
Math 482 Homework 4/16 Solutions Spring 2014

Homework: math.msu.edu/∼magyar/Math482/Old.htm#4-16.

1a. We have the chiral hexahedron graph G:

Given fixed external vertex positions:

v4 = (1, 1), v5 = (2, 0), v6 = (0, 0),

we wish to find the equilibrium positions of the mobile internal vertices v1, v2, v3, where
vi = (xi, yi). By HW 4/11, we must solve the matrix equations: L ·~x = ~b and L ·~y = ~c. Here
the partial Laplacian matrix L has rows and columns corresponding to the internal vertices
v1, v2, v3; diagonal entries are the degrees of these vertices; and there is an off-diagonal −1
for each edge vivj :

L =

 4 −1 −1
−1 3 −1
−1 −1 3

 .

The constant vectors ~b = (b1, b2, b3), ~c = (c1, c2, c3) are defined as bi being the sum of
x-coordinates of the fixed external neighbors of vi, and similarly for ci and y-coordinates:
~b = (1+0, 2, 0), ~c = (1+0, 0, 0). To solve these equations, we reduce the doubly-augmented
matrix:

[L | ~b | ~c ] =

 4 −1 −1 1 1
−1 3 −1 2 0
−1 −1 3 0 0

 row red−→

 1 0 0 2
3

1
3

0 1 0 13
12

1
6

0 0 1 7
12

1
6

 .

Hence:
v1 = (23 ,

1
3), v2 = (1312 ,

1
6), v3 = ( 7

12 ,
1
6).

Note that v3v1v4 are collinear, and v3v2 is a horizontal segment.

1b. We get a three-dimensional vector qj for each of the 5 internal regions in the picture.
For two adjacent regions Rleft, Rright separated by an edge with top and bottom vertices
vtopvbot, we find the vector for the right region from the known one for the left region, by
the recursive rule:

qright = qleft + (vtop, 1)×(vbot, 1)
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Starting with q1 = (0, 0, 0), we obtain:

q2 = q1 + (v4, 1)×(v1, 1) = (1, 1, 1)×(23 ,
1
3 , 1) = (23 ,−

1
3 ,−

1
3)

q3 = q2 + (v5, 1)×(v2, 1) = q2 + (2, 0, 1)×(1312 ,
1
6 , 1) = (23 ,−

1
3 ,−

1
3) + (−1

6 ,−
11
12 ,

1
3) = (12 ,−

5
4 , 0)

q4 = q1 + (v1, 1)×(v6, 1) = (23 ,
1
3 , 1)×(0, 0, 1) = (13 ,−

2
3 , 0)

q5 = q4 + (v1, 1)×(v3, 1) = q4 + (23 ,
1
3 , 1)×( 7

12 ,
1
6 , 1) = (13 ,−

2
3 , 0) + (16 ,−

1
12 ,−

1
12) = (12 ,−

3
4 ,−

1
12).

As a check, we alternatively compute:

qalt5 = q3 + (v3, 1)×(v2, 1) = q3 + ( 7
12 ,

1
6 , 1)×(1312 ,

1
6 , 1) = (12 ,−

5
4 , 0)+(0, 12 ,−

1
12) = (12 ,−

3
4 ,−

1
12).

Recall Lemma 1: We must have q5 = qalt5 . This is because the difference of the two sides
corresponds to a sum of vector increments (vtop, 1)×(vbot, 1) stepping around a cycle of
neighboring regions, and this can can be rearranged as a sum of vector increments for the
edges around vertices v1 and v2:

q5 − qalt5 = (v1, 1)×(v6, 1) + (v1, 1)×(v3, 1)− (v3, 1)×(v2, 1)− (v5, 1)×(v2, 1)− (v4, 1)×(v1, 1)

= [(v1, 1)×(v6, 1) + (v1, 1)×(v3, 1) + (v1, 1)×(v2, 1) + (v1, 1)×(v4, 1)]
+ [(v2, 1)×(v1, 1) + (v2, 1)×(v3, 1) + (v2, 1)×(v5, 1)]

But now, from the first sum around v1, we factor (v1, 1), leaving the other factor: (v6, 1) +
(v3, 1) + (v2, 1) + (v4, 1) = 4(v1, 1) by the equilibrium condition; and (v1, 1)×4(v1, 1) =
(0, 0, 0). Similarly, the second sum around v2 is also (0, 0, 0).

1c. For vi a corner of region Rj , we associate the height hi = qj · (vi, 1), which lifts the
plane vector vi = (xi, yi) to the space vector (vi, hi) = (xi, yi, hi). We have:

h1 = q1 · (v1, 1) = 0, h2 = q3 · (v2, 1) = 1
3 , h3 = q3 · (v3, 1) = 1

12 ,

h4 = q1 · (v4, 1) = 0, h5 = q3 · (v5, 1) = 1, h6 = q1 · (v6, 1) = 0.

Therefore the vertices of P are:

v′1 = (23 ,
1
3 , 0), v′2 = (1312 ,

1
6 ,

1
3), v′3 = ( 7

12 ,
1
6 ,

1
12),

v′4 = (1, 1, 0), v′5 = (2, 0, 1), v′6 = (0, 0, 0).

1d. Each point v ∈ Rj (not just corner vertices) gets a height h(v) = qj · (v, 1), so that v
corresponds to a point v′ = (v, h(v)) on a face of the polyhedron P . Letting qj = (aj , bj , cj),
we see that v′ = (x, y, z) satisfies the equation:

z = h(v) = ajx + bjy + cj .

We can rewrite this as a vector equation defining the face of P corresponding to Rj :

−ajx− bjy + z = cj ⇐⇒ (−aj ,−bj , 1) · (x, y, z) = cj ,

This is q′j · v′ = cj for q′j = (−aj ,−bj , 1).



1e. Here is a table of q′j heights for the vertices of P :

v′1 v′2 v′3 v′4 v′5 v′6

q′1 0 1
3

1
12 0 1 0

q′2 −1
3 −1

3 −1
4 −1

3 −1
3 0

q′3
1
12 0 0 3

4 0 0

q′4 0 1
12 0 1

3
1
3 0

q′5 − 1
12 − 1

12 − 1
12

1
4 0 0

For each region Rj , the vertices at its corners have the same q′j-height, while the other
vertices have greater q′j-height. For example, the face above R2 has its corners v′1, v

′
2, v

′
4, v

′
5

all at q′2-height −1
3 , whereas the other vertices v′3, v

′
6 have the greater heights −1

4 and 0.
This shows that the polyhedron P is defined by the conditions q′j · (x, y, z) ≥ dj for

j = 1, . . . 5, along with one more condition coming from the top triangle (lid) with corners
v′4, v

′
5, v

′
6: this corresponds to an inequality q′0 · (x, y, z) ≤ d0 by HW 3/21 #2.

2. Lemma 2: If v is a corner of two regions S and R, then the heights associated to v by
the vectors qS and qR are the same.

Proof: Once we know this for adjacent regions S,R, we can make a chain of equalities to
connect any two regions around v.

Thus, it is enough to prove the Lemma in the case that S,R are neighbors across the
boundary edge uv. Then qR = qS + (v, 1)×(u, 1), so that the two heights associated to v
are hS(v) = qS · (v, 1), and:

hR(v) = qR · (v, 1) = qS · (v, 1) + ((v, 1)×(u, 1)) · (v, 1).

But a basic property of the cross product is that (v, 1)×(u, 1) is orthogonal to (v, 1) so the
dot product on the very right of the equality is zero. The remaining term is precisely hS(v),
as desired.


