Math 880 Lagrange Inversion Formula Fall 2012

Inversion of Formal Power Series. We extend the ring of formal power series C[z] to
the field of formal Laurent series C((x)):

C(z) = {Z@N apz® | NeZ,a € @} .

These are the series in z, 2~! with a lowest term 2=, but not necessarily a highest term. We
define the operator [2"] which extracts the 2™ coefficient of a series: [z"] (3, arz®) = an.

LEMMA: (i) For h(z) € C((x)), we have [z~ ]h/(x) = 0.
(ii) For f(x) € 2C[x] with [z']f(z) # 0, and i € Z, we have:
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Proof. (i) Obvious from the definition of derivative: (z*) = kz*~! for k € Z.
(ii) For i # —1, this follows from (i), since f(z)'f'(x) = < (f(x)"*'). For i = —1 and

i+l
f(x) = Zk21 ayz”:
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from which [z~ f(z)! f'(x) = 1 is evident. O

LAGRANGE INVERSION THEOREM: Let f(z), g(z) € zC[z] be inverses: f(g(x)) = . Then:
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In particular, if f(x) = z/¢(x) and g(z) = x ¢(g(x)), then:

e"lg(a) = ~ o]

"g(@) = —[2" Mg ()"
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Proof. Let g(x) =} ;5 b;z'. Since f = g~', we have:

v =g(f(z)) =) _bif(2)',
i>1
and taking the derivative gives:

1= b (f(a))) = ibif ()1 f (x).
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We wish to move the b, term to be the coefficient of f(z)~! f/(x). Thus, we divide by f(z)™

f(i)n = S ibf(@) (@)
i>1
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Applying the Lemma to each term, we have the first formula: [z71|[1/f(x)"] = nby,.
For the second formula, take f(x) = x/¢(x) so that x = f(g(x)) = g(z)/P(g(x)) is
equivalent to g(z) = x ¢(g(x)). Now, evidently [z~ !]h(z) = [z ] (2"h(z)), so:
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Reference: Richard Stanley, Enumerative Combinatorics, Vol. 2, Ch. 5.

Inversion of Analytic Functions. We give an analytic proof of Lagrange Inversion.
Consider a simply connected region 2 C C with boundary a simple closed curve C, and
a function f(z) holomorphic for a complex variable z € Q. The Residue Theorem gives
that gL ¢, £
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More generally

(u) = 0, counted with multiplicity.
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where u = uy,...,uy €  are the solutions of f(u) = z, counted with multiplicity.
Now, suppose f(0) = 0 and f/(0) # 0, so by the Inverse Function Theorem, f(u) is
one-to-one inside a small circle C defined by |u| = 0, and there is a unique inverse function
g(z) defined near z = 0. That is, u = g(z) is the unlque local solution of f(u) = z, so that:!
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Expanding in a Taylor series:
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Here the third equality is integration by parts, and the fourth is the residue formula.

>nudu = Zanz"

Generalization: For inverse functions with g(f(x)) = x, we can use the same reasoning
to expand h(g(x)) for any h(z) with h(0) = 0:
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Indeed, under the change of variables ¢ = f(u), u = g(¢), d¢ = f'(u) du, this reduces to the Cauchy

formula: g(z) = 9(c) 2 dC.
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