
Math 418H Fall 2005

Lecture: Mon 10/17

1. Why bother with complex numbers C ?

• Define new number systems to solve equations that have no solu-
tions in old number systems.

• x + 1 = 0 has no soln in N, so define Z (negative numbers)

• 2x − 1 = 0 has no soln in Z, so define Q (fractions)

• x2 − 2 has no soln in Q, so define R (irrational numbers)

• x2 + 1 = 0 has no soln in R, so define C (imaginary numbers)

2. Formal definition of C

• As with Q and R, we do not try to uncover the “essence” of a new
number like i =

√−1 . We just define it by enough information
to determine all its properties.

• C = R × R = {(a, b) | a, b ∈ R}, pairs of real numbers: (a, b)
represents the complex number a + bi.

• Addition: (a, b) + (c, d) := (a + c, b + d).

Motivation: (a+bi) + (c+di) = (a+c) + (b+d)i .

• Multiplication: (a, b) •(c, d) := (ac − bd, ad + bc).

Motivation: (a+bi) •(c+di) = ac+bdi2+adi+bci = (ac−bd)+(ad+bc)i .

• Check the field axioms for C. Identity elements: (0, 0), (1, 0) .
Multiplicative associativity:

[ (a, b) •(c, d) ] • (e, f) = (ace−adf−bcf−bde) + (acf+ade+bce−bdf)i

= (a, b) • [ (c, d) •(e, f) ] .

• The only tricky property is the existence of multiplicative inverses.
We should have:

1

a + bi
=

a − bi

(a + bi)(a − bi)
=

a − bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i .

This is motivation, but proves nothing, because we have not es-
tablished that 1/(a + bi) even exists.



• Given (a, b) �= (0, 0), we define the multiplicative inverse as:

(a, b)−1 :=

(
a

a2 + b2
, − b

a2 + b2

)
.

Now we prove that (a, b) •(a, b)−1 = (1, 0) by applying the defini-
tion of multiplication.

• Notation: a real number a ∈ R is identified with (a, 0), so we can
regard R ⊂ C . Define i := (0, 1) .

• Prove that i2 = −1 and (a, b) = a + b • i .

3. Geometric picture of C

• Picture: C = R2 , x + iy = (x, y) , vectors in the real plane

• Addition of complex numbers = usual addition of vectors (diago-
nal of parallelogram)

• Multiplication of complex numbers = some kind of multiplication
of plane vectors:

(a + ib) •(x + iy) = (a, b) •(x, y) .

• Multiplying by a = (a, 0), we have

a •(x, y) = (ax, ay) = stretch (x, y) by a ,

the usual scalar multiple of a vector

• Multiplying by i = (0, 1) , we have

i •(1, 0) = (0, 1) , i •(0, 1) = (−1, 0)

and: (x, y) �→ i •(x, y) = (−y, x) is an R-linear map. Thus:

i •(x, y) = rotate (x, y) by 90◦ .

• Multiplying by a unit-length vector u = cosθ+i sin θ = (cos θ, sin θ) :

u •(1, 0) = (cos θ, sin θ) , u •(0, 1) = (− sin θ, cos θ)

and (x, y) �→ u •(x, y) is an R-linear map. Thus:

u •(x, y) = rotate (x, y) by θ .
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1. Complex multiplication = rotation

• For v = (a, b) ∈ C, consider the multiplication map

Mv : R2 → R2

(x, y) �→ u •(x, y)

This map is R-linear:

Mv(cx, cy) = cMv(x, y)

Mv(x1 + x2, y1 + y2) = Mv(x1, y1) + Mv(x2, y2) .

for all c ∈ R and (x1, y1), (x2, y2) ∈ R2 . Thus:

Mv(x, y) = xMv(1, 0) + y Mv(0, 1) .

• Multiply by i = (0, 1):

i •(1, 0) = (0, 1) , i •(0, 1) = (−1, 0)

i •(x, y) = rotate (x, y) by 90◦ .

• Multiply by a unit-length vector u = cosθ + i sin θ = (cos θ, sin θ) :

u •(1, 0) = (cos θ, sin θ) , u •(0, 1) = (− sin θ, cos θ) .

u •(x, y) = rotate (x, y) by θ .

• Write an arbitrary vector in polar coordinates: v = ru, where
r ∈ R and u = cosθ + i sin θ . Then:

v •(x, y) = rotate (x, y) by θ, then stretch by r .

2. Complex multiplication: add angles, multiply lengths

• Consider the complex product: v3 = v1 • v2 , and write each num-
ber in polar form: vj = rj(cos θj + i sin θj for j = 1, 2, 3 . Then:

θ3 = θ1 + θ2 , r3 = r1r2 ;

that is: to multiply complex numbers, add their angles and mul-
tiply their lengths.



• First proof: Since the multiplcation map (x, y) �→ vj •(x, y) is
rotating by θj and stretching by rj, we can describe the product
v1 • v2 = v1 • v2 • 1 as follows: start with unit vector 1; rotate by
θ2; stretch by r2; rotate by θ1; stretch by r1. Result: rotate by
θ1 + θ2 , and stretch by r1r2 .

• Second proof: From the formula for complex multiplication:

r1(cos θ1 + i sin θ1) • r2(cos θ2 + i sin θ2)

= r1r2 ( (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2) )

!
= r1r2 ( cos(θ1 + θ2) + i sin(θ1 + θ2) )

by the angle-addition formulas .

3. Complex powers

• 2v is the vector v stretched by 2

• −v is the vector opposite to v

• Let v = r(cos θ + i sin θ) .
v2 = v • v is the vector with length r2 and angle 2θ

• √
v is a vector with length

√
r and angle 1

2
θ.

• There are 2 square roots because the angle θ is amiguous. We
could just as well write:

v = r( cos(θ+2π) + i sin(θ+2π) )

so that √
v =

√
r ( cos(1

2
θ+π) + i sin(1

2
θ+π) )

= −√
r (cos 1

2
θ + i sin 1

2
θ) .

• DeMoivre’s Theorem: v1/n is any vector with length r1/n and angle

θ + 2kπ

n
=

θ

n
+

2πk

n
.

There are n such vectors evenly spaced around the circle, corre-
sponding to the values k = 0, 1, . . . , n−1.



4. Complex numbers as matrices

• Any linear mapping M : R2 → R2 is defined by a 2× 2 matrix. If

M(1, 0) = (a, b) and M(0, 1) = (c, d) , then: M =
[

a c
b d

]
, and:

M(x, y) =

[
a c
b d

]
·
[

x
y

]
.

Here we use row vectors and column vectors interchangeably:

(x, y) =
[

x
y

]

• The linear mapping Mu for u = cos θ + i sin θ is given by the
matrix:

Mu(x, y) = v •(x, y) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

This is called the rotation matrix of θ.

• The linear mapping Mv for v = a + bi = ru is rotation by θ and
stretching by r. Its matrix is:

Mv(x, y) = v •(x, y) =

[
a −b
b a

] [
x
y

]
.

This is called a complex multiplication matrix .

• Consider the set of all complex mult matrices:

MC :=

{[
a −b
b a

]
where a, b ∈ R

}
.

This is a “copy” of the complex number field inside the ring of
2×2 matrices. That is, there is an isomorphism of fields from the
complex numbers to this ring of matrices:

φ : C → MC

a + bi �→
[

a −b
b a

]

satisfies:

φ(v1 + v2) = φ(v1) + φ(v2) and φ(v1 • v2) = φ(v1) · φ(v2) ,

where the operation on the left side of each equation is in C, and
the operation on the right side is an operation of matrices.
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1. Picturing complex functions

• A complex function f : C → C , f(x+ iy) = u(x, y)+ i v(x, y) has
real component u(x, y) and imaginary component v(x, y), where
u, v : R2 → R are real functions on C = R2.

• This is the same thing as a vector field f : R2 → R2 , f(x, y) =
(u(x, y), v(x, y)), with x-component u(x, y) and y-component v(x, y).
This can be pictured by a field plot: draw each arrow f(x, y) with
its base at the point (x, y).

• Example 1: The complex function f(z) = iz is equivalent to the
vector field: f(x, y) = (−y, x) whose field plot has arrows circu-
lating around the origin, with length proportional to their distance
from the origin. This is the velocity field of a turn-table.

For a general α = r cis θ, the field plot of f(z) = α z is a vortex
centered at the origin, with the arrows rotated by angle θ away
from the outward direction, like the velocity field of water swirling
down the drain.

• Example 2: The complex function f(z) = z2 +(1+i)z+1 is equiv-
alent to the vector field f(x, y) = (x2−y2+x−y+1 , 2xy+y+x)

• Example 3: The complex function f(z) = z, complex conjugate,
is equivalent to the vector field f(x, y) = (x,−y).

2. Derivative of a vector field

• An arbitrary vector field f(x, y) = (u(x, y), v(x, y)) has a deriva-
tive matrix:

Df :=

[
ux uy

vx vy

]
,

where

ux(x, y) =
∂u

∂x
:= lim

ε→0

u(x+ε, y) − u(x, y)

ε

is the partial derivative of u(x, y) in the x-direction, etc.

• If f : R → R is an ordinary real function, its derivative f ′(a) gives
the slope of the best linear approximation to f(x) near x = a : for
small ε, we have:

f(a+ε) ≈ f(a) + f ′(a) ε ,



which is just unravelling the definition of derivative:

f ′(a) ≈ f(a+ε) − f(a)

ε
.

Similarly, for a vector field f : R2 → R2, the derivative matrix
Df(a, b) gives the best linear-function approximation near the
point (a, b) : for small (ε1, ε2), we have:

f(a+ε1, b+ε2) ≈ f(a, b) + Df(a, b) ·
[

ε1

ε2

]
,

where the last operation is matrix multiplication.

• Example 2: For f(x, y) = (x2−y2+x−y+1 , 2xy+y+x) , we have:

Df(x, y) =

[
2x+1 2y+1

−2y−1 2x+1

]

• Example 3: For f(x, y) = (x,−y) , we have:

Df(x, y) =

[
1 0
0 −1

]

3. Complex analytic functions

• We say a complex function f(x + iy) = u(x, y) + i v(x, y) is com-
plex analytic (or just analytic) if any of the following equivalent
conditions apply.

• The partial derivatives of f(z) = f(x + iy) in the real and imagi-
nary directions are equal:

∂f(x + iy)

∂x
= lim

ε→0

f(z + ε) − f(z)

ε
= ux(x, y) + ivx(x, y)

!
=

∂f(x + iy)

∂iy
= lim

ε→0

f(z + iε) − f(z)

iε
= vy(x, y) − iuy(x, y) .

We define the complex derivative f ′(z) to be the common value
of these partial derivatives.

• For every value z = x + iy, the derivative matrix Df(x, y) is a
complex multiplication matrix Mc+id for some c + id ∈ C:

Df :=

[
ux uy

vx vy

]
=

[
c −d
d c

]
.



We define the complex derivative f ′(z) to be the complex number
in this multiplication matrix:

f ′(z) := c + id = ux + ivx = vy − iuy .

• The component functions of f(x + iy) = u(x, y) + iv(x, y) satisfy
the Cauchy-Riemann partial differential equations:

ux = vy , vx = −uy .

4. Examples: analytic and non-analytic functions

• Example 1: f(z) = iz , f(x, y) = (−y, x) ,

f ′(z) = (ux, vx) = (vy,−uy) = (0, 1) = i .

• Example 2: f(z) = z2+(1+1)z+1 , f(x, y) = (x2−y2+x−y+1 , 2xy+y+x) ,

f ′(z) = (ux, vx) = (vy,−uy) = (2x + 1, 2y + 1) = 2z + 1 .

• Example 3: f(z) = z , f(x, y) = (x,−y) ,

f ′(z) = (ux, vx) = (1, 0)
?
= (vy,−uy) = (−1, 0) .

The equality does not hold, so f(z) is not analytic at any z !

• For a general complex analytic f(z) with roots z = r1, . . . , rn, the
field plot has a vortex around each ri which looks approximately
like the vortex of g(z) = α z for α = f ′(ri) .

5. Combining analytic functions

• f(z) = α (constant function) and f(z) = z are analytic

• If f(z) and g(z) are analytic, then:

– f(z) + g(z) is analytic and (f(z) + g(z))′ = f ′(z) + g′(z).

– f(z) g(z) is analytic and (f(z) g(z))′ = f ′(z)g(z) + f(z)g′(z).

– f(z)/g(z) is analytic for all z where g(z) �= 0 , and

(
f(z)

g(z)

)′
=

f ′(z)g(z) − f(z)g′(z)

g(z) 2
.

• Corollary: All polynomial functions f(z) ∈ C[z] are complex an-
alytic for every z. All rational functions f(z)/g(z) are complex
analytic except at the points z where g(z) = 0.



6. Fundamental Theorem of Algebra

• Theorem: Any polynomial

f(z) = a0 + a1z + · · ·+ anzn ∈ C[z]

of degree n ≥ 1 has at least one complex root z = α with f(α) = 0.

• This means: the field plot of any polynomial f(z) has at least one
vortex. The plot of a high-degree polynomial is very complicated,
so this is not at all obvious!

Alternatively: any complex polynomial of degree n can be com-
pletely split into n linear factors:

f(z) = an(z − r1) · · · (z − rn) .

This will have fewer than n vortices if some of the ri’s coincide.

• Strategy of Proof: First, Cauchy’s Mean Value Theorem says that
for any circle in the complex plane, the value of an analytic func-
tion at the center is a certain average of the values on the circle.

• Next, Liouville’s Theorem: Let f(z) be complex analytic on the
whole plane, with lim|z|→∞ f(z) = 0 , meaning that f(z) becomes
very small when z is far from the origin. Then f(z) can only be
the zero constant function: f(z) = 0 for all z.

Proof: Consider any particular α , and take a very large circle
centered at α. Given ε > 0, by assumption we can take an α-
centered circle large enough so that |f(z)| < ε for z on the circle.
By Cauchy, the value f(α) is the average of the values f(z) on
the circle, so |f(α)| < ε. Since this is true for any ε > 0, we must
have |f(α)| = 0, so f(α) = 0 . This holds for each α ∈ C .

• Finally, suppose there were a polynomial function g(z) with no
roots . Then the function f(z) = 1/g(z) would be analytic on
the whole plane, and |g(z)| = 1/|f(z)| → 0 for |z| → ∞, since
deg g(z) ≥ 1 . But by Liouville, f(z) can only be the zero constant
function, a contradiction.

• Note that the innocent-looking non-analytic function:

f(z) = zz̄ + 1 = |z|2 + 1

has no roots! Analytic functions are very special.
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1. Electromagnetic vector fields

• Let g(x, y) = (r(x, y), s(x, y)) be any vector field.

• Divergence of g measures rate of outflow from each point:

div g(x, y) :=
∂r

∂x
+

∂s

∂y
= rx(x, y) + sy(x, y) .

• Curl of g measures counter-clockwise torque (rotational force)
around each point:

curl g(x, y) :=
∂s

∂x
− ∂r

∂y
= sx(x, y) − ry(x, y) .

• An electric force field g(x, y) satisfies Maxwell’s equations: the curl
and divergence must vanish at all points:

curl g(x, y) = div g(x, y) = 0 .

That is:

(Maxwell) rx = −sy , ry = sx .

These equations hold in a region with no charge present. In gen-
eral, div g is the charge density at each point.

2. Complex analytic vs electric vector fields

• Let f(x + iy) = u(x, y) + i v(x, y) be complex analytic, meaning
it satisfies:

(Cauchy-Riemann) ux = vy , uy = −vx .

• Proposition: Given f(x+ iy), let g(x, y) be the complex conjugate
vector field: g(z) := f(x + iy) ,

g(x, y) := (u(x, y),−v(x, y)) .

Then clearly:

f(x, y) complex analytic ⇐⇒ g(x, y) satisfies Maxwell.



• Example: f(z) = z , g(x, y) = (x,−y). Then f(z) is analytic
everywhere and curl g = div g = 0.

• Example: f(z) = 1/z ,

g(x, y) =
(x, y)

x2 + y2
= point-charge ,

an outward force proportional to inverse of distance (which is the
2-dimensional version of Coulomb’s Law). Then f(z) is analytic
except at the origin, and g(x, y) satisfies Maxwell except at the
origin, where there is a point-charge with infinite charge-density:
div g(0, 0) = ∞ .

• Example: g(z) = (x, y) corresponds to f(z) = z . Then f(z) is not
analytic, and g(x, y) does not satisfy Maxwell’s equations, since
curl g(x, y) = 0 but div g(x, y) = 2 everywhere.

3. Parametrized curves in the plane

• Parametrized curve: C = c(t) = (x(t), y(t)) for a ≤ t ≤ b.
We can imagine c(t) as the position at time t of a particle moving
along C from the start point c(a) = (x(a), y(a)) to the end point
c(b) = (x(b), y(b)) . C is a closed curve if c(a) = c(b).

• Tangent vector at point c(t):

c′(t) = lim
ε→0

c(t + ε) − c(t)

ε
= (x′(t), y′(t)) .

Rephrasing: for two points c0 = c(t0) and c1 = c(t1) close together
along C, the increment vector between them is approximately the
velocity vector multiplied by the time increment:

c1 − c0 ≈ c′(t1) (t1−t0) = c′(t1) ∆t1 .

• Example: C = c(t) = (cos t, sin t) for 0 ≤ t ≤ 2π, unit circle.
Tangent vector at c(t) is: c′(t) = (− sin t, cos t) .
For t = π/2 , c(t) = (0, 1) , c′(t) = (−1, 0) .

4. Circulation around a curve

• We wish to measure the total drag or circulation of g(x, y) pushing
around a closed curve C . This is a large-scale version of curl g ,
which measures the rate of circulation of g(x, y) near a particular
point.



• Drag: The drag of a constant vector field g(x, y) = (c, d) along
the line segment from (0, 0) to (p, q) is the dot-product:

(c, d) • (p, q) = cp + dq ,

the product of vector lengths times cos of the angle between.

• Circulation line integral of g(x, y) along C . Mark N points of C:

c0, c1, . . . , cN = c0 ,

with cj = c(tj) . We have:

cj − cj−1 ≈ c′(tj) (tj−tj−1) = c′(tj) ∆tj .

We can compute the total circulation of g(x, y) around C by adding
up the drag along each tiny line segment from cj−1 to cj :

∮
C
g(x, y) • dc := lim

N→∞

N∑
j=1

g(cj) • (cj−cj−1)

:= lim
N→∞

N∑
j=1

g(c(tj)) • c′(tj) ∆tj

=

∫ b

t=a

g(c(t)) • c′(t) dt .

Note that g(c(t)) • c′(t) is a scalar-valued function of t, so the last
line is an ordinary integral.

• Example: Let C = (cos t, sin t) for 0≤t≤2π , and g(x, y) = (1, 0)
a horizontal constant vector field. Since the drag on top of the
curve cancels the opposite drag on the bottom, we expect zero
circulation. In fact:
∮
C
g(c) • dc =

∫ 2π

t=0

g(cos t, sin t) • (cos′ t, sin′ t) dt

=

∫ 2π

t=0

(1, 0) • (− sin t, cos t) dt =

∫ 2π

t=0

− sin t dt = 0 .

5. Global outflow via line integrals

• We wish to measure the total outflow or flux of g(x, y) across a
closed curve C . This is a large-scale version of div g(x, y) , which
measures the rate of outflow near a particular point.



• Flux: The flow of a constant vector field g(x, y) = (c, d) across a
line segment from (0, 0) to (p, q) is the cross-product:

(c, d)×(p, q) = cq − dp ,

the product of vector lengths times sin of the angle between.

• Flux line integral of g(x, y) along C . As before, we compute the
total outflow as:∮
C
g(x, y)×dc = lim

N→∞

N∑
j=1

g(cj)×(cj−cj−1) =

∫ b

t=a

g(c(t))×c′(t) dt .

• Example: Again let C = (cos t, sin t) and g(x, y) = (1, 0) . Since
inflow on the left should cancel outflow on the right, we expect
zero flux. In fact:∮

C
g(c)×dc =

∫ 2π

t=0

(1, 0)×(− sin t, cos t) dt =

∫ 2π

t=0

cos t dt = 0 .

6. Green’s Theorems: global versus local

• Let R be a region on the plane whose boundary is a simple closed
curve C (oriented counter-clockwise). Let g(x, y) be vector field
which is defined and differentiable at every point of R.

• Theorem: The circulation of g around the boundary curve is equal
to the total curl of g inside the region:∮

C
g(c) • dc =

∫∫
R

curl g(x, y) dx dy ,

where the right side is a double integral over the region R .

• Theorem: The flux of g around the boundary curve is equal to the
total divergence of g inside the region:∮

C
g(c)×dc =

∫∫
R

div g(x, y) dx dy .

• Proof: Divide R into little regions, and write the total line integral
as a sum of line integrals over tiny regions. Inside each tiny region,
g(x, y) can be replaced by its linear approximation, so that we can
compute the tiny line integrals to be the area times curl g or div g.

• Corollary: If g(x, y) is an electical force field with curl g = div g =
0 inside the region R , then g has zero circulation and flux over
the boundary curve C :∮

C
g(c) • dc =

∮
C
g(c)×dc = 0
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1. Complex line integral

• Given a complex derivative F ′(z) , we would like to recover the
orginal function F (z) by integrating. This is done as follows: let
C be a non-closed curve with start-point α = c(a) and end-point
β = c(b) . Mark N points α = c0, c1, . . . , cN = β , with cj = c(tj) .
Then:

F (β) − F (α) = lim
N→∞

N∑
j=1

F (cj)−F (cj−1)

= lim
N→∞

N∑
j=1

F (cj)−F (cj−1)

cj−cj−1

cj−cj−1

∆tj
∆tj

=

∫ b

t=a

F ′(c(t)) c′(t) dt

• Thus, the correct integral to use is the complex line integral:

∮
C
f(z) dz :=

∫ b

t=a

f(c(t)) c′(t) dt ,

where the product in the integral is complex multiplication, and
the result is a complex number. That is, if f(x + iy) = u(x, y) +
i v(x, y) and c(t) = x(t) + i y(t) , then:

∮
C
f(z) dz =

∫ b

t=a

u(c(t)) x′(t) − v(c(t)) y′(t) dt

+ i

∫ b

t=a

u(c(t)) y′(t) + v(c(t)) x′(t) dt

• Fundamental Theorem of Calculus: If F (z) is analytic, and C is a
(not necessarily closed) curve from α to β , then:

F (β) − F (α) =

∮
C
F ′(z) dz .



• Example: f(z) = 1/z , C = c(t) = (r cos t , r sin t) . Then f(x+iy) =
(x−iy)/(x2+y2) , and:∮

C
f(z) dz =

∫ 2π

t=0

f(r cos t + ir sin t) (r cos′ t + ir sin′ t) dt

=

∫ 2π

t=0

1

r2
(r cos t − ir sin t) (−r sin t + ir cos t) dt

=

∫ 2π

t=0

i(cos2 t + sin2 t) dt = 2πi

2. Cauchy Integral Theorem

• Theorem: If R is a plane region whose boundary is the closed
curve C , and f(z) is complex analytic for every z ∈ R , then the
complex line integral of f(z) over C is zero:∮

f(z) dz = 0 .

• First Proof: If we can find F (z) with f(z) = F ′(z), and we take
α = β being the start- and end-point of the closed curve C , then:∫

C
f(z) dz = F (α) − F (β) = 0 .

For example, if f(z) = z2+1 then we can take F (z) = 1
3
z3+z . But

how do we find such an F (z) in general? For example, f(z) = 1/z
does not satisfy the Theorem, so it cannot be the derivative of any
function F (z) . We need a better proof.

• Second Proof: We reduce the complex line integral of f(z) to
circulation and flux integrals of the corresponding electric field,
the conjugate g(z) := f(z) with curl g = div g = 0 . First, note
that the complex product relates to the dot and cross products as
follows:

α β = α • β + α×β .

(Just write out real and imaginary parts of both sides.) Thus:∮
C
f(z) dz =

∫ b

t=a

f(c(t)) c′(t) dt

=

∫ b

t=a

f(c(t)) • c′(t) dt + i

∫ b

t=a

f(c(t))×c′(t) dt

=

∮
C
g(c) • dc + i

∮
C
g(c)×dc

=

∫∫
R

curl g(x, y) dx dy + i

∫∫
R

div g(x, y) dx dy = 0



3. Cauchy Mean Value Theorem

• Let C = C(r, γ) be a circle with radius r and center γ , and suppose
f(z) is complex analytic in the disk bounded by C . Then the
average value of f(z) on the circle C is equal to the value f(γ) in
the center:

1

2πr

∫
C(r,γ)

f(c(t)) |c′(t))| dt = f(γ) .

• Proof: First, note that c′(t) = i (c(t)−γ) , so:

∮
C

f(z)

z−γ
dz =

∫ 2π

t=0

f(c(t))

c(t)−γ
c′(t) dt

= i

∫ 2π

t=0

f(c(t)) dt

=
i

r

∫ 2π

t=0

f(c(t)) |c′(t)| dt .

Thus, the average value can be computed as:

A(r) :=
1

2πr

∫
C(r,γ)

f(c(t)) |c′(t))| dt =
1

2πi

∮
C(r,γ)

f(z)

z−γ
dz

Let D be the closed curve which first rounds the circle C(r, γ)
counterclockwise , then traverses a radial line segment from radius
r to a smaller radius ε , then rounds the circle C(ε, γ) clockwise,
then goes back along the same radis from ε to r .

The closed curve D is the boundary of a ring-shaped region in
which f(z)/(z−γ) is analytic, so that the complex integral van-
ishes by Cauchy’s Theorem:

0 =

∮
D

f(z)

z−γ
dz =

∮
C(r,γ)

f(z)

z−γ
dz −

∮
C(ε,γ)

f(z)

z−γ
dz . = A(r) − A(ε) .

That is, the average does not depend on the radius of the circle.
But f(z) is continuous, so as the circle C(r, ε) approaches the
central point γ , the average value of f(z) on the circle approaches
f(γ) :

A(r) = A(ε) = lim
ε→0

A(ε) = f(γ) .
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1. Fundamental Theorem of Algebra

• Theorem: Any polynomial

f(z) = a0 + a1z + · · ·+ anzn ∈ C[z]

of degree n ≥ 1 has at least one complex root z = α with f(α) = 0.

• First step: We give a proof by contradiction. Suppose f(z) were a
polynomial with no roots . Then its reciprocal g(z) := 1/f(z) would
be analytic everywhere. Furthermore:

lim
|z|→∞

|f(z)| = lim
|z|→∞

|anz
n| = ∞ ,

meaning that f(z) has large radius if z is far from the origin. Thus
lim|z|→∞ g(z) = 0 , meaning that g(z) has small radius when z is far
from the origin.

• Second step, Liouville’s Theorem: Let g(z) be a function which is
complex analytic on the whole plane, with lim|z|→∞ g(z) = 0 . Then
g(z) can only be the zero constant function: g(z) = 0 for all z.

Proof: Consider any particular γ ∈ C , and take a very large circle
C(r, γ) with radius r and center γ. Given ε > 0, by assumption we
can take radius large enough so that |g(z)| < ε for z on the circle
C(r, γ). By Cauchy’s Mean Value Theorem, the value g(γ) at the
center is the average of the value of g(z) on the circle C(r, γ) = c(t):

g(γ) = Avg
c∈C(r,γ)

g(c) :=
1

2πr

∫
g(c(t)) |c′(t)| dt .

Taking lengths and applying the triangle inequality,

|Avg
C

F (c) | ≤ Avg
C

|F (c)| ,

we have:
|g(γ)| = | Avg

C(r,γ)

g(c) | ≤ Avg
C(r,γ)

|g(c)| ≤ ε .

Since this is true for any ε > 0, we must have |g(γ)| = 0 . This holds
for each γ ∈ C .

• Third step: Since g(z) = 1/f(z) is not the zero constant function,
we have a contradiction. Thus there cannot exist any non-vanishing
polynomial f(z) ∈ C[z] .



• Paraphrasing: Liouville’s Theorem says that if a non-constant an-
alytic function becomes very small as |z| → ∞ , then g(z) must
compensate for this by having non-anlytic points somewhere (for ex-
ample, blowing up to infinity). Hence, if an analytic f(z) becomes
very large as |z| → ∞ (as does a polynomial), then f(z) must com-
pensate for this by vanishing somewhere, i.e., having roots.

• This is a pure existence proof: it shows that a root-free polynomial
function f(z) would lead to an analytic function g(z) violating the
Cauchy Mean Value Theorem. The proof gives no clue how to find
a root for a given f(z): we will give an algorithm for this next time.

2. Factoring polynomials

• Proposition: Every monic complex polynomial f(z) of degree n can
be uniquely factored in C[z] as a product of n linear functions.

f(z) = (z−α1) · · · (z−αn) .

That is, the irreducible polynomials of C[z] are linear.

Proof: By the Fundamental Theorem, f(z) has a root z = α and
thus a linear factor: f(z) = (z−α1) f1(z) , where f1(z) has degree
n−1 . Repeat this for f1(z) until all factors are linear.

• Proposition: Every monic real polynomial f(z) of degree n can be
uniquely factored in R[z] as a product of linear and quadratic func-
tions:

f(z) = (z − α1) · · · (z − αk) q1(z) · · · q�(z) ,

where αj ∈ R , qj(z) ∈ R[z] has degree 2, and k + 2� = n. That is,
the irreducible polynomials of R[z] are linear and quadratic.

Proof: A real polynomial f(z) ∈ R[z] can be factored into complex
linear factors as above. But if f(α) = 0 , then f(α) = f(α) = 0 , so
the non-real roots come in complex conjugate pairs. Each such pair
α �= α with α = a + bi gives a real factor:

(z−α) (z−α) = z2 + (α+α) z + αα = z2 + 2az + (a2+b2) ∈ R[z] .

These factors are irreducible in R[z] since their roots α, α are not in
R by assumption.

• Example: Let f(z) = z4 + 1, having roots α1 = cis(π
4
) =

√
2

2
(1 + i) ,

α2 = cis(3π
4

) =
√

2
2

(−1 + i) , and their conjugates α1 , α2 . Factoring:

f(z) = (z−α1)(z−α1)(z−α2)(z−α2)

= (z2 + (α1+α1) z + α1α1) (z2 + (α2+α2) z + α2α2)

= (z2 +
√

2 z + 1) (z2 −√
2 z + 1)




