Math 419H Homework 6 Solutions Spr 2017

1. Euclidean Algorithm: Given polynomials f(z),g(z) € F|x| for F a field, with
deg f(z) < degg(x), we perform repeated polynomial division to write:

@) = q@)g(z) +ri(z)

9() = g2 (x)r1(x) + r2(2)

ri() : Git2(T)ri1(z) + ripe(w)
rhea(@) = qu(@)re (@) + i)
re—1(x) = qpe1(x)re(z) +0.

For consistency, we may denote f(z) =r_1(z) and g(z) = ro(z).

a. PROPOSITION: r(z) is a polynomial divisor of f(z) and g(z).

Proof: We show 7y | r; by induction on i = k,k—1,...,1,0,—1, ending with ri [ro =g
and 7y |r—1 = f. The base cases 7y | rg, rp—1 are clear. Now assume inductively that
Tk | Tit1, Tit2y - -, k. Then rg | giyoriy1 + rit2 = 74, so the induction proceeds, and
the Proposition holds.

b. PROPOSITION: 7 (z) = a(z) f(z) + b(z)g(x) for some a(x),b(x) € Flx].

Proof: We show r, = a;_1r;_1 + b;_1r; by induction on i = k—2,k-3,...,0,—1,
ending with rp, = a_1f 4+ b_19. The base case is 1y, = rp_9 — qx7r_1. Now assume
inductively that rp = a;417+1 + bi+17i+2. By definition r; = g;427541 + 742, SO:

Tk = Qir1Ti41 +bipariv2 = @ir1miv1 + bip1(ri — Givoriv1)
= biy1ri + (@it1—biv1git2)riv1 = airi +biriga.
c. PROPOSITION: The polynomial d(x) = ri(xz) has the defining properties of a
greatest common divisor ged(f(x), g(x)): namely d(x) | f(x), g(x), and for any com-
mon divisor ¢(z) | f(x), g(x), we have ¢(x) | d(z).
Proof: We know d=ry | f,g by #1(a). Now if ¢| f, g, then by #1(b) we have:

c|(af+bg) =ry = d.

Note: A gcd is unique up to multiplication by units: if d,e both have the defining
properties, then d|e and e|d, meaning d = ae and e = bd, so that d = abd and ab = 1.
That is, d and e are multiples of each other by units (here, constant polynomials).

d. PROPOSITION: Any ideal I C Flz] must be a principal ideal comprising all
multiples of some f(x) € Flz]: that is, I = (f(x)) = {q(x) f(z) for ¢(x) € F[x]}.
Proof: Except when I = {0} = (0), we can find a non-zero element f(x) € I having
minimal degree. By definition of ideals, ¢(z)f(x) € I for any ¢(x), so (f(z)) C I.

For the reverse inclusion, take any g(z) € I. We can write g(z) = q(z) f(z) +r(z),
where the remainder satisfies 7(z) = g(x) — q¢(x) f(z) € I by the closure properties of
an ideal, but also degr(x) < deg f(z). Since f(z) has the lowest degree of any non-
zero polynomial in I, we can only have r(z) = 0. That is, g(z) = q(z) f(z) € (f(z)),
and hence I C (f(x)). We conclude I = (f(z)).



2. We construct the field of 8 elements as the quotient ring:

Fg = Fola]/I = {f(z) = f(z) + I for f(x) € Fafa] },

for the principal ideal I = (23+x+1) C Fy[x

].
If we define o =7 € Fg, so that f(«) = f(x), we can rewrite the definition:
[y

Fs = Fola] = {f(a) for f(z) € Fa[z]}, where a’+a+1 = 0.

We proceed to prove the main properties of Fg from the definition.

a. CLAIM: p(r) = x3+z+1 is an irreducible polynomial in Fa[z].

If the cubic p(x) had a non-trivial factorization, at least one of the factors would
have to be a linear polynomial ax + b € Fy[z|, meaning p(z) would have a root
z=—2¢€F,. But p(0)=p(1) =1#0 € Fy, so there can be no such factorization.
Note: Since p(x) is irreducible, we can compute reciprocals in Fa[x]/(p(z)) using the
Euclidean Algorithm, so the quotient ring is in fact a field.

b. cLAM: The set {1, a, a?} is a basis of Fg as a vector space over Fy, and #Fg = 8.
Proof: The set spans Fg, since any element is of the form f(«) for a polynomial f(x) =
q(z)p(x) +7(z) € Fa[z] with degr(z) < degp(z) = 3. That is, r(z) = ag + a2 + azr?
for a; € Fy, and:

fla) = qla)p(a) +r(a) = r(a) = ag+ara+ aza®.

The set is linearly independent, since any linear relation r(a) = ag + a1 + aza?® =
0 € Fg = Fa[z]/I must have r(z) € I = (p(z)). That is, p(z) of degree 3 divides r(x)
of degree < 2, which can only mean r(z) = 0 and a9 = a; = ag = 0, allowing only
the trivial linear relation.

Thus, any element of Fg can be written as ag + a1« 4 aga? for unique coordinates
ao, a1, az € Fo. Independently choosing each a; = 0 or 1 gives #Fg = 23 = 8.

c. Find reciprocals in Fg

Method 1: To find o™, take 0 = p(a) = (a?+1)a + 1, giving a pair of reciprocals
(@*+1)a=—-1=1.
To find (a+1)~!, use the Euclidean Algorithm on p(z) and 41 to get:

p(z) = 23 42+1 = (22 42)(z+1) +1 = p(x)+ (2> +z)(z+1) = 1.

Substituting = a gives the pair of reciprocals (a?+a)(a+1) = 1.
To find (a?+a+1)"1, use the Euclidean Algorithm on p(z) and z?4x+1 to get:
p(z) = (z+1) (2> +2+1) + = 2, 2 B
{ P24l = (2+1)z + 1 = (z+Dp(x) + z°(z"+2+1) = 1.

Substituting = o gives the pair of reciprocals o?(a?+a+1) = 1.
Together with 1-1 = 1, this accounts for all the reciprocal pairs in Fg.



Method 2. The non-zero elements of Fg form a cyclic group under multiplication:

Q, a2, ad = a+1, at = a2+a, o’ = a2—|—a—|—1, ab = a2+1, al = 1.

This gives the reciprocal pairs a’a’~* =1 for i = 1,2, 3:
a(a’+1) = a?(a®+a+1) = (a+1)(a®+a) = 1.

Note: This works for any finite field F,: the non-zero elements under multiplication
always form a cyclic group of order g—1, as we shall prove later.

d. Find the minimal polynomial of every element 5 € Fg.
Method 1. The minimal polynomial has degree at most 3, since the 4 elements
1,3, 5%, 3% must be linearly dependent over Fy. If we define an Fo-linear operator
Lg: F3 — Fg by Lg(ag,a1,az,a3) = ag+ a1 B+ as 8% +azB3, and we write Lg in terms
of the standard basis of F3 and the basis {1, «, a?} of Fg, we get a 3 x 4 matrix. Any
kernel vector (ag, a1, az,asz) gives a polynomial f(z) = ag + a1z + asx? + azx® with
f(B) = 0. Taking such f(x) of smallest degree gives the minimal polynomial.
Method 2. The minimal polynomial of § € Fg must divide any f(x) € Falx] with
f(B) =0, so an irreducible f(z) with f(8) = 0 must be the minimal polynomial.
The minimal polynomial of a = 0,1 € Fs is obviously z—a. It is easy to see that
the only irreducible cubic polynomials in Fy[z] are:

plx) = 23 +2+1 with roots « ; o? aa2+0"
q(r) = 23+2%+1 with roots a+1,a?+1,a?+a+1.

Note: If B is a root of f(z) € Fa[x], then 8% is also a root. To see this, define
the Frobenius automorphism ® : Fg — Fg by ®(8) = 32, satisfying ®(8+y) =
O(B) + (), ®(By) = ®(B)P(y), and ®(a) = a for a € Fo. If f(B) = 0, then
0=2(f(8)) = f(2(B)) = f(B?).

Thus p(z) = (z—a)(z—a?)(z—a?), and:
12)

i(@) = (-0 (z—a¥)(a—a®) = (z—a®)(a—af)(@—a®).

e. CLAIM: FFg does not contain a field with 4 elements.

Proof 1. Recall from #2(b) that [Fg : Fo] = dimp, (Fs) = 3, and similarly [Fy : Fo] =
2. If we had Fy C Fg, we would have the prime field {0,1} = Fy C Fy, and the
degree-multiplication formula would give:

3= [Fg . FQ] = [Fg . IF4] []F4 : ]FQ] == (k)(2>

for a whole number k, which is impossible. Thus there is no such F4 C Fg.

Proof 2. If Fy C Fg, then the 7-element multiplicative group F§ = Fg — {0} would
contain the 3-element group F; = F4 — {0}, which is impossible since 3 1 7.



