
Math 880 Lagrange Inversion Formula Fall 2012

Inversion of Formal Power Series. We extend the ring of formal power series C[[x]] to
the field of formal Laurent series C((x)):

C((x)) =
{∑

k≥−N akx
k
∣∣∣ N ∈ Z , ak ∈ C

}
.

These are the series in x, x−1 with a lowest term x−N , but not necessarily a highest term. We
define the operator [xn] which extracts the xn coefficient of a series: [xn]

(∑
k akx

k
)

= an.

lemma: (i) For h(x) ∈ C((x)), we have [x−1]h′(x) = 0.
(ii) For f(x) ∈ xC[[x]] with [x1]f(x) 6= 0, and i ∈ Z, we have:

[x−1]f(x)if ′(x) =

{
1 if i = −1
0 else.

Proof. (i) Obvious from the definition of derivative: (xk)′ = kxk−1 for k ∈ Z.
(ii) For i 6= −1, this follows from (i), since f(x)if ′(x) = 1

i+1(f(x)i+1)′. For i = −1 and

f(x) =
∑

k≥1 akx
k:

f ′(x)

f(x)
=

a1 + 2a2x+ · · ·
a1x+ a2x2 + + · · ·

=
a1 + 2a2x+ · · ·

a1x
· 1

1 +
(
2a2
a1
x+ 3a3

a1
x2 + · · ·

)
=

(
x−1 + 2a2

a1
+ 3a3

a1
x+ · · ·

)(
1− x

(
2a2
a1

+ 3a3
a1
x+ · · ·

)
+ · · ·

)
,

from which [x−1]f(x)−1f ′(x) = 1 is evident. �

lagrange inversion theorem: Let f(x), g(x) ∈ xC[[x]] be inverses: f(g(x)) = x. Then:

[xn]g(x) =
1

n
[x−1]

1

f(x)n
.

In particular, if f(x) = x/φ(x) and g(x) = xφ(g(x)), then:

[xn]g(x) =
1

n
[xn−1]φ(x)n.

Proof. Let g(x) =
∑

i≥1 bix
i. Since f = g−1, we have:

x = g(f(x)) =
∑
i≥1

bif(x)i,

and taking the derivative gives:

1 =
∑
i≥1

ibi
(
f(x)i

)′
=
∑
i≥1

ibif(x)i−1f ′(x).



We wish to move the bn term to be the coefficient of f(x)−1f ′(x). Thus, we divide by f(x)n:

1

f(x)n
=

∑
i≥1

ibif(x)i−1−nf ′(x)

=
n−1∑
i=1

ibi
i− n

(
f(x)i−n

)′
+ nbn

f ′(x)

f(x)
+
∑
i>n

ibi
i− n

(
f(x)i−n

)′
Applying the Lemma to each term, we have the first formula: [x−1][1/f(x)n] = nbn.

For the second formula, take f(x) = x/φ(x) so that x = f(g(x)) = g(x)/φ(g(x)) is
equivalent to g(x) = xφ(g(x)). Now, evidently [x−1]h(x) = [xn−1](xnh(x)), so:

bn =
1

n
[x−1]

1

f(x)n
=

1

n
[xn−1]

xn

xn/φ(x)n
=

1

n
[xn−1]φ(x)n. �

Reference: Richard Stanley, Enumerative Combinatorics, Vol. 2, Ch. 5.

Inversion of Analytic Functions. We give an analytic proof of Lagrange Inversion.
Consider a simply connected region Ω ⊂ C with boundary a simple closed curve C, and
a function f(z) holomorphic for a complex variable z ∈ Ω. The Residue Theorem gives

that 1
2πi

∮
C
f ′(u)
f(u) du is the number of solutions u ∈ Ω of f(u) = 0, counted with multiplicity.

More generally:

1

2πi

∮
C

f ′(u)

f(u)− z
h(u) du =

N∑
i=1

h(ui) ,

where u = u1, . . . , uN ∈ Ω are the solutions of f(u) = z, counted with multiplicity.
Now, suppose f(0) = 0 and f ′(0) 6= 0, so by the Inverse Function Theorem, f(u) is

one-to-one inside a small circle C defined by |u| = δ, and there is a unique inverse function
g(z) defined near z = 0. That is, u = g(z) is the unique local solution of f(u) = z, so that:1

g(x) =
1

2πi

∮
C

f ′(u)

f(u)− z
u du .

Expanding in a Taylor series:

g(z) =
∑
n≥0

1

2πi

∮
C

f ′(u)

f(u)

(
z

f(u)

)n
u du =

∑
n≥0

anz
n

where:

an = [zn]g(x) =
1

2πi

∮
C

f ′(u)

f(u)n+1
u du =

1

2πi

∮
C

1

n

1

f(u)n
du =

1

n
[u−1]

1

f(u)n
.

Here the third equality is integration by parts, and the fourth is the residue formula.

Generalization: For inverse functions with g(f(x)) = x, we can use the same reasoning
to expand h(g(x)) for any h(x) with h(0) = 0:

[xn]h(g(x)) =
1

n
[x−1]

h′(x)

f(x)n
.

1Indeed, under the change of variables ζ = f(u), u = g(ζ), dζ = f ′(u) du, this reduces to the Cauchy

formula: g(z) = 1
2πi

∮
f(C)

g(ζ)
ζ−z dζ.


