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Math 481 Quiz 14 ♥ Feb 14, 2025

Consider the sequence defined by the recurrence:

a0 = 3, a1 = 7, ak = 2ak−1 − ak−2 for k ≥ 2.

For example, a2 = 2a1 − a0 = 2(7)− 3 = 11.

problem: Solve this recurrence by the Method of Generating Functions.

Step 1: Substitute the recurrence into the generating function, to write f(x) as an expression
involving f(x). Then solve the resulting equation for f(x).
Hint: Rewrite summations in dot-dot-dot notation, giving the first few terms show the pattern.

f(x) = a0 + a1x +
∑
k≥2

akx
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(2ak−1 − ak−2)x
k

= 3 + 7x + (2a1x
2 − a0x
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4) + · · ·

= 3 + 7x + (2a1x
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= 3 + 7x + 2x(a1x + a2x
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3 + · · · )− x2(a0 + a1x + a2x
2 + · · · )

= 3 + 7x + 2x(f(x)− a0)− x2f(x).

Moving the f(x) terms to the left side:

f(x)− 2xf(x) + x2f(x) = 3 + 7x− 6x = 3 + x =⇒ f(x) =
3 + x

1− 2x + x2
=

3 + x

(1− x)2
.

Step 2: Find the Taylor series by adapting known series, and give an explicit formula for ak.
Hint: Factor the denominator, distribute the numerator.)
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∑
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∑
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∑
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Now
((
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=
(
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)
=
(
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1

)
= k + 1, so for k ≥ 1:

ak = 3

((
2

k

))
xk +
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= 3(k + 1) + k = 4k + 3.

Checking: a0
def
= 3,

a1
def
= 7

!
= 4(1) + 1, a2

def
= 2(7)− 3 = 11

!
= 4(2) + 3, a3

def
= 2(11)− 7 = 15

!
= 4(3) + 3.


