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1987] THE NUMBER OF THREE-DIMENSIONAL CONVEX POLYHEDRA 

The Number of Three-Dimensional Convex Polyhedra 

EDWARD A. BENDER* 
Department of Mathematics, University of California at San Diego, La Jolla CA 92093 

Abstract 

A convex polyhedron, or polytope, is the bounded intersection of closed half-spaces. 
The problems of determining the number of three dimensional convex polyhedra as 
a function of the number of faces or edges or both have been around for over 150 
years. Except for Steinitz's conversion of polyhedra to "planar maps", little was 
done on the problem until the work on "rooted" planar maps in the 1960's. 
Recently the original (unrooted) questions have been answered asymptotically. We 
will retrace the steps that led to this result. 

1. Introduction 
Convex polyhedra (also called polytopes) are the analogues to convex polygons in 

higher dimensions. We can define a convex polyhedron as a bounded intersection of 
closed half-spaces. Alternatively, we could define a convex polyhedron to be the 
convex hull of a finite set of points. We will be concerned exclusively with 
three-dimensional polyhedra: those that lie in 3-space but do not lie in a plane. In 
the future, "polyhedra" will always mean "three-dimensional convex polyhedra." 
Cubes, tetrahedra, and prisms are all examples of polyhedra. In an obvious way, 
polyhedra have vertices, edges, and faces. (These can be described formally, but we 
need not do so here.) We will use the notation P0, P1, and P2 for the numbers of 
vertices, edges, and faces, respectively, of a polyhedron P. Euler's famous theorem 
(1752) states that 

P0 - P, + P2 = 2. 

Suppose that v, e, and f are positive integers with v - e + f = 2. Does there 
exist a polyhedron P with P0 = v, P1 = e, and P2 = f? The answer is No in 
general; however, it is easy to give necessary and sufficient conditions: 

THEOREM 1. There is a convex polyhedron P with 
P0 = v, P1 = e, and P2= f 

if and only if 
v-e + f = 2, and 4 < v < 2e/3, and 4 < f < 2e/3. 

Edward A. Bender: Working in the area where matrix theory and number theory meet, I received my 
Ph.D. under Olga Taussky at Caltech in 1966. I was a Peirce Instructor at Harvard and a member of the 
research staff at the Communications Research Division of the Institute for Defense Analyses before I 
joined the University of California in 1974. My major professional interest at present is asymptotic 
enumeration. I flirt with other areas of "concrete" mathematics, population biology, and computer 
science. 
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8 EDWARD A. BENDER [January 

Proof. The first condition is Euler's Theorem. Since the "smallest" polyhedron is 
a tetrahedron, the lower bounds on v and f are necessary. An edge corresponds to 
an unordered pair of vertices, called its ends. Every vertex must be the end of at 
least three edges, and each edge has two ends. If t is the total number of ends, then 
3v < t = 2e and so v < 2e/3. Similarly, since each face is bordered by at least 
three edges and each edge lies on two faces, f < 2e/3. 

Here's a sketch of the converse. If the triple (v, e, f ) satisfies the conditions, then 
there are nonnegative integers x and y such that 

(v, e, f ) - x(l, 3,2) -y(2, 3, 1) 

equals one of (6, 10,6), (6,9, 5), (5, 9, 6), and (4,6,4). (Prove it by induction on e.) 
Each of the four triples just listed can be realized by a polyhedron, which we'll call 
irreducible. Adding (2,3, 1) can be realized by slightly adjusting the edges meeting 
at a vertex and replacing the vertex by a triangular face. Adding (1, 3, 2) can be 
realized similarly by introducing two triangular faces in place of two adjacent edges 
of some face. (See Figure 1.) By iterating, one of the four irreducible polyhedra can 
be built up to realize (v, e, f).L 

FIG. 1. Building up to a specified (v, e, f). Additions are shown heavy. 
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1987] THE NUMBER OF THREE-DIMENSIONAL CONVEX POLYHEDRA 9 

Since the existence question was easily settled, we proceed to the next type of 
question: 

Q. How many "distinct" convex polyhedra P have P0 = v and P2 = f ? 

There is no need to specify P1 since it equals v + f - 2. By restricting only one of 
the Pk's, we are led to ask for k = 0,1 and 2. 

Qk. How many "distinct" convex polyhedra P have Pk = n? 

To answer the questions, we need to say what we mean by distinct polyhedra. Given 
two polyhedra P and Q, there may be a one-to-one mapping m of the faces of P to 
the faces of Q that preserves incidence; i.e., if F1 and F2 are faces of P that 
intersect in exactly one edge (resp., vertex), then m(Fl) and m(F2) intersect in 
exactly one edge (resp., vertex), and conversely. If no such mapping exists, P and Q 
are called combinatorially distinct. This will be what we mean by "distinct." 

Steiner posed Q2 in 1832 and Kirkman stated in 1878 that he saw no hope of 
answering Q with the present power of mathematics. Shepard (1968) asked for a 
close approximation to the answer to Q0. 

The dual, P* , of a polyhedron P is constructed by placing a vertex in each face 
of P * and joining two such vertices by an edge if and only if the corresponding 
faces of P share an edge. The faces of P* correspond to the vertices of P. One can 
show that P** = P. Thus duality is a bijection, Q0 and Q2 have the same answer, 
and the answer to Q remains unchanged if the values of v and f are switched. 

For specific values of v and f (resp., k and n), the corresponding Q (resp., Qk) 

can be answered in a finite length of time since an algorithm exists for constructing 
all polyhedra with -given parameters. This method is not an acceptable answer. What 
is an acceptable answer? One possible definition, suggested by the theory of 
algorithms, is: a way of calculating the number, which requires an amount of time 
that is a polynomial in v and f (or n). It is quite likely that no answer in this sense 
exists. How can we relax the definition of an answer? One way is to allow more time 
for calculating the formula. If this is relaxed too much, one can use the algorithm 
alluded to earlier for generating all polyhedra. 

Another way to adjust the notion of answer is by requiring only a good 
approximate formula that can be computed quickly. What is a good approximation? 
We will require that the percentage error in the approximation go to zero as v and f 
(or n) get large. Such answers, which give information about how numbers behave 
as the parameters get large, are called asymptotic formulas. All the questions 
Q, QO, Q1, Q2 above have now been answered asymptotically. 

In this paper we will retrace the path to the answers. The first step was taken by 
Steinitz (1922), who converted the questions to problems about counting graphs in 
the plane. Nothing further was done until Tutte developed methods for planar 
enumeration in the 1960s. As a result, Mullin and Schellenberg (1968) obtained a 
"generating function" for "rooted" polyhedra with given numbers of vertices and 
faces. This led to an explicit but messy formula for rooted polyhedra. Bender and 
Richmond (1984) used the generating function to obtain an asymptotic formula that 
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10 EDWARD A. BENDER [January 

is valid for part of the range of v and f. Bender and Wormald (1985) combined this 
with various estimates to show that an asymptotic answer to Q or Qk for rooted 
polyhedra gives an answer for polyhedra. The entire range was covered by Bender 
and Wormald (to appear) as a result of work on the paper you are now reading. 

If all proofs had been included, this article would have been a small monograph. 
Therefore, I have replaced most proofs with broad sketches. If you are interested in 
the details, consult the original articles. 

Federico (1975) was the source of the historical information. For a variety of 
questions concerning polyhedra, see Shepard (1968). 

2. The graph-theory problem 

A graph consists of a set of vertices with edges joining some pairs of the vertices. 
The vertices and edges are not labeled. If there is a path from every vertex to every 
other vertex along the edges, then the graph is called connected. A loop is an edge 
with both endpoints the same. If the ends of e1 are the same as the ends of e2, we 
say that el and e2 constitute a multiple edge. A (planar) map is a connected graph 
drawn on the plane so that no edges cross. The maximal regions containing no edges 
are called faces. The unbounded face is called the external face. Two maps are 
considered the same if one can be converted into the other by stretching, contracting 
and/or reflecting the plane. 

A map is called k-connected if there does not exist a positive integer j < k and a 
partition of the edges into two sets E1 and E2 such that each set contains at least j 
edges and the edges in E1 n E2 contain at most j distinct endpoints. Here are some 
simple useful observations on k-connectedness. 

01. "Connected" is the same as "1-connected." 
02. A map with at least 2 edges is 2-connected if and only if it contains no loops 

and no vertex is encountered more than once as we walk around a face 
boundary. 

03. A 2-connected map with at least 4 edges is 3-connected if and only if it 
contains no multiple edges and every pair of faces that have two vertices in 
common, say v and w, also have the edge (v, w) in common. 

Exercise 1. Prove the observations. To prove 02, note that if v is encountered 
twice then its removal disconnects the graph. To prove 03, note that removal of v 
and w splits the boundary of each face containing both v and w. If (v, w) is not a 
common edge of these faces, this disconnects the graph. You may find it easier to 
see what is happening if you draw the map so that one of those faces is external. 

A polyhedron may be converted to a map as follows. Select a face F. Remove all 
of the polyhedron except the edges and vertices. Place a plane parallel to F on the 
opposite side of the polyhedron from F. Place a light outside the polyhedron near 
the center of F. If the light is placed carefully, none of the shadows that the edges 
cast on the plane will cross each other and the shadow of the boundary of F will 
bound the external face of a map formed by the shadows. The faces of the 
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1987] THE NUMBER OF THREE-DIMENSIONAL CONVEX POLYHEDRA 11 

polyhedron correspond to the faces of the map. See Figure 2. This picture is called a 
Schlegel diagram for the polyhedron. 

FIG. 2. A polyhedron projected down onto a plane by the light L gives a Schlegel diagram. 

THEOREM 2. (Steinitz) A map is the Schlegel diagram of a convex polyhedron if and 
only if it has at least 4 vertices and is 3-connected. 

Exercise 2. Prove the necessity by using 03. 
The converse is difficult. For a proof, see Chapter 13 of Griinbaum. The lack of a 

corresponding result in higher dimensions seriously hampers attempts to count 
convex polyhedra in those dimensions. El 

Unfortunately, there are generally many Schlegel diagrams for each polyhedron. 
This leads us to the notion of rooted maps and polyhedra. A polyhedron is rooted 
by choosing an edge (called the root edge), one vertex on the edge (called the root 
vertex) and one face adjacent to the root edge (called the root face). A 2-connected 
map is rooted if an edge on the external face (also called the root face) is 
distinguished. The root-face degree of a map or polyhedron is the number of edges 
on the root face. 

COROLLARY 2.1. There is a one-to-one correspondence between rooted convex 
polyhedra and rooted 3-connected maps with at least 4-vertices. 

Proof. The direction of a root edge will be such that the root vertex is the tail of 
the root edge. Arrange the polyhedron so that when the root face is viewed from the 
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12 EDWARD A. BENDER [January 

outside and traversed in the direction of the root edge, the traversal is clockwise. 
(This may require reflecting the polyhedron.) Now place the light near the center of 
the root face. This gives a one-to-one correspondence. O 

In the next section we will discuss the generating function for 3-connected maps. 
In Sections 4 and 5 we will see how that leads to asymptotics for rooted Schlegel 
diagrams and, hence, for rooted polyhedra. If all the ways of rooting a polyhedron 
P were distinct, it would have P1 * 2 * 2 = 4P1 rooted versions. In Section 6 we will 
see that for most polyhedra all rootings are distinct. This provides us with asymp- 
totic answers to the questions Q and Qk. 

3. The exact number of rooted maps 

Generating functions. If an is a sequence defined for n > 0, then the generating 
function for the sequence is 

00 

A(x = YE anxn 
n=O 

We will adopt the convention of using a lower-case letter for a sequence element 
and the corresponding upper-case letter for the corresponding generating function. 
These ideas extend to multiply indexed sequences; for example, the generating 
function for the triply indexed sequence bi, k is 

00 00 00 

B(x, y, z) = E E bi , kX yjZk. 
i=O j=O k=O 

All the infinite series that we use converge when the variables are sufficiently small. 
Suppose that we are given a generating function for some sequence, say, a, j. By 

Taylor's Theorem for functions of two variables, the coefficients of the power series 
for A(x, y) are uniquely determined and so must be the sequence a i1. Thus, if we 
somehow explicitly expand A(x, y) in a power series, we will obtain a formula for 
the sequence ai j 

There are a variety of rooted maps that one might enumerate. Each of these 
problems is approached by describing a method for constructing maps out of other 
maps. When this description is translated into a statement involving generating 
functions, the result is a functional relationship among the generating functions. If 
the construction involves only the type of map we are counting, then the functional 
equation involves only the generating function we are interested in. Thus it can be 
solved, at least in principle, for that generating function. 

2-connected maps 
Brown and Tutte (1964) enumerated 2-connected rooted maps. Since their result 

is central in later calculations, we'll look at their method. 
Suppose M is a rooted 2-connected map that is not a single edge. The root edge 

of M belongs to two faces, the exterior face and some interior face, which are 

This content downloaded from 35.8.11.3 on Wed, 2 Apr 2014 20:08:08 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1987] THE NUMBER OF THREE-DIMENSIONAL CONVEX POLYHEDRA 13 

MO~ ~ M 

FIG. 3. Decomposing a 2-connected map. 

shown by heavy lines in Figure 3. By splitting the map into pieces at all vertices v 
such that v lies on both faces, we obtain a sequence of maps MO, .., Mt, where Mo 
is the root edge. By 02, each Ml can be seen to be 2-connected. Each can be rooted 
by rooting the edge of Mi first encountered when following the external face in a 
clockwise direction starting from the root edge. This decomposition is reversible 
provided we specify which edge on the root face of each Mi is the last edge 
encountered on the root face of M in our clockwise traversal. Therefore, we have a 
unique method for building up a 2-connected map from 2-connected maps with 
fewer faces. 

In order to describe this numerically, we need to keep track of the number of 
vertices, the number of faces, and the degree of the root face. The last quantity is 
needed because an M, with root-face degree k has k - 1 possible choices for the 
last vertex on the root face of M. 

Let i, j k be the number of rooted 2-connected maps with i + 1 vertices, j + 1 
faces, and root-degree k, except that the map consisting of a single edge is not 
counted. Since the root-face degree does not interest us, we want F(x, y, 1), the 
generating function for fi j = Ekfi, j k. It can be shown that the above construction 
is equivalent to the equation 

F(x, y, z) =yz f( E fij,XkXY (Z + Z2 + ?,. +Zk-l) + (3.1) 
t=1 i, j, k 

After a little manipulation we get 
00 

F(x, y, z) = yz E ((zF(x, y, 1) - F(x, y, z))/(l - z) + xz)t - yz. 
t=O 

After summing the geometric series, rearranging, and writing F for F(x, y, z) and 
F1 for F(x, y, 1), we obtain 

F2 + ((1 - z)(1 - xz) + yz - zFi)F - yZ2(X - xz + F1) = 0. (3.2) 
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14 EDWARD A. BENDER [January 

Since (3.1) is a direct translation of a construction which builds up maps out of 
maps with fewer faces, (3.2) and the initial conditions fiO, k = 0 must determine 
F(x, y, z) uniquely. Since both F and F1 appear in (3.2), it is not clear how to 
extract F or F1 from (3.2) (setting z = 1 simply leads to the equation 0 = 0). One 
approach is to use educated guessing, as done by Brown and Tutte. There is a more 
systematic approach (Brown, 1968), but it can lead to a morass of algebra: 
Complete the square in (3.2) to obtain an equation of the form 

(F + stuff)2 = G (x, y, z, F1). (3.3) 

Let z = Z(x, y) stand for the value of z for which the left side of (3.3) vanishes. 
Since the left side of (3.3) is a square, its derivative with respect to z also vanishes at 
Z. Applying this to the right side of (3.3) we obtain the two equations 

G(x, y, Z, F1) = 0 and G,(x, y, Z, F1) = 0 

in the two unknowns Z and F1. These are rational equations, and they can be 
"solved" for F1. 

THEOREM 3. (Brown and Tutte) The number fi j of rooted 2-connected maps with 
i + 1 vertices and j + 1 faces is given by 

F(x, y) = uv(1 - u - v), 

where u and v are given implicitly by 

X = U(I - V)2, y = v(1 - U)2, and u(0,0) = v(0,0) = 0. 

The explicit values are 

(2i +j - 2)!(2j + i - 2)! 

i!j!(2i -1)!(2j - 1)! 

Proof. Since F(x, y) = F(x, y, 1), we could solve G = G, = 0 for F1. This is 
done by parameterizing x and y as stated in the theorem. The explicit value for f 
is obtained by a technique known as Lagrange inversion. That technique expresses 
the coefficients of any function H(u(x, y), v(x, y)) in terms of derivatives of H 
and of u(I - v)2 and v(I - u)2 with respect to u and v. See Section 5 for a 
discussion. O 

Quadrangulations 
A quadrangulation is a map such that each internal face is a quadrilateral. 
There is a connection between rooted 2-connected maps and rooted quadrangula- 

tions with quadrilateral external faces, discovered by Brown (1965). Let M be a 
rooted map with vertex set V and face set F. Place a vertex in the middle of each 
face to form a new set of vertices V*. Define a set of edges by connecting v and v* 
if and only if v is a vertex of the face corresponding to v*. This gives a map Q. Let r 
be the root vertex of M, e = (r, v) the root edge of M and v* the vertex 
corresponding to the external face of M. The root vertex of Q is v and the root edge 
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1987] THE NUMBER OF THREE-DIMENSIONAL CONVEX POLYHEDRA 15 

JIf~~~~~~t 

.00. ~ ~ ~ 0 

FIG. 4. Heavy dashed lines are the edges of the original 2-connected map. Solid lines are the edges of the 
corresponding quadrangulation. 

is (v, v*). The edges joining v* are drawn so that no edges of Q lie outside of the 
region bounded by (v, v*), (v*, r) and e. See Figure 4. 

THEOREM 4. The above correspondence is a bijection between rooted 2-connected 
graphs with more than one edge and rooted quadrangulations with quadrilateral 
external faces. Furthermore, the original graph is 3-connected if and only if each 
4-cycle of edges in the quadrangulation is a face. 

Proof. The bijection is due to Brown (1965, Sec. 7) and the last part of the 
theorem is due to Mullin and Schellenberg (1968, Sec. 5). 

Exercise 3. Construct proofs using 02 and 03. Z 

Call a quadrangulation that corresponds to a 3-connected map simple. 

Exercise 4. Show that the vertices of a quadrangulation can be partitioned 
uniquely into two sets, called red and green, such that edges connect only vertices of 
different colors, the red vertices correspond to the vertices of the corresponding 
2-connected map and the green vertices to the map's faces. 

Note that the number of quadrangulations with root degree 4, i + 1 red vertices 
and j + 1 green vertices equals f,,J, the number of 2-connected rooted maps with 
i + 1 vertices and j + 1 faces. Let p, j be the number of those that are simple and 
have at least 8 vertices. By Theorem 4 and Corollary 2.1, the function P(x, y) 
counts rooted polyhedra. (The condition on vertices in p,1 eliminates small 
3-connected maps that do not correspond to polyhedra.) 

A quadrangulation has a diagonal if there are external vertices v and w and an 
internal vertex x so that (v, x) and (w, x) are edges. Let n,, count the number of 
quadrangulations counted by f,, X that have no diagonals and let N(x, y) be the 
corresponding generating function. 
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16 EDWARD A. BENDER [January 

Every quadrangulation with root degree 4, more than 4 vertices and no diagonals 
can be built from a simple quadrangulation having at least 6 vertices. This is done 
by replacing the internal faces of the simple quadrangulation with arbitrary 
quadrangulations of root degree 4. Mullin and Schellenberg (1968, Sec. 6) show that 
this construction is uniquely determined and corresponds to the generating function 
equation 

(xy/F)P(F/y, F/x) = N(x, y) - xy. (3.4) 
The quadrangulations counted by fi j can be broken into three disjoint classes: 

(i) no diagonals, counted by N(x, y); 
(ii) diagonal at the root, counted by, say, R(x, y); 
(iii) diagonal not at the root, counted by, say, D(x, y). 

Thus, 

F(x, y) = N(x, y) + R(x, y) + D(x, y). 

By the type of construction shown in Figure 5 it follows that 

R(x, y) = (N(x, y) + D(x, y))F(x, y)/x. 

A B 

FIG. 5. Building up R (x, y). Quadrangulation A has no root diagonal but B may have any number. 

Interchanging the roles of red and green vertices (see Exercise 4) gives 

D(x, y) = (N(x, y) + R(x, y))F(x, y)/y. 
By performing some algebraic manipulations on the last three equations, one can 
show that 

N = ((1 + Fly) + (1 + Fx)- 1)F. (3.5) 

By setting X = F/y and Y = F/x and combining (3.4) and (3.5): 

P(X, Y) = ((1 + X)? - + (1 + Y) - _ 1)XY-F(x, y). 
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1987] THE NUMBER OF THREE-DIMENSIONAL CONVEX POLYHEDRA 17 

Exercise 5. Using this with Theorem 3 and setting r = u/(1 - u - v) and 
s = v/(1 - u - v), show 

THEOREM 5. (Mullin and Schellenberg) The generating function for the number of 
distinct rooted convex polyhedra with i + 1 vertices andj + 1 faces is given by 

P(X, Y) = ((1 + X) + (1 + Y)- 1)XY - F, 

where 

F = rs/(r + s + 1)3 

and r and s are given implicitly by 

r = X(s + 1)2, s = Y(r + 1)2 r(O,O) = s(O,O) = 0. 

Mullin and Schellenberg applied Lagrange inversion to obtain a formula for p, j. 
Unfortunately, it is a double summation with alternating signs, so it seems hard to 
see how p, , behaves except by computing specific values. I'll say more about 
Lagrange inversion and an exact formula in Section 5. 

Note that the generating function for P(X, Y) is symmetric in X and Y. This 
result also follows immediately from duality without ever seeing the generating 
functions. Various other generating functions follow easily from P(X, Y). Here are 
two examples. The coefficient of yk in P(1, Y) is the number of rooted convex 
polyhedra with k faces. By Euler's theorem, the coefficient of xiy' in P(xy, y) is 
the number of convex polyhedra with i + 1 vertices and n edges. 

4. The asymptotic number of rooted polyhedra 

We need some notation for writing asymptotics. 

f(n) g(n) means that f(n)/g(n) -- 1 as n -o; 
f (n) = O(g(n)) means that f(n)/g(n) -> 0 as n -s 0o. 

By convention, f(n)/g(n) = 1 when f(n) = g(n) = 0. For functions of two (or 
more) variables, the terminology is more involved. Let R be a region in the xy-plane 
containing integer points (x, y) with min(x, y) arbitrarily large. We say that 

f(m, n) - g(m, n) uniformly in R 

if 

supIf(m, n)/g(m, n) - 11 -O 0 as k -o, 
where the supremum is taken over all (m, n) in R with min(m, n) > k. We define 
f(m, n) = o(g(m, n)) uniformly in R in a similar fashion. 

There are several possible approaches to obtaining asymptotics for rooted maps. 
The most straightforward is to work with a simple formula like that for f, in 
Theorem 3 together with Stirling's formula, 

n! - (2 n )1/2 (nle 
n (4.1) 
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18 EDWARD A. BENDER [January 

This idea can also be adapted to certain types of sums, but seldom to those with 
alternating signs unless the initial terms dominate the sum. In cases like P(X, Y), 
one tries to work directly with the generating function. For an introduction to 
asymptotics in combinatorics, see Bender (1974). 

We now turn to P(X, Y). Think of it as a function of two complex variables X 
and Y. Such functions have places at which they misbehave, called " singularities." A 
little bit of knowledge about the nature of the singularities closest to the origin is 
often sufficient to provide information about the coefficients of the power series for 
the function. It would take too much space to define singularities and discuss the 
connection between their nature and the coefficients of the power series. In this way 
Bender and Richmond (1984) obtained messy asymptotic formulas from 
P(X, Y), P(1, Y), P(xy, y), etc. The result for pi j was valid for i -o co provided 
1/2 + c < i/j < 2 - c. This result leaves a gap at each end because i/j is con- 
strained to stay away from 1/2 and 2 while v/f could approach either 1/2 or 2 as f 
gets large. The extreme ends were filled in by 

THEOREM 6. (Tutte, 1962) Let ti be the number of rooted convex polyhedra with 
i + 1 vertices and all faces triangular. Then 

2(4i - 7)! 3(i 256 

(3i -4)! (i -1)! 16(6ri)/ 27 

The same formula holds if ti counts rooted convex polyhedra with i + 1 faces and all 
vertices of degree 3. 

5. Reconsideration 
While writing this paper, I simplified the messy asymptotic formula for pi, 

mentioned earlier. Using this result and Theorem 6 as a guide, I conjectured 

THEOREM 7. (Bender and Wormald, to appear) Uniformly as min(i, j) s o 

P i, 35ij (j + 3 j + 3) 

Proof. No high powered tools are needed. By applying Lagrange inversion (see 
below) to Theorem 5 in a slightly different way than Mullin and Schellenberg did, a 
singly indexed summation is obtained. To make asymptotic calculations easier, the 
sum is transformed twice by using the Pascal triangle identity 

(ck k (k) ? (k- 1) 
and rearranging terms. 

What is Lagrange inversion? Suppose we want the coefficient of x' in f(g(x)) 
where the power series for f(y) is known but that for g(x) is not known. Instead, 
we only know the power series for the inverse function g-1(z). Lagrange inversion 
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tells us how to compute the answer. There are various generalizations to functions 
of several variables. See (S. A. Joni, 1977) for a discussion and also a proof of the 
following. 

THEOREM 8. (I. J. Good) Suppose that f(zl,..., Zk) and H(z1,..., Zk), 1 < i < k 
are power series such that the Hi's have nonzero constant terms. Let h1 = ziHi. Then 
there exist unique power series gj(Xl,. .., Xk) satisfying the set of equations 
hi(gll ... gk)= xi. Also, the coefficient of x1l ... Xlk in f(gl ... ., gk) equals the 
coefficient of z" Z zZk in 

det(dhj/dzj)f/(Hjh+1 ... k+1 

This can be applied to Theorem 5 with 

(Z1, Z2) = (r, s), (X1, X2) = (X, Y), (n1, n2) = (i, j), 
f = -rs/(r + s + 1)3, h1 = r/(s + 1)2, h2 = s/(r + 1)2. 

Exercise 6. Show that for i, j > 1, pi, j is the coefficient of r'sJ in 

(r + s + IY3(S ? 1)2i-3(r + 1)2J'3(3rs - r - s - 1). 
If we write 

(r ? s + = ) ( -k)(t)rus-u, 
t, u t u 

then Mullin and Schellenberg's formula is obtained. If we write 

(r + s+ = (r + (+ r/(l S)) 

(-k ri)(1 + s) -k-j (5.1) 

then Bender and Wormald's formula is obtained. You may wish to carry out these 
calculations. If so, write 

(1 + r + s)3 (3rs - r - s - 1) = 3rs(r + s + i) 3- (r + s + 1>)2 

and use (5.1) with k = 2 and k = 3. 

6. The asymptotic number of polyhedra 

In this section we will discuss the proof and application of the following theorem. 

THEOREM 9. (Bender and Wormald, 1985) Let ui j be the number of unrooted 
convex polyhedra with i + 1 vertices and j + 1 faces. There are constants A and 
0 < c < 1 such that for all i andj, 

1 4(i +)ui, /pi, j< 1 + c', 

where 0/0 is interpreted as 1. 
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The theorem says that ui, j approaches pi 1/4(i + j) very quickly. Thus Theo- 
rems 7 and 9 answer question Q. Answering Qk involves estimating 

E 1 / ~2i ir 2j j 
4*35 i(i(+j) ()+ 3 i+3 

where the sum ranges over appropriate values of i and j. This can be done by 
standard methods as discussed in Bender (1974) or by using results in Bender and 
Richmond (1984). The answers are 

I 
(21)(21)~~ =A(i, j), say; 

Q 972iU(i + j) (i + 3)(i + 3 A( j,sy 

Qo - ('nn(4 + Th)/4V7)"/2A(n - 1,(n - 1)(3 + ? )/4); 

Q, - 4 A(n/2, n/2); 4 

Q2= Qo, 

where fractional factorials in binomial coefficients are approximated by Stirling's 
formula (4.1). Tutte (1963) conjectured and Richmond and Wormald (1982) proved 
the asymptotic formula for Q1. 

How is Theorem 9 proved? As noted at the end of Section 2, there are 4(i + j) 
distinct ways to root a convex polyhedron with i + j edges and no symmetries. If 
there are symmetries, the number of rootings is less. That accounts for the left-hand 
inequality in Theorem 9. 

The right-hand inequality is based on estimates for rooted polyhedra with 
symmetries. There are three different types of symmetries possible for a polyhedron. 
One type preserves the orientation of the polyhedron and is essentially a rotation. 
The other two types reverse the orientation and are distinguished by whether or not 
the symmetry maps any vertex or edge into itself. If it has such an invariant, it can 
essentially be viewed as a reflection in a plane; otherwise, a reflection in a point. 

For each type of symmetry, if you are given (i) a connected piece cut out of the 
polyhedron whose images under the symmetry cover the entire polyhedron and (ii) 
the nature of the symmetry, then you can reconstruct the entire polyhedron. The 
piece cut out for you may involve edges and faces that have been cut in half. The cut 
may also run through some vertices. Connect all those vertices to a single new vertex 
v and extend the cut edges to v. If the original cut is chosen carefully, then the 
resulting figure will be 3-connected. Since the number of vertices and edges in the 
new 3-connected graph is less than that in the original polyhedron, Theorem 7 can 
usually be used to obtain a crude but adequate upper bound. Various adaptations of 
this idea are needed to handle all the cases that arise. If you wish details, see the 
original paper. 
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Special cases of Theorem 9 were proved by Tutte (1980) and Richmond and 
Wormald (1982). 
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Combinatorial and Functional Identities 
in One-Parameter Matrices 
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1. Introduction. A one-parameter matrix is one whose entries depend on a 
parameter in such a way that matrix multiplication corresponds to performing an 
operation, e.g., addition or multiplication, on the parameter. More formally, if a 
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