Math 880

1b,c. Define Franklin's involution $I: \mathcal{Q} \to \mathcal{Q}$ on integer partitions with distinct parts:

$$\mathcal{Q} = \{ \lambda = (\lambda_1 > \lambda_2 > \dots > \lambda_\ell > 0), \ \ell \ge 1 \},\$$

using the measure of the smallest part and of the initial string of consecutive parts:

$$m = \min(\lambda) = \lambda_{\ell}$$
 and $c = \cos(\lambda) = \max\{1\} \cup \{j \le \ell \mid \lambda_i = \lambda_{i-1} - 1 \ \forall i \le j\};$

$$I(\lambda_1, \dots, \lambda_\ell) = \begin{cases} (\lambda_1 + 1, \dots, \lambda_m + 1, \lambda_{m+1}, \dots, \lambda_{\ell-1}) & \text{if } m \le c \text{ but not } m = c = \ell & (\text{Case 1}) \\ (\lambda_1 - 1, \dots, \lambda_c - 1, \lambda_{c+1}, \dots, \lambda_\ell, c) & \text{if } m > c \text{ but not } m = c + 1 = \ell + 1 & (\text{Case 2}) \\ (\lambda_1, \dots, \lambda_\ell) & \text{if } m = c = \ell \text{ or } m = c + 1 = \ell + 1. & (\text{Case 3}) \end{cases}$$

Clearly, I preserves the size $|\lambda| = \sum_i \lambda_i$, and reverses the sign $(-1)^{\ell}$ in Cases 1 and 2. The fixed partitions of Case 3 are, from the definition of m and c:

$$\lambda = (2\ell - 1, 2\ell - 2, \dots, \ell)$$
 and $(2\ell, 2\ell - 1, \dots, \ell + 1),$

with respective sizes $|\lambda| = \frac{\ell}{2}(2\ell - 1 + \ell) = \frac{1}{2}\ell(3\ell - 1)$ and $\frac{\ell}{2}(2\ell + \ell + 1) = \frac{1}{2}\ell(3\ell + 1)$ for $\ell \ge 1$.

We check that $I(\lambda)$ is a well-defined element of \mathcal{Q} . Indeed, if λ belongs to Case 1, with $m \leq c \leq \ell$, the leading subsequence $(\lambda_1+1,\ldots,\lambda_m+1)$ would be too long to fit in λ' only if $m > \ell - 1$, i.e. if $\ell - 1 < m \leq c \leq \ell$, which would mean $m = c = \ell$, and λ would belong to Case 3, not Case 1.

Now consider if λ belongs to Case 2, with m > c. In any case, we have $\lambda_c - 1 > \lambda_{c+1}$ by the definition of c, so that $I(\lambda) \in \mathcal{Q}$, unless the tail subsequence $(\lambda_c - 1, \lambda_{c+1}, \ldots, \lambda_\ell, c)$ in λ' reduces to just $(\lambda_c - 1, c)$. This happens only when $\ell < c+1$, meaning $\ell - 1 < c \leq \ell$ and $c = \ell$; and the only violation would be if $\lambda_c - 1 \leq c$, that is $m - 1 = \lambda_\ell - 1 = \lambda_c - 1 \leq c < m$, which would mean $m = c+1 = \ell+1$, and λ would belong to Case 3. Thus there can be no violation, and we always have $I(\lambda) \in \mathcal{Q}$.

CLAIM: I is an involution, a bijection between Cases 1 and 2.

First, it is clear that the Case 1 and 2 operations are inverse to each other when they can be performed, and that neither operation can produce $I(\lambda) = \lambda'$ of Case 3 for any $\lambda \in Q$.

Second, suppose λ belongs to Case 1, with its measures $m \leq c \leq \ell$, and $I(\lambda) = \lambda'$ has its own measures $\ell' = \ell - 1$, c' = m. We have $m' = \lambda_{\ell-1}$ provided the tail subsequence $(\lambda_{m+1}, \ldots, \lambda_{\ell-1})$ in λ' is non-empty, that is if $m+1 \leq \ell-1$, so that $m' = \lambda_{\ell-1} > \lambda_{\ell} = m = c'$, and $I(\lambda) = \lambda'$ belongs to Case 2. The other possibility is $m' = \lambda_m + 1$ if the tail is empty, that is if $m+1 > \ell-1$ and $\ell-2 < m \leq c \leq \ell$, so that $m = \ell-1$ or ℓ . If $m = \ell-1$, so that $m' = \lambda_{\ell-1} + 1 > \lambda_{\ell} = c'$, then again $I(\lambda) = \lambda'$ belongs to Case 2. Finally, $m = \ell$ is impossible, since it would mean $\ell = m \leq c \leq \ell$ and $m = c = \ell$, so λ would belong to Case 3.

Last, suppose λ belongs to Case 2, with m > c, and $I(\lambda) = \lambda'$, so that m' = c. Then $\lambda_c - 1 \ge \lambda_\ell - 1 = m - 1 \ge c \ge 1$, and it is easy to see that $c' \ge c$, so $m' = c \le c'$, and $I(\lambda) = \lambda'$ belongs to Case 1. This concludes the proof of the Claim.