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THE NUMBER OF TREES 

RICHARD OTTER' 

(Received June 10, 1947) 

The mathematical theory of trees was first discussed by Cayley in 1857 (1). 
He was successful in finding recursion formulas for counting the number of trees 
or rooted trees having a finite number of vertices, where the number of branches 
a t  a vertex was not limited. Cayley also recognized the possibility of studying 
the chemical problem of isomers by making use of the notion of a tree, although 
a restriction on the number of branches that may occur at a vertex is necessary 
for the solution of this problem. In 1931 Henze and Blair (2) developed recur- 
sion formulas for counting the number of trees or rooted trees having the same 
finite number of vertices, where the number of branches a t  a vertex was allowed 
to be a t  most four, except for a root vertex, which was allowed to have a t  most 
three branches. This was the first solution to a problem of isomers in chemistry. 
The number of such trees with n vertices is precisely the same as the number of 
structurally isomeric, aliphatic hydrocarbons, i.e. the compounds of the molec- 
ular formula C,Hzn+2. The number of such rooted trees with n vertices is 
precisely the same as the number of structurally isomeric, mono-substituted, 
aliphatic hydrocarbons, i.e. the compounds of the molecular formula C,H2n+1X, 
where X represents any chemical radical or atom different from hydrogen. 

In his classic publication in 1937 G. Polya (3) developed a powerful method 
for treating the symmetries of certain types of geometrical configurations under 
a given permutation group. Using as generating functions, power series whose 
coefficients represent the number of different possible configurations with respect 
to this permutation group, methods were developed which yield functional equa- 
tions for these generating functions. These functional equations contain im- 
plicitly recursion formulas for determining the coefficients and his analysis of 
the functional equations resulted in asymptotic expressions for the coefficients. 
In particular, Polya studied many problems of interest to chemists, obtaining 
the recursion formulas of Henze and Blair, and Cayley; but he also solved a 
wealth of other problems connected with chemical isomers. Although, in his 
publication Polya restricts himself to counting those trees and rooted trees which 
are of foremost interest to chemists, it is clear that his methods permit generaliza- 
tion to the counting of trees and rooted trees in the cases we have covered. But 
it is not apparent that his methods of analysis of the generating functions can be 
generalized to yield asymptotic values. 

It seems, however, that although the machinery he has set up is powerful for 
the solution of some very general problems in symmetries of geometrical con- 
figurations, much of it is superfluous for the treatment of trees or of rooted trees 

1 The author wishes to  express his gratitude t o  Professor E. Artin for the suggestion of 
this problem and for his encouraging help toward its solution. 
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alone. Accordingly, in this paper purely combinatorial methods are employed 
for the developing of relations between the generating functions. These meth- 
ods enable one to study some general problems concerning the number of trees 
and of rooted trees and to find recursion formulas for counting these objects. 
Furthermore, the method used here for the counting of trees is new and inter- 
esting and considerably simpler than the methods used in the past. Also, 
general methods of analysis have been found which yield asymptotic values for 
the coefficients involved in each of the generating functions studied. 

By a tree we shall mean any finite, connected, one-dimensional complex, with- 
out cycles. By a vertex we shall mean an end point of a line segment occurring 
in the tree. (Thus a point is considered as vertex even if only one or two line 
segments contain it as end point.) By a rooted tree we shall mean any tree in 
which exactly one vertex, called the root, is distinguished from all the other ver- 
tices in the tree. By the rami$cation number of a vertex we shall mean the 
number of line segments which have that vertex in common. 

We shall call two trees, T and T', homeomorphic if and only if there is a one-to- 
one, bi-continuous transformation of T onto T', which maps the vertices of T 
onto vertices of T' and conversely. We shall call two rooted trees homeomorphic 
if and only if they are homeomorphic as trees in such a way that the root of 
one tree is mapped onto the root of the other and conversely. 

Given a rooted tree T, then by removing an open line segment at the root of 
T, we split T into two parts. The part B which does not contain the root is 
called a branch of T. The removed line segment belongs to two vertices; one is 
the root of T, the other is a vertex of B. We consider B as rooted tree by desig- 
nating this other vertex as root of B. 

Several branches of T may be homeomorphic. The number of branches that 
are homeomorphic to one another is called the multiplicity of this type of branch. 
The following Iernma is then obvious: 

LEMMA. TWO rooted trees, T and T', are homeomorphic if and only if their 
branches are homeomorphic and occur with the same multiplicity. 

We shall consider only those trees and rooted trees where the ramification 
number of each vertex, except a root, is not greater than a certain arbitrarily 
selected, positive integer m. (m = w is permitted and means there is no restric- 
tion imposed on the ramification numbers of these vertices.) For rooted trees 
we select arbitrarily another positive integer r and require that the ramification 
of the root be not greater than r. (Similarly, r = .o is permitted and means no 
restriction is imposed on the ramification number of the root.) Throughout the 
discussion we keep m fixed. 

By A:' we mean the number of nonhomeomorphic rooted trees with n ver- 
tices, where the ramification number of the root is not greater than r. Since 
A;~,"-"will play a central role in the theory we put A:","-') = A,  as an abbrevia- 
tion. Also for formal reasons we introduce the empty tree with no vertices 
and put A,, = 1. 

We now define the following formal power series: 
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$?(x) = Air' + A:')x + Ai"x2 + , for r > 0 

We develop G(t, x) in powers of t: 

which gives 

where 

gob) = 1 
and 

( x )  = ( C ( A 0  + Po - 1) ( A 1  + Pl - 1) . . .)xn, 

n=O so+P1+;.m.m=_m PO P1 
rr~+fra+ 

for r > 0. We contend that g,(x) In order to find ~ z i ~= $,(x). we first select 
a point as root and attach to it r branches. We must select the branches from 
rooted trees where the ramification number of the root is 5 m - 1, in order to 
satisfy the limiting condition imposed by m. Furthermore, we must have n 
for the total number of vertices occurring in the r branches so that if we select 

po trees with no vertex 

p1 trees with one vertex 

p2 trees with two vertices 

such that x i - 0  p, = T and C ; , 1  ip i  = n then we get a rooted tree which is of 
the correct category to contribute to A;$. The number of selections of pi 

objects with possible repetitions from a total of Ai objects is 

and the product of these binomial coefficients over the index i gives, according to 
our lemma, the total number of rooted trees for our choice of p o ,  p l ,  - - - . If 
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we now sum these products over all pi satisfying Cia pi = r and Ci=1ipi = n 
we get, again referring to the lemma, the total number of rooted trees with n + 1 
vertices where the ramification number of each of the vertices in the branches is 
bounded by m and the ramification number of the root is bounded by r. Since 
we have go(x) = +o(z) = 1and since we have just shown g,(x) = +,(x) for r > 1 
this gives 

m 

(1) G(t, 2) = C +,(x)tr.
r=O 

On the other hand 
01 


~ ( t ,x) = exp - x A. log (1 - tc')) = exp (2 2 A. xv*-">( "=o v=o p=l  P 

G(t, x) = exp -;v(xP)) . 
Hence, G(t, x) = 

so that 

Hence, in particular 

Since A ~ ~ , " - "= A ,  we have (whether m is finite or infinite) 

and in case m is finite we get the following relation for ~ ( x ) :  

In  case m = rn we put $(x) = $,(x) = 1 / x or cp(x)= 1 +x+(x). Substituting 
in (2) we obtain 
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So on one hand we have 

and on the other hand (1) shows 

hence 
00 


exp (C - (tx)' 
-~ ( x ' ) )  = 1 + c (h(x)  - ~ - l ( x ) ) t ~. 

v = l  v T= 1 

Both sides of the preceding expression are infinite sums of formal power series 
in x and t and late terms of these sums contain only high powers of t as well as x. 
Therefore, we may substitute t = 1on both sides and obtain an identity. The 
right hand side then indicates a formal limit process which has for limit $(x) 
because for any partial sum 

and it is easy to see that $k(2) and $(x) must have identical coefficients up t o  
and including the term with xk+'. Hence we get 

Trees 

In order to count the number T, of (unrooted) trees with n vertices we first 
establish the following lemma. Given a tree T, let To be a subtree having no 
two of its vertices similar under any homeomorphism of T onto itself. Given 
a vertex P of T, with P not in To ; but let P be adjacent to a vertex Q of To . 
Assume a a homeomorphism which maps T onto itself and assume of u that 
a(P) = P' is in To. Then putting a(&) = Q' and calling 1 the segment P - Q 
and 1' the segment P' - Q' we contend: 

LEMMA.Either 1' = 1 or Q' = Q. 
PROOF.Taking out 1 splits T into two parts Tp , TQ and taking out 1' splits 

T into two parts Tpl , TQ,. Since a is a homeomorphism we know u(Tp) = Tpl 
and cr(TQ) = Tor . We assume now 1' # 1 and shall prove Q' = 6). To that 
effect it is sufficient to prove that 1' is in To ,for then Q' would be in TO and since 
no two different vertices of To are similar, we would know Q' = &. We assume 
1' tj TO and deduce a contradi~t~i on. 
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Now 1' 4 Toand P' e Tomeans ToC Tpl ,hence Q e Tpl . Since I' # I and P 
is adjacent to Q we know 1 e Tpfhence 1 4  Tot . 

Simliarly, 1 6 TOand Q e TOmeans TOC T o ,hence P' e T o .  Since I' # I 
and P' adjacent t,o Q' we know 1' e To , and in particular Q' e To . 

But since Q' e To and 1 4 Tot , we know the subtree Tot is contained within 
T o ,  TQl C T Q .  Furthermore, the fact that I' E To and P' # Q' means that 
Tot is a proper subtree of To ; but this together with the finiteness of T con-
tradicts the fact that a is a homeomorphism such that a(To)= Tat . 

If I' = 1 then a interchanges P and Q and the line I is e symmetry line. A 
tree can have a t  most one symmetry line. 

Assume noIT To is the largest subtree of T which contains no two similar 
vertices; then any vertex of T which is a neighbor to a vertex of To is similar to 
a vertex of To,for otherwise Towould not be maximal of its kind. By induction 
on the number of intervening vertices we see that every vertex of T is similar 
to one of T o .  We contend every line segment of T (except a symmetry line) 
is similar to exactly one line segment of To. Since every vertex of T is similar 
to one of Towe may as well assume that one end, say Q,of the given line segment 
P - Q lies on T o .  The other end P will then be adjacent to Q. If P is also 
on Tothere is nothing to prove, for then P - Q lies on Toand is of course similar 
to itself under the identity mapping. In  case P is not on To then we know P 
is similar to a vertex P' of To(because Tois assumed to be maximal of its kind) 
and our lemma shows that the mapping which carries P into P' maps the seg- 
ment P - Q into the segment P' - Q which is on To(except in case P - Q is a 
symmetry line). 

Thus, if Tois a subtree of T and is maximal of our type it contains exactly one 
representative for each class of similar vertices of T and each class of similar 
lines of T .  It is furthermore important that To is itself a tree. Now the Euler 
characteristic of any tree, namely the number of vertices minus the number of 
segments is 1. Since this is true in To we have the following theorem, which is 
a certain refinement of the Euler characteristic of a tree: 

THEOREM.In any  tree the number of nonsimilar vertices m inus  the number of 
nonsimilar lines (symmetry line excepted) i s  the number one. 

Consequently, if we count the total number of nonsimilar vertices occurring 
among all trees with n vertices, subtract the total number of nonsimilar line 
segments (except symmetry lines) occurring among these trees, then each in- 
dividual tree gives the contribution 1, so we get as result the total number of 
trees. The total number of nonsimilar vertices is just A:~' .  The total number 
of nonsimilar line segments (symmetry line excepted) is 

with Aniz= 0 for n odd. Namely, the first member of the left hand side counts 
the number of trees with a stressed line such thatr removing the line gives two 
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rooted trees with different numbers of vertices. In the sum each term is counted 
twice, hence the factor 4. The second member counts the number of trees with 
a stressed line segment such that removing the line gives two rooted trees with 
the same number of vertices. This stressed line will never be a symmetry line, 
because no repetitions are allowed in the selection. In bot,h members we are 
careful that the ramification number of every vertex in the united tree is bounded 
by m. Hence, if we define T,  as the number of trees with n vertices, we have 

If we now define +(x) = TI  + TSX+ + . we get 

which holds for m = co ,where we replace +,(x) by J/(x). 

Analytic Behavior of the Power Series 

We have 

and the logarithmic derivative gives 

Multiplying by x fi (x)we obtain 

If we define 8;' = CltblAn+'-+ for i 5 n, 82' = 0 for i > n then 
*!-ISn 

or in other words 

which together with 

(7) nAn+l= I A , S ~ "+ ~ A ~ s ? '+ . . + ~A,s?' 



590 RICHARD OTTER 

are valuable formulas for actual calculation of the A, . Using (6) and (7) we 
are also able to show that +(x) has a certain region around x = 0 in which i t  
converges. The A, are a monotonic increasing sequence of positive numbers 
so that if we replace all terms in s?' by the first term A,+l-i we get 

since there are a t  most n/ i  terms in s;". Hence, we get 

If we now define the following sequence of numbers: B1, Bz , . .. by putting 
B1 = 1and B,+, = C i + j = n + I ~ i ~ jthen a proof by induction yields immediately 
A, 6 B, for all n. If we put f(x) = C:-l BB,xVthen f(x) solves the equation 
1 J 2 - Y + x = o s ~  

hence 

so #(x) converges absolutely in 1 x 1 < $ hence q(x) converges in the same region 
for m finite or infinite and so do the Gr(x)for each r (whether m is finite or infinite), 
since the latter are only polynomials in the cp(x). Let a be the radius of con-
vergence of ~ ( x )or $(x) according to whether m < or m = m. 

Since the functions cp(x)(m < m) and #(x) (m = m) are power series with 
positive coefficientswe are certain that x = a will be a singularity. We succeed 
in showing that everywhere else on the circle of convergence, 1 x I = a, the 
functions are analytic, hence permit continuation to functions analytic in a 
larger region. At x = a the functions have a ramification of order 1 hence are 
analytic functions of 4%- a, and the asymptotic estimates of the size of the 
coefficients are based upon these facts. To justify these assertions strong use is 
made of the fact that for real x, 0 < x < a, the functions have positive values 
and are monotonic iycreasing with x .  

We now define 

H,(YI , y~ . . ~ r )= 2 Ci p i - r  p l ! p z !  ... (?)''I (KT .• for r 2 0 
i - l  

and H,= 0 for r < 0. Then the formalism by which (1) and (2) were obtained 
shows 

By finding a/ayi of the relation above we obtain 
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In case m < .o the functional equation for cp(x)is from (3) seen to be 

If we differentiate with respect to x we get 

which if we rearrange and express in terms of the $,(x) becomes 

Since for real x,0 < x < a,cp(x) and cpl(x)have positive values > 1we see that 
1/ x - $,-z(x) > 0 in the same region. On the other hand since $,-z(x) is a 
dominant function for the geometric series we see 

-
1 - $m-~(x)< ;1 --1 < 0 for real x > 9. 
x 1 - 2  


Hence a I3 for all finite m, so certainly for m = x . The functional equations 
(3)and (4)for q(x) and $(x) show that for 0 < x < a 

so we see that Q(X) (in case m 2 3) 

and $(x) (m= ' co) are bounded on the real axis below a. Both ~ ( x )and $(x) 
are monotonic increasing with x so that 

lim ~ ( x )= a and lim $(x) = a exist. 
z- a z- a 


The partial sums for x = a are monotonic and bounded by a, hence 
Abel's Theorem yields 

and the values a ,  a satisfy the functional equations (3)and (4). Since a < 1 
we may assume that cp(xi)and $(xi) are known analytic functions of z for all i 
2 2 and all 1 x 1 5 a. If we now put y = cp(x) or y = $(x) as the case may be 
then we know y satisfies 8(x,y) = 0 where 
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Furthermore, the functions y = cp(x),y = +(x)are unique analytic solutions 
for I x I < a and we know s(a, a) = 0. Near x = a,y = a S(x,y) is analytic 
in each variable separately. We may be sure that as / a  y (a,a)= 0for otherwise 
there would be a function of x which is solution of the equation B(x,y) = 0 and 
is analytic in a neighborhood of x = a,y = a. This function would have to be 
cp(x) is a singularity of these or +(x),which would contradict the fact that x = a 
functions. If we refer to equations (8)and (10)me see that &,(a,a)= 0 gives 

I 

+,-z(a) = a1 in case 3 5 m < a 

1
+(a)= - in case m = a. 

On the other hand referring to equations (8),(9) and (10)we see 

which shows that x is an analytic function of y in the neighborhood of x = a, 
y = a such that 

But 

because 

hence the inverse functions y = cp(x)and y = +(x)have a ramification of order 
1 at  x = a. 

We have shown that +(x)and cp(x),consequently +,(x)are absolutely conver- 
gent a t  x = a. Since the power series have positive coefficients we know the 
series will be absolutely and uniformly convergent in 1 x I 5 a consequently 
the series define continuous functions on I x I = a. For any x # a but I x I = a: 

the power series define values y = cp(x), y = +(x) and we know from the form 
of S(x, y) that in the neighborhood of such a point (x,y) it is analytic in each 
variable separately. If we refer again to (10)we see that 
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by putting y = P(X) or y = $(x). But because of cancellations for I x I = a 
(x # a) we have 

Hence, on the boundary of the circle I x I = a (except a t  a) we know 

8u(x, cp(x)) f 0 

8th)$(XI) f 0, 

which shows that q(x) and $(x) are analytic functions for these points on the 
circle of convergence of their defining power series. At x = a they are regular 
functions of d x  - a. Therefore, we may extend the region in which these 
functions are analytic to a circular region of radius larger than a,  provided we 
make a cut in this region extending along the positive reals from x = a. Inside 
this region we have 

(q~(x)= a + bt + ~ ( x ) t ~  

where t = d G ,and A = +(a), and we know in each case that R(x) is a 
regular function of x inside this extended domain. 

Determination of the Coefficients b, D 

For m < we have around x = a 

~ ( x )= a + bt + , t = - a 

and putting 

$,(XI = a, + ct + . . . ,a, = $,(a) 

then 

If we compute only those terms of d/dx ($,(x)) which are not bounded at  CY, we 
get 

hence c = b .G,~so that 
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From (9)  we see that by putting (l/x)cp(x)- ( l / x )  = +,-~(x) 

which gives, if we develop around x = a 

where the terms omitted on each side all contain t to the first power a t  least. 
Remembering from (11) that l / a  - $',-~(LY) = 0 we get by equating constant 
terms 

which gives b in case m < m. 

In case m = we have around x = a 

and +'(x) = +(x)(x+'(x)+ x3+'(x2)+ + +(x) + x+(x2)+...) SO that 

Around x = a the last expression gives 

b m 

a - (1 - a+(a) - abt) = +(a)C (aV+(aY)f QZv+2+1(av+1))+ ... 
2t u = l  

where the omitted terms contain t to  the first power a t  least. Remembering 
from (11) that 1 - &(a) = 0, we get by equating constant terms 

which gives b in case m = m . 
Whether m is finite or infinite, we have according to ( 5 )  

+ ( X I  = +rn(x) - $~(+rn-l))~+ 3~m-1(x2)  

where +,(x) = +(x). Around x = a 

+(x) = A + Bt + ct2+ ~t~ + 
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If we refer to (15)we see 

hence, 

Asymptotic Values of A,, A?' and T ,  

Inside the circular region of radius larger than a,  with a cut from x = a we 
have for m finite or infinite 

h ( x )  = ar + b ~ - It + t2R(x) 

and for m finite 

q(x)  = a + bt + t2R(x) 

+(x) = +(a)+ ct2- +b3a,-3 t3 + t 4 ~ ( x )  

and for m infinite 

+(x) = a + bt + t2R(x) 

+(x) = A + ct2 - +b3a2t3+ ~ * R ( x )  

where t = d x  - a ,  A = +(a),a,+ = &(a),  b is determined by (13) or (15),and 
a = ~ ( a )  = +(a)according to whether m is finite or infinite and R(x ) is in or a 
eabh case a regular function of x and is different for each function. If we now 
express the coefficients A,, A!", and T ,  by means of Cauchy's integral formula, 
taking for integration path a circle of radius r > a lying inside the extended 
domain and running along the upper and lower lip of the cut, me obtain the 
following estimates : 
for 3 5 r tz  5 a, 

An  = b (6) + o (f) 

for m = co 
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Since 

we get by putting I b / = 0 

for 3 5 5 a 

for m = oc 

The Special Case m = 3 

In case m = 3 the functional equation is of such a simple form that special 
methods yield the numbers a and b more easily. As a matter of fact since (3) 
gives 

we get by substituting in ( 1 8 )  p ( x )  = 1 - xcp(x)or (6(x)= (1  - p ( x ) ) / x  

which simplifies to the equation 

(19) d x 2 )  = ( , . I ( x ) ) ~+ 2 x .  

This is a functional equation that has been studied in detail by Wedderburn (4). 
Since we found that for any m +l (x )  = ~ ( x )and for m finite + m - ~ ( a )= l / a  

we get, in case m = 3, that ~ ( a )= l / a  and hence p ( a )  = 0. Consequently, 
p ( a 2 ) = 2 a , ~ ( a * )  Assume we know the numbers co= 6a2, etc. = 2 ,  CI , cz , . . . , 
c,-~ such that 

21: 2k -1
p(a ) = C A - I ~  for Ji S n 

then 

p ( a Z n + l )= c : - ~a 2" + 2a2" = ( ~ 2 , - 1  + 2)a2" 
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Hence co = 2, cn = + 2 so that 

Now 2;/r(a'i~~ = and since limn=. p(b)= p(0) = 1 we see that 
l / a  = limn,, Since p(a

2n+ 1) = 1 - a 
2n+1 

-6. . . 
2"+1 

2;/p(a2"+')= 1 - a-- .. . g 1 --1 
2" Cn-1 2% 

so the error in putting l / a  = is approximately l / ( ~ , + ~ 2 " ) .  
Around x = a we have p(x) = ( l / a )  + bt + . . . so cc(x)= 1 - xp(x) = 1 

-a . l / a  - abt - . . . hence - ab= lim,,, p ( x )
d x  - a 

. 
 Wow 

because p(a2)= 2a. Therefore lim,, 
2 - a  
-
( P ( X ) ) ~= -2 + 2ap'(a2). Since, as we 

see from (19) xp'(x2) = p(x)p '(x)+ 1 we get 

= 1 + ~ n - 1+ ( ~ n - 1 ~ n - 2 )  + . ' ( ~ n - l ~ n - 2. ' C O C L ~ ' ( C X ~ ) )  

hence 

so that 

Now b is pure imaginary and should have positive imaginary part because (b(x) 
is monotonic increasing as x -+ a along the real axis. Consequently, 

Using these methods and putting l / a  = 2;/2090918 we obtain easily 

The following table has been prepared to  show how the asymptotic values for 
A, and T,agree with those obtained by actual count using the recursion formulas 
for the special cases m = 4 and m = oc . The asymptotic value for A, is denoted 
by x,, similarly for T,. The data in the case-m = 4 were taken from the 



THE SUMBER O F  TREES 599 

tables compiled by Henze and Blair. The functional equation to be solved in 
the case m = 4 is given below 

where the coefficient of xn in the power series which defines (~(x)in the neighbor- 
hood of the origin is the number of structurally isomeric, mono-substituted, 
aliphatic hydrocarbons with n carbon atoms. Hence, around x = 0 ~ ( x )has 
the development 

It is remarkable that even from the very beginning the estimates are quite 
reliable. 

1 

An 

1 

A,, 
-- 

1 
-- 

T* i1 1 

A ,, 
-- 

1 

A,, 

1 I 1- F n 2  
-

2 1 1 1 1 1 1 I 1 
3 2 2 1 I 2 2 1 1 
4 4 4 2 1 4 4 2 2 
5 8 8 3 2 9 9 3 2 

10 507 513 75 65 719 708 106 86 
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