
Math 419H Homework 6 Solutions Spr 2017

1. Euclidean Algorithm: Given polynomials f(x), g(x) ∈ F [x] for F a field, with
deg f(x) ≤ deg g(x), we perform repeated polynomial division to write:

f(x) = q1(x)g(x) + r1(x)

g(x) = q2(x)r1(x) + r2(x)
...

ri(x) = qi+2(x)ri+1(x) + ri+2(x)
...

rk−2(x) = qk(x)rk−1(x) + rk(x)
rk−1(x) = qk+1(x)rk(x) + 0.

For consistency, we may denote f(x) = r−1(x) and g(x) = r0(x).

a. proposition: rk(x) is a polynomial divisor of f(x) and g(x).

Proof: We show rk | ri by induction on i = k, k−1, . . . , 1, 0,−1, ending with rk | r0 = g
and rk | r−1 = f . The base cases rk | rk, rk−1 are clear. Now assume inductively that
rk | ri+1, ri+2, . . . , rk. Then rk | qi+2ri+1 + ri+2 = ri, so the induction proceeds, and
the Proposition holds.

b. proposition: rk(x) = a(x)f(x) + b(x)g(x) for some a(x), b(x) ∈ F [x].

Proof: We show rk = ai−1ri−1 + bi−1ri by induction on i = k−2, k−3, . . . , 0,−1,
ending with rk = a−1f + b−1g. The base case is rk = rk−2 − qkrk−1. Now assume
inductively that rk = ai+1ri+1 + bi+1ri+2. By definition ri = qi+2ri+1 + ri+2, so:

rk = ai+1ri+1 + bi+1ri+2 = ai+1ri+1 + bi+1(ri − qi+2ri+1)

= bi+1ri + (ai+1−bi+1qi+2)ri+1 = airi + biri+1.

c. proposition: The polynomial d(x) = rk(x) has the defining properties of a
greatest common divisor gcd(f(x), g(x)): namely d(x) | f(x), g(x), and for any com-
mon divisor c(x) | f(x), g(x), we have c(x) | d(x).

Proof: We know d= rk | f, g by #1(a). Now if c | f, g, then by #1(b) we have:

c | (af+bg) = rk = d.

Note: A gcd is unique up to multiplication by units: if d, e both have the defining
properties, then d|e and e|d, meaning d = ae and e = bd, so that d = abd and ab = 1.
That is, d and e are multiples of each other by units (here, constant polynomials).

d. proposition: Any ideal I ⊂ F [x] must be a principal ideal comprising all
multiples of some f(x) ∈ F [x]: that is, I = (f(x)) = {q(x)f(x) for q(x) ∈ F [x]}.
Proof: Except when I = {0} = (0), we can find a non-zero element f(x) ∈ I having
minimal degree. By definition of ideals, q(x)f(x) ∈ I for any q(x), so (f(x)) ⊂ I.

For the reverse inclusion, take any g(x) ∈ I. We can write g(x) = q(x)f(x)+r(x),
where the remainder satisfies r(x) = g(x)− q(x)f(x) ∈ I by the closure properties of
an ideal, but also deg r(x) < deg f(x). Since f(x) has the lowest degree of any non-
zero polynomial in I, we can only have r(x) = 0. That is, g(x) = q(x)f(x) ∈ (f(x)),
and hence I ⊂ (f(x)). We conclude I = (f(x)).



2. We construct the field of 8 elements as the quotient ring:

F8 = F2[x]/I = { f(x) = f(x) + I for f(x) ∈ F2[x] },

for the principal ideal I = (x3+x+1) ⊂ F2[x].
If we define α = x ∈ F8, so that f(α) = f(x), we can rewrite the definition:

F8 = F2[α] = {f(α) for f(x) ∈ F2[x]}, where α3+α+1 = 0.

We proceed to prove the main properties of F8 from the definition.

a. claim: p(x) = x3+x+1 is an irreducible polynomial in F2[x].
If the cubic p(x) had a non-trivial factorization, at least one of the factors would
have to be a linear polynomial ax + b ∈ F2[x], meaning p(x) would have a root
x = − b

a ∈ F2. But p(0) = p(1) = 1 6= 0 ∈ F2, so there can be no such factorization.

Note: Since p(x) is irreducible, we can compute reciprocals in F2[x]/(p(x)) using the
Euclidean Algorithm, so the quotient ring is in fact a field.

b. claim: The set {1, α, α2} is a basis of F8 as a vector space over F2, and #F8 = 8.
Proof: The set spans F8, since any element is of the form f(α) for a polynomial f(x) =
q(x)p(x)+ r(x) ∈ F2[x] with deg r(x) < deg p(x) = 3. That is, r(x) = a0 +a1x+a2x

2

for ai ∈ F2, and:

f(α) = q(α)p(α) + r(α) = r(α) = a0 + a1α+ a2α
2.

The set is linearly independent, since any linear relation r(α) = a0 + a1α + a2α
2 =

0 ∈ F8 = F2[x]/I must have r(x) ∈ I = (p(x)). That is, p(x) of degree 3 divides r(x)
of degree ≤ 2, which can only mean r(x) = 0 and a0 = a1 = a2 = 0, allowing only
the trivial linear relation.

Thus, any element of F8 can be written as a0 +a1α+a2α
2 for unique coordinates

a0, a1, a2 ∈ F2. Independently choosing each ai = 0 or 1 gives #F8 = 23 = 8.

c. Find reciprocals in F8

Method 1: To find α−1, take 0 = p(α) = (α2+1)α + 1, giving a pair of reciprocals
(α2+1)α = −1 = 1.

To find (α+1)−1, use the Euclidean Algorithm on p(x) and x+1 to get:

p(x) = x3+x+1 = (x2+x)(x+1) + 1 ⇒ p(x) + (x2+x)(x+1) = 1.

Substituting x = α gives the pair of reciprocals (α2+α)(α+1) = 1.
To find (α2+α+1)−1, use the Euclidean Algorithm on p(x) and x2+x+1 to get:{

p(x) = (x+1)(x2+x+1) + x
x2+x+1 = (x+1)x+ 1

⇒ (x+1)p(x) + x2(x2+x+1) = 1.

Substituting x = α gives the pair of reciprocals α2(α2+α+1) = 1.
Together with 1 · 1 = 1, this accounts for all the reciprocal pairs in F8.



Method 2. The non-zero elements of F8 form a cyclic group under multiplication:

α, α2, α3 = α+1, α4 = α2+α, α5 = α2+α+1, α6 = α2+1, α7 = 1.

This gives the reciprocal pairs αiα7−i = 1 for i = 1, 2, 3:

α(α2+1) = α2(α2+α+1) = (α+1)(α2+α) = 1.

Note: This works for any finite field Fq: the non-zero elements under multiplication
always form a cyclic group of order q−1, as we shall prove later.

d. Find the minimal polynomial of every element β ∈ F8.

Method 1. The minimal polynomial has degree at most 3, since the 4 elements
1, β, β2, β3 must be linearly dependent over F2. If we define an F2-linear operator
Lβ : F4

2 → F8 by Lβ(a0, a1, a2, a3) = a0 +a1β+a2β
2 +a3β

3, and we write Lβ in terms
of the standard basis of F4

2 and the basis {1, α, α2} of F8, we get a 3× 4 matrix. Any
kernel vector (a0, a1, a2, a3) gives a polynomial f(x) = a0 + a1x + a2x

2 + a3x
3 with

f(β) = 0. Taking such f(x) of smallest degree gives the minimal polynomial.

Method 2. The minimal polynomial of β ∈ F8 must divide any f(x) ∈ F2[x] with
f(β) = 0, so an irreducible f(x) with f(β) = 0 must be the minimal polynomial.

The minimal polynomial of a = 0, 1 ∈ F2 is obviously x−a. It is easy to see that
the only irreducible cubic polynomials in F2[x] are:

p(x) = x3+x+1 with roots α , α2 , α2+α,

q(x) = x3+x2+1 with roots α+1 , α2+1 , α2+α+1.

Note: If β is a root of f(x) ∈ F2[x], then β2 is also a root. To see this, define
the Frobenius automorphism Φ : F8 → F8 by Φ(β) = β2, satisfying Φ(β+γ) =
Φ(β) + Φ(γ), Φ(βγ) = Φ(β) Φ(γ), and Φ(a) = a for a ∈ F2. If f(β) = 0, then
0 = Φ(f(β)) = f(Φ(β)) = f(β2).

Thus p(x) = (x−α)(x−α2)(x−α4), and:

q(x) = (x−α3)(x−α6)(x−α12) = (x−α3)(x−α6)(x−α5).

e. claim: F8 does not contain a field with 4 elements.
Proof 1. Recall from #2(b) that [F8 : F2] = dimF2(F8) = 3, and similarly [F4 : F2] =
2. If we had F4 ⊂ F8, we would have the prime field {0, 1} = F2 ⊂ F4, and the
degree-multiplication formula would give:

3 = [F8 : F2] = [F8 : F4] [F4 : F2] = (k)(2)

for a whole number k, which is impossible. Thus there is no such F4 ⊂ F8.

Proof 2. If F4 ⊂ F8, then the 7-element multiplicative group F×
8 = F8 − {0} would

contain the 3-element group F×
4 = F4 − {0}, which is impossible since 3 - 7.


