Math 880 Optional Homework 10 - Part 2 Due Fri Dec 15

The following problems will count for extra credit.

2. A model for combinatorial reciprocity is the formula relating binomial and multichoose coefficients: considering $\binom{n}{k} = \frac{1}{k!}n^{\underline{k}}$ and $\binom{n}{k} = \frac{1}{k!}n^{\overline{k}}$ as polynomials in *n*, we have:

$$\binom{-n}{k} = (-1)^k \left(\binom{n}{k} \right).$$

Derive this from our general reciprocity results.

a. Considering $\binom{n}{k}$ as counting the sets $S = \{i_1 < \cdots < i_k\} \subset [n]$, and similarly for $\binom{n}{k}$ and multisets $M = \{i_1 \leq \cdots \leq i_k\}$, transform this data into solutions of a Diophantine homogeneous linear system. That is, explicitly define:

$$\mathcal{E} = \{ \alpha = (t, a_1, \dots, a_{k+1}) \in \mathbb{N}^{k+2} \mid \Phi \alpha = 0 \}$$

so that the level-set $\mathcal{E}_{\ell} = \mathcal{E} \cap (t = \ell)$ and its interior $\mathcal{E}_{\ell}^{\circ} = \mathcal{E}^{\circ} \cap (t = \ell)$ give:

$$#\mathcal{E}_{\ell} = \left(\!\!\begin{pmatrix} \ell+1\\k \end{pmatrix}\!\!\right) \quad \text{and} \quad #\mathcal{E}_{\ell}^{\circ} = \left(\!\!\begin{pmatrix} \ell-1\\k \end{pmatrix}\!\!\right).$$

Hint: Use a "gap" or "step-length" transform, not multiplicities.

b. Form the generating functions F(t) = E(t, 1, ..., 1) and $F^0(t) = E^{\circ}(t, 1, ..., 1)$, and apply Theorems 3 and 4 of the Notes to derive the reciprocity formula.

c. Apply Theorem 2 to explicitly evaluate $E(t, x_1, \ldots, x_{k+1})$ and F(t).

d. Apply the Graded Product Principle to the formula from (c), equating F(t) with a very familiar power series. Compare coefficients to obtain a duality for multichoose numbers analogous to $\binom{n}{k} = \binom{n}{n-k}$.

e. Give a direct combinatorial proof of the duality formula in (d) by comparing the multiplicity transform and the gap transform.

3. Consider the ring of symmetric polynomials $\Lambda_3 = \mathbb{Q}[x_1, x_2, x_3]^{S_3}$, with its bases m_{λ} (monomial), e_{λ} (elementary), h_{λ} (homogeneous), s_{λ} (Schur), indexed by partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_3)$. Recall we defined $s_{\lambda} = a_{\lambda+\rho}/\Delta$ for $\rho = (2, 1, 0), a_{\mu} = \sum_w \operatorname{sgn}(w) x_{w(\mu)}$, and $\Delta = \prod_{i < j} (x_i - x_j)$.

a. By hand, expand e_{λ} , h_{λ} , s_{λ} in terms of m_{λ} for the polynomials of degrees 1, 2, 3. Verify the change-of-basis coefficients denoted by Stanley as $M_{\lambda\mu}$ (0-1 matrices), $N_{\lambda\mu}$ (N-matrices), and $K_{\lambda\mu}$ (semi-standard Young tableaux).

b. The Jacobi-Trudi identities give Schur functions in terms of homogeneous and elementary symmetric functions:

$$s_{\lambda} = \det(h_{\lambda_i+j-i})_{i,j=1}^n = \det(e_{\lambda_i^t+j-i})_{i,j=1}^n,$$

where λ^t denotes the transpose partition, and we count $h_i = e_i = 0$ for i < 0and $h_0 = e_0 = 1$. Work out these identities and verify them for the s_{λ} from (a). **c.** Consider the vector space V of matrices $X \in M_{3\times 3}(\mathbb{C})$ with zero trace: tr(X) = 0. Define an action of $G = GL_3(\mathbb{C})$ by:

$$\rho(A)X = \det(A)AXA^{-1}.$$

Verify that this is a polynomial representation of dimension 8.

Find the common eignevectors of the diagonal matrices $T = \text{diag}(t_1, t_2, t_3)$, compute the character $\chi_V(t_1, t_2, t_3) = \text{tr } \rho(T)$, and identify it as a Schur function. Show directly that V is irreducible, containing no subrepresentations except 0 and itself.

d. Repeat (c) for the representation of $\operatorname{GL}_n(\mathbb{C})$ on traceless $n \times n$ matrices. Particularly, what Schur function gives the character?