i mod m, where m = lcm{mj}

Note: A rational function with higher-degree numerator than denominator can be written
as R(x) + P (x)

Q(x) , where R(x) is a polynomial and P (x)
Q(x) =

∑
k≥0 f(k)xk is as in the Theorem.

Adding R(x) only changes the first few coefficients f(k), namely k ≤ degR(x).

Proof of Theorem. (i) The formula for f(k) follows from the partial fraction expansion:

P (x)∏
i(1− γix)di

=
∑
i

Pi(x)

(1− γix)di
,

together with the negative binomial series 1/(1−x)d =
∑
k≥0(( dk ))xk, having coefficient se-

quence: (( dk )) =
(
d+k−1
k

)
=
(
d+k−1
d−1

)
= 1

d! (k+1)(k+2) · · · (k+d−1), a polynomial in k of degree
d−1. The recurrence follows from (1 + a1x + · · · + adx

d)
∑
k≥0 f(k)xk = P (x), whose xk-

coefficient is zero for k ≥ d. Now (ii) and (iii) follow, when γi’s are 1 or roots of unity. �

Diophantine homogeneous linear systems. Encode a system of m homogeneous linear
equations in n variables by an m×n integer matrix Φ ∈ Mm×n(Z), and consider the set of
non-negative integer solutions:

E = {α= (a1, . . . , an) ∈ Nn | Φα = 0}.

This set is a monoid, meaning E is closed under vector addition (but not subtraction).
Denote the vector space of real solutions by V = {v ∈ Rn | Φv = 0}, having dimension

d = n− rank(Φ), and let C = V ∩ Rn≥0 be the infinite wedge-shaped region cut out of V by
the positive octant in Rn. Thus, E is the set of Zn-lattice points in C ⊂ V ⊂ Rn.

More generally, a d-dimensional polyhedral cone C ⊂ V ∼= Rd is the intersection of finitely
many half-spaces H+

ε = {v ∈ V | v ·ε ≥ 0}, such that C contains an open subset of V , but C
does not contain any line. A face of C is the intersection of C with any hyperplane Hε = ε⊥,
provided C ⊂ H+

ε . Each face is a lower-dimensional cone, including {0} ⊂ C, and we call
C itself the unique d-dimensional face. A face of dimension 1 is called an extremal ray, and
we may write C as the convex span of its extremal rays: C = R≥0α1 + · · · + R≥0αr. A
d-dimensional simplicial cone σ ⊂ V is the intersection of d half-spaces σ = H+

ε1 ∩ · · · ∩H
+
εd

,
where {ε1, . . . , εd} is a basis of V ; and the extremal rays {α1, . . . ,αd} of σ also form a basis.



Combinatorics of triangulation. A triangulation of C is a set Γ of simplicial cones which
form a conical simplicial complex decomposing C: that is, C =

⋃
σ∈Γ σ; any face of σ ∈ Γ is

also in Γ; and the intersection of any σ, τ ∈ Γ is also in Γ.
We can produce a triangulation using the poset L(C), the faces of C ordered by inclusion,

with minimal element the one-point cone 0̂ = {0}, and atoms given by the extremal rays
Ri = R≥0αi for i = 1, . . . , r. One possibility for Γ is the order complex ∆(L(C)), but this
introduces new extremal rays for simplicial cones, one through the center of each face of C.

To make Γ efficiently small, we want bigger simplicial cones using only the extremal rays
R1, . . . , Rr of C. For each minimal containment of faces F ⊂ F ′, an edge of the Hasse diagram
of L(C), we label it with the smallest i such that F ′ = F +Ri; and for every maximal chain
of L(C) with an increasing sequence of labels i1 < · · · < id, we form the simplicial cone
σ = Ri1 + · · ·+Rid ; then we take these as the maximal σ ∈ Γ.

We decompose the triangulation into boundary and internal faces: Γ = ∂ΓtΓ◦. Here ∂Γ
denotes the cones τ ∈ Γ inside the boundary of C, for example the extremal rays. Also, Γ◦

denotes the remaining internal cones, whose interiors lie in the interior of C; this includes
every maximal cone of Γ. We also complete the poset with a top element: Γ̂ = Γ ∪ {1̂}.

We will need the Möbius function of Γ̂, which we compute using the topology of the order
complex ∆ = ∆(Γ̂). Recall that for an interval [σ, τ ] ⊂ Γ̂, we extend the chain σ < τ upward
and downward by saturated chains to get an associated simplex νστ = (0 l · · · l σ′ l σ <
τ l τ ′ l · · ·l 1̂) ∈ ∆; then link(νst) = ∆(s, t), the order complex of the open interval (s, t),
and µ[σ, τ ] = χ̃(link(νst)), the reduced simplicial Euler characteristic. Now, a transverse
slice through C is a convex polytope homeomorphic to a (d−1)-ball, so the poset Γ̂−{0̂, 1̂} is
isomorphic to a triangulation of this ball, Γ̂ is a triangulation of the double cone over this ball
(still a ball); and the order complex ∆ is the barycentric subdivision of this triangulation.
Since ∆ is a ball (in particular a simplicial manifold with boundary), the link of νστ is either1

a homology sphere of dimension `(σ, τ)−2 (if νστ is an internal simplex); or it is a homology
ball (if νστ is a boundary simplex, including [σ, τ ] = [0̂, 1̂]). In fact, νστ is on the boundary
of ∆ whenever σ ∈ ∂Γ and τ = 1̂, so that νστ = (0̂ l · · ·l σ′ l σ < 1̂); thus:

µ[σ, τ ] =

{
(−1)`(σ,τ) if σ ∈ Γ◦ or τ < 1̂

0 else.

Here `(σ, τ) is the length of a saturated chain from σ to τ in Γ̂. In terms of the dimensions
of simplicial cones σ ⊂ C, we thus have: µ[σ, 1̂] = (−1)d−dim(σ)+1 if σ ∈ Γ◦, else µ[σ, 1̂] = 0.

Generating functions. We transform the data of α = (a1, . . . , an) ∈ E into a multivariate
generating function in C[[x1, . . . , xn]]:

E(x) = E(x1, . . . , xn) =
∑
α∈E

xα =
∑
α∈E

xa11 · · ·xann .

All coefficients are 0 or 1, so we can determine E completely from E(x). We can also obtain
more useful generating functions of E by specializing the variables in E(x).

To determine E(x), we use the triangulation Γ obtained above. For each simplicial cone
σ ∈ Γ, let:

Eσ = σ ∩ Zn ⊂ C ∩ Zn = E .

Normalize the extremal rays R = R≥0α of C so that α is the shortest nonzero vector of R
which lies in E ; Stanley calls these α’s the completely fundamental set CF(C). Rearranging
indices, we may write σ = R≥0α1 + · · · + R≥0αd′ , where d′ = dim(σ), but the inclusion

1See R.J. Daverman, Decompositions of Manifolds (2007), §II.12.



Eσ ⊂ Nα1 + · · · + Nαd′ need not be an equality. We must consider the finite set of lattice
points in the parallelopiped at the corner of σ:

Dσ = {β ∈ Eσ | β = c1α1 + · · ·+ cd′αd′ for 0 ≤ ci < 1},

so that Eσ = Dσ +Nα1 + · · ·+Nαd′ . Equivalently, we have the rational generating function:

Eσ(x) =
(∑

β∈Dσ
xβ
) d′∏
i=1

1

1−xαi
.

Theorem 2: Let Γ be a triangulation of the d-dimensional cone C, so that E =
⋃
σ∈Γ Eσ,

and let Γ◦ denote the internal simplices of Γ. Then the generating function of E is:

E(x) =
∑
σ∈Γ◦

(−1)d−dim(σ)Eσ(x).

Proof. Let σ0 denote the interior of a cone σ ∈ Γ, an open subset of σ, and let E◦σ = E ∩ σ0.
Then we have:

Eτ =
∐
σ≤τ

E◦σ ,

and this holds also for τ = 1̂ ∈ Γ̂ if we set E1̂ = E and E◦
1̂

= ∅. Performing Möbius inversion:

Eτ (x) =
∑
σ≤τ E

◦
σ(x),

E◦τ (x) =
∑
σ≤τ µ[σ, τ ]Eσ(x).

In particular, using our evaluation of the Möbius function of Γ̂, we have:

0 = E◦
1̂
(x) = E1̂(x) +

∑
σ<1̂ µ[σ, 1̂]Eσ(x)

= E(x) +
∑
σ∈Γ◦(−1)d−dim(σ)+1Eσ(x).

The desired formula for E(x) follows. �

Note that each d-dimensional cone σ is internal, and contributes a term +Eσ(x) to E(x).

Reciprocity. Theorem 3: Consider the rational power series F (x) = P (x)
Q(x) =

∑
k≥0 f(k)xk,

where f(k) =
∑
i pi(k)γki as in Theorem 1. Define f(k) by the same formula for all k ∈ Z, and

let F (x) =
∑
k≥1 f(−k)xk. Then F ( 1

x ) = −F (x), meaning the power series of the rational

function F ( 1
x ) is −F (x).

Proof. Consider the doubly-infinite series
∑
k∈Z f(k)xk in C[[x, x−1]], the vector space of

formal Laurent series. We can formally multiply these series by polynomials, so we have:

Q(x)
∑

k∈Z
f(k)xk =

∑
k∈Z

g(k)xk,

where g(k) =
∑
i qi(k)γki for some polynomials qi(k). Since Q(x)

∑
k≥0 f(k)xk = P (x), we

know that g(k) = 0 for sufficient large k � 0; but this can only mean that every qi(k) is the
zero-polynomial, and therefore g(k) = 0 for all k. That is, in C[[x, x−1]], we have:

−Q(x)
∑

k≥1
f(−k)x−k = Q(x)

∑
k≥0

f(k)xk = P (x).

Substituting x−1 for x in C[[x, x−1]], we obtain:

−Q(x−1)
∑

k≥1
f(−k)xk = P (x−1).



This also holds in the ring L = C[[x]][x−1] = {
∑
k≥N akx

k | N ∈ Z}, a subspace of C[[x, x−1]].
Indeed, L is a field containing an isomorphic copy of the rational functions C(x), so we have
−Q( 1

x )F (x) = P ( 1
x ) in C(x) as desired. �

As in Theorem 2, consider E = C ∩ Zn for a d-dimensional cone C ⊂ V , and define C◦ to be
the interior, an open subset of C and of V ; and let E◦ = C◦ ∩Zn. (Stanley denotes E◦ as E .)
Then we have the following reciprocity relation between generating functions of E and E◦.

Theorem 4: E( 1
x ) = (−1)dE◦(x), meaning the power series of the rational function E( 1

x ) =
E( 1

x1
, . . . , 1

xn
) is (−1)dE◦(x1, . . . , xn).

Proof. For d = 1, E = N, E◦ = N≥1, E(x) = 1
1−x , we have: E( 1

x ) = 1
1−1/x = x

1−x = −E◦(x).

For C = σ, a d-dimensional simplicial cone, we have Eσ(x) = (
∑
β∈Dσ xβ)

∏d
i=1

1
1−xαi

, and

it is easy to see that E◦σ(x) = (
∑
β∈Dσ xβ)

∏d
i=1

1
1−xαi

, where:

Dσ = {β ∈ E | β = c1α1 + · · ·+ cdαd for 0 ≤ ci < 1}

Dσ = {β ∈ E | β = c1α1 + · · ·+ cdαd for 0 < ci ≤ 1}.

Thus we compute:

Eσ( 1
x ) =

(∑
β∈Dσ x−β

)∏d
i=1

1
1−x−αi

=
(∑

β∈Dσ x−β
)∏d

i=1
−xαi

1−xαi

= (−1)d
(∑

β∈Dσ xA−β
)∏d

i=1
1

1−xαi
,

where A = α1 + · · ·+ αd.
Now consider the transformation φ : V → V , φ(v) = A − v. Take the abelian group

ZEσ generated by the monoid Eσ, so that Eσ = σ ∩ ZEσ. Also consider the parallelopiped
πσ = {c1α1 + · · ·+ cdαd for 0 ≤ ci < 1}, so that Dσ = πσ ∩ ZEσ and φ(ZEσ) = ZEσ. Then:

φ(Dσ) = φ(πσ) ∩ φ(ZE) = φ(πσ) ∩ ZE = Dσ.

That is, Dσ = {A− β | β ∈ Dσ}, so the above formula reduces to:

Eσ( 1
x ) = (−1)d

(∑
β∈Dσ xβ

)∏d
i=1

1
1−xαi

= E◦(x).

Finally, consider a general cone C with triangulation Γ. Then the interior of C is a disjoint
union of the interiors σ◦ for σ ∈ Γ◦, and E◦σ =

∐
σ∈Γ◦ E◦σ . Then we compute:

E( 1
x ) =

∑
σ∈Γ0(−1)d−dim(σ)Eσ( 1

x ) =
∑
σ∈Γ0(−1)d−dim(σ)(−1)dim(σ)E◦σ(x)

= (−1)d
∑
σ∈Γ0 E◦σ(x) = (−1)dE◦(x). �


