MSU MATHEMATICS |
MTH 482 |
Spring 2008 |
= ∑i ∑j (52 | i) (52 | j) xi+2j = ∑k [ ∑i+2j=k (52 | i) (52 | j) ] xk
a5 = (52|1) (52|2) + (52|3) (52|1) + (52|5) (52|0) = 3,817,112 .
To make this computation more understandable, use ellipsis (+ ...) notation instead of summations:
r5 = ((r1 | 4)) + ((r1 | 2)) ((r2 | 1)) + ((r2 | 2)) + ((r1 | 1)) ((r3 | 1)) + ((r4 | 1))
= 1 + 1 + 1 + 2 + 4 = 9 .
T = | ®−− | ® | −−® | −−O | |
| | |||||
® |
log( r(x)/x ) = ∑i≥1 r(xi) / i .
r(x) = x exp( ∑i≥1 r(xi) / i ) .
f(x) = ∑k≥0 ck xk = (1 − x)−1(1 − x5)−1 .
cn+1 = an expression in c0,...,cn .
f(x) (1 − x)(1 − x5) = 1 = 1 + 0x + 0x2 + ....
(1 − x)(1 + x + x2 +x3 + x4) = 1 − x5
f(x) = ∑k≥0 ck xk = (1 + x + x2 +x3 + x4) (1−x5)−2 .
Answers: (b) cn = 1/n ∑1≤i≤n cn−i + 5/n ∑1≤j≤⌊n/5⌋ cn−5j for n ≥ 1, where ⌊⌋ means round down.
(c) cn = cn−1 + cn−5 − cn−6 for n ≥ 1, where we take ck = 0 for k < 0.
(d) cn = ⌊n/5⌋ + 1 for n ≥ 0.
tn = rn − en = rn − ½[ ∑1≤i≤n ri rn−i − rn/2 ] .
rn ∼ b an n−3/2, tn ∼ c an n−5/2,
a ≅ 2.9558, b ≅ 0.4399, c ≅ 0.5349 .
nn−2 = ∑T n! / gT ≅ (n! / gn) tn .
10¢ + 5¢ , 10¢ + 5(1¢) , 3(5¢) , 2(5¢) + 5(1¢) , 5¢ + 10(1¢) , 15(1¢)
®−O−O−O−O O−®−O−O−O
® | |||
| | |||
O− | −O− | −O− | −O |
Any other choice of root allows symmetries. Notice that the star tree cannot be rooted in any way to eliminate symmetries.
f(x) = a0 + a1x + a2x2 + .... = ∑k≥0 ak xk .
logic | choose H | ⇔ | 0Ci | 1Ci | 2Ci | or | and |
algebra | f(x) | = | x0 | x1 | x2 | + | × |
We obtain:
= ∑j=052 ∑i=0 52 (52 | j) (j | i) xj+i = ∑k=0104 [ ∑(i,j) (52 | j) (j | i) ] xk .
ak = ∑i=0⌊k/2⌋ (52 | k-i) (k-i | i) .
For example for k = 2, we have (i,j) = (0,2), (1,1) and a2 = (52 | 2) (2 | 0) + (52 | 1) (1 | 1): this makes sense, since the terms correspond to choosing two distinct cards, or one double card.
For k = 5, we have (i,j) = (0,5), (1,4), (3,2) and:
Can you explain this directly?
rooted T with n+1 vertices | ↔ | multi-sets {T', T'',...} with total n vertices. |
multi-set H = {T', T'',...} ⇔
We convert this to algebra, replacing each jTk(i) by x jk, since this choice adds jk vertices to H. The result is:
h(x) = ∑n≥0 hn xn = ∏k≥1 (1 + xk + x2k + ...)r[k] = ∏k≥1 (1 − x)−r[k] ,
rn+1 = hn = ∑||k||=n ((r1 | k1)) ((r2 | k2)) ((r3 | k3)) ...
r5 = ((r1 | 4)) + ((r1 | 2)) ((r2 | 2)) + ((r1 | 1)) ((r3 | 1)) + ((r4 | 1)) .
r(x)/x = h(x) = ∏k≥1 (1 − xk)−r[k] ,
x d/dx log( r(x)/x ) = ∑n≥1 n rn+1 xn / ∑n≥0 rn+1 xn
log h(x) = ∑j≥1 −rj log(1 − xj) = ∑j≥1 ∑i≥1 rj / i xij
= ∑k≥1 ∑j | k (j / k) rj xk = ∑k≥1 qk xk ,
x d/dx log(h(x)) = ∑k≥1 k qk xk .
∑n≥1 n rn+1 xn = ∑k≥1 k qk xk × ∑m≥0 rm+1 xm = ∑n≥1 ( ∑k≤n k qk rn−k+1 ) xn ,
n rn+1 = ∑k≤n k qk rn−k+1
rn+1 = 1/n ∑k≤n ∑j | k j rj rn−k+1 .
r5 = 1/4 ( r1r4 + r1r3 + 2r2r3 + r1r2 + 3r3r2 + r1r1 + 2r2r1 + 4r4r1 )
= 1/4 (4 + 2 + 4 + 1 + 6 + 1 + 2 + 16) = 9
= ∑j≥1 ∑i≥1 j rj xij = ∑k≥1 pk xk ,
rn+1 = 1/n ∑1≤k≤n pk rn−k+1 ,
Γ = ΓT = Sym(T) = { one-to-one σ : V→V s.t. uv ∈ E ⇒ σ(u)σ(v) ∈ E },
T = | 1 −− | 2 | −− 3 | −− 4 | |
| | | | ||||
5 | 6 |
rn − en = ∑T pT − ∑T qT = ∑T (pT − qT) = ∑T 1 = tn .
tn = rn − ½[ ∑1≤i≤n ri rn−i − rn/2 ] .
PG(k) = kn − m kn−1 + an−2 kn−2 + ... + a1 k .
PG(k) = ∑F ⊂ E (−1)|F| kcomp G[F] ,
|Agood| = ∑S (−1)|S| |AS|
PG(k) = PG−e(k) − PG/e(k) .
vertices | edges | delete edge | chrom poly | coloring | ||
Stanley | |V| = p | X | G \ e | χ(G;λ) | σ | compatible (O,σ) |
482 Lect | |V| = n | E | G−e | PG(k) | c | weakly compatible (O,c) |
u→v→x1→⋅⋅⋅→xr→u ⊂ Ouv
v→u→y1→⋅⋅⋅→ys→v ⊂Ovu ,
one could piece them together to get a cycle:
u→v→y1→⋅⋅⋅→ys→v→x1→⋅⋅⋅→xr→u ⊂ O .
PG(k) = #{(O+,c) weakly compatible on G}
= #{(O,c) w.c. on G−e, only one of (Ouv,c) & (Ovu,c) is w.c.}
+ 2 #{(O,c) w.c. on G−e, both of (Ouv,c) & (Ovu,c) are w.c.}
= #{(O,c) w.c. on G−e} + #{(O,c) w.c. on G/e}
= PG−e(k) + PG/e(k)
The third equality uses Lemma (b). This proves rule (iii), and so Theorem 1.2.