Math 482 The Twelvefold Way

We count the number of possible functions f with input set [k] = {1,2,...,k} and output set [n] = {1,2,...,n}, subject to restrictions
(injective or surjective). We may picture f as a way of distributing k balls (marked 1,...,k) into n baskets (marked 1,...,n). A map is
injective if each basket contains at most one ball, or surjective if no basket is empty.

Indistinguishable [k] means we consider two functions the same whenever they differ by a permutation of the inputs [k]; so we picture the
k balls as identical, unmarked. Similarly, indistinguishable [n] means we consider classes of functions up to permutation of the outputs [n],
so we picture the n baskets as identical and movable, and we cannot distinguish a first basket, second basket, etc.
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Binomial coefficient or choose-number (Z) Multiset number or multi-choose number ((Z)) Stirling partition number (second kind) { Z }
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Stirling cycle number (first kind) [k} counts permutations of n having k cycles. Recurrence: m = [Z:ﬂ + (n—1) [”;1]
Bell number B(k) = {]f} + {g} +--- 4 {]]z} Ordered Bell number R(k) = surj(k, 1) + surj(k,2) + - - - + surj(k, k).
partition number p(k) = p<i(k) = pi(k) + paAk) + - - - + pi(k).

Fibonacci number Fj, = Fy_q1 + Fy_o from Fy=0, F} =1; formula Fj, =
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Derangement number (permutations without fixed points) Dy, = n!(1 — 4, +
Number of Cayley (labeled) trees: T, = n"~2.
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Number of unlabeled trees: t,,
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