Math 880

Here are some subtle points that many people missed.

2.9 Proposition: $\begin{pmatrix} k \\ n \end{pmatrix} = \begin{pmatrix} k-1 \\ n-1 \end{pmatrix} + n \begin{pmatrix} k-1 \\ n \end{pmatrix}$.

Letting $S_k^{(n)}$ be the class of set partitions $\{S_1, \ldots, S_n\}$ with $S_1 \sqcup \cdots \sqcup S_n = [k]$, we define a bijective transformation:

$$T: \mathcal{S}_k^{(n)} \xrightarrow{\sim} \mathcal{S}_{k-1}^{(n-1)} \coprod [n] \times \mathcal{S}_{k-1}^{(n)}.$$

If $S_i = \{k\}$, we omit the i^{th} basket:

$$T\{S_1,\ldots,S_n\} = \{S_1,\ldots,S_{i-1},S_{i+1},\ldots,S_n\}$$

Otherwise, suppose $k \in S_i$ but $|S_i| > 1$. Since the S_i 's are not ordered, we may place them in a standard order, for example so that $\min(S_1) < \cdots < \min(S_n)$. We then let:

$$T\{S_1,\ldots,S_n\} = (i) \times \{S_1,\ldots,S_i \setminus \{i\},\ldots,S_n\},\$$

removing ball k from the i^{th} basket, and recording the position from which it was removed. (Note that removing k will not change the standard order on the resulting sets.) We can easily define the inverse, which proves the bijectivity, and hence the recurrence formula. \Box The point is that we must specify how to record the position of the removed element, even though the baskets are unordered.

2.7 For ${k \\ \leq n} = {k \\ 1} + \dots + {k \\ n}$, arrangements of k labeled balls in n interchangeable baskets, we have the following recurrence. Suppose the k^{th} ball is in basket S, which contains i balls. This arrangement is equivalent to arranging the remaining k-i balls in n-1 baskets, and also choosing $S \setminus \{k\} \subset [k-1]$. Thus:

$$\begin{cases} k \\ \leq n \end{cases} = \sum_{i=1}^{k} \binom{k-1}{i-1} \begin{Bmatrix} k-i \\ \leq n-1 \end{Bmatrix}.$$

This is a decent recurrence for computing ${k \\ \leq n}$ in terms of smaller numbers of the same kind, although the right side uses binomial coefficients as well.

3. In each case, the given transformation T is injective, but not surjective: that is, we can define an inverse transformation T^{-1} on the image of T, but it not on the whole codomain. **a.** The transformation $T(\lambda_1 \ge \ldots \ge \lambda_k) = \{\lambda_k+1, \ldots, \lambda_1+1\}$ only outputs multisets $M = \{s_1 \le \cdots \le s_k\}$ with $s_1 + \cdots + s_k = \lambda_1 + \cdots + \lambda_k + k = n + k$, so there are many other multisets in $\binom{n}{k}$ which are not hit.

b. The transformation which takes $(\lambda_1 \ge \cdots \ge \lambda_k)$ to a multiset with multiplicities $m_i = \lambda_i$ only hits the multisets with $m_1 \ge m_2 \ge \cdots$. Any other multiset in $\binom{k}{n}$ is not hit.

c. Here transformation takes $(\lambda_1 \geq \cdots \geq \lambda_k)$ to $(\lambda_1 \geq \cdots \geq \lambda_{k-1})$ if $\lambda_k = 0$, and to $(\lambda_1 \geq \cdots \geq \lambda_{k-1} \geq \lambda_k - 1)$ if $\lambda_k > 1$. In fact, we always have $\lambda_{k-1} > \lambda_k - 1$, so the transformation misses those partitions $(\lambda'_1 \geq \cdots \geq \lambda'_k)$ with $\lambda'_{k-1} = \lambda'_k$.