Math 482 Homework 3/26 Solutions Spring 2014
Homework: math.msu.edu/~magyar/Math482/Old.htm#3-26.

la. Proposition: Let P be a polyhedron with n vertices, q edges, r faces. Then P is
triangular if and only if ¢ = 3n — 6 and r = 2n — 4.
Proof. (=): Suppose P is triangular. Then its edge-graph is a maximal planar
graph with all region-degrees deg(R) = 3. Thus 3r = ), deg(R) = 2¢. Substituting
r =2—n+q yields ¢ = 3n — 6, whereas substituting ¢ = n +r — 2 yields r = 2n — 4.

(<=): Suppose ¢ = 3n — 6, but some face of P has at least 4 edges. Then this face
corresponds to a region in the edge-graph G which can be traversed by an extra edge
e, producing a planar graph G’ = G + e with n vertices, ¢ = ¢+ 1 = 3n — 5 edges.

Since G’ has all deg(R) > 3, and all edges lie between 2 distinct regions, we know:
3r' < > pdeg(R) = 2¢'. Substituting 7’ = 2 —n + ¢/, we find ¢’ < 3n — 6. This
contradicts ¢’ = 3n — 5, so the supposition must have been false. That is, P can have
only triangular faces.

We can make a similar argument assuming r = 2n — 4.

1b. The octahedron is a standard polyhedron with (n,r) = (6,8). We can modify this
without changing (n,r): take a pair of adjacent triangles forming a quadrilateral with
diagonal, and flip over the diagonal to the opposite diagonal. This leaves (n,q,r) the
same, but it changes the vertex degrees, making a different graph.

For example, the octahedron can be constructed as an anti-prism on the vertices V =
[6], giving G with two 3-cycles 1,2, 3 and 4, 5, 6, and connecting edges 15, 16, 24, 26, 34, 35,
giving all deg(v) = 4 (see the figure below left). If we replace edge 46 (marked in
red) with the opposite diagonal 52 (marked in red below right), the resulting G’ has
vertex degrees 3,3,4,4,5,5; so the two cannot be isomorphic as graphs, much less
give combinatorially equivalent polyhedra.

It is not very clear how to lift G’ to a polyhedron, but Steinitz’s Theorem says it
is possible. In fact, if we remove vertices 4 and 6, we are left with a tetrahedron
graph (the cycle 1,2,3 with 5 in the center, marked with dark lines below right). The
original G’ is obtained by stacking a shallow pyramid with peak 4 onto the face 235,
and another shallow pyramid with peak 6 onto the face 125.

2a,b,c. The pyramid over a hexagon has (n,r) = (7, 7) has vertex degrees 3, 3,3,3,3,3,6. The
graph G with V = [7] and E = {12,23,34,45,51,67,61,62,63,71,74,75} has vertex
degrees 3,3, 3,3,4,4,4, clearly making it different from the pyramid graph. To draw
a polyhedron corresponding to GG, draw a pentagonal base, the cycle 12345, with a
ridge-edge 67 drawn above the line (not an edge) between vertices 2 and 5. Then
there are triangular slopes descending to all the vertices 1,2,3,4,5, and a trapezoid
slope between the ridge 67 and the parallel edge 34.


http://math.msu.edu/~magyar/Math482/Old.html#3-26

2d.

3a.

3b.

3c.

4a.

4b.

Peform the same kind of diagonal-flip as in 1(b), replacing 16 with the opposite
diagonal 27, obtaining G’ with vertices V'’ = [7], consisting of a 5-cycle 1,2,3,4,5, an
edge 67 inside it, and extra edges from 6 to 2,3 and from 7 to 1,4,5

This one is pretty hard to visualize. It can be obtained from the polyhedron in 2(c)
by tilting the ridge line 67, within the same plane as the bottom edge 34.

The description of the edges of the cyclic polyhedron Cyc(k) can be seen for k = 6
from the second picture: just label the vertices vy, ..., vg, left-to-right.

The description shows ¢ = n +2(n—3) = 3n — 6 and r = 2(n—2) = 2n — 4. By 1(a),
this is the same as any other triangular polyhedron (with maximal planar edge-graph)
on n vertices.

Draw v; = (1,0), v = (—1,0), v; = (0,i—2) for i = 3,...,n. Then the edges connect
vive, and (for i > 3): v;v41, V1v; , and vov;.

The only graph with (n,r) = (4,4) is the complete graph K4, so all polyhedra are
combinatorially equivalent.

The unique polyhedron with (n,r) = (6,5) is the triangular prism, the vertex-
truncation of a tetrahedron. The dual with (n,r) = (5,6) is the triangular bipyramid,
which is a tetrahedron with another tetrahedron stacked onto a face.

For all the above graphs, removing any two vertices leaves the remaining vertices
connected.



