
Lecture: Mon 8/29/05

1. N := {0, 1, 2, . . .} natural numbers (whole numbers)

• “God made the whole numbers; all the rest is the work of man.”

• operations =⇒ solving equations =⇒ inverse operations =⇒
new number systems

• accounting =⇒ algebra:
8 sheep, 3 born, how many?
addition operation: x = 8 + 3 = 11

• 11 sheep, 5 male, how many female?
y + 5 = 11, y = 11 − 5 = 6 (inverse to + op)

• 11 sheep, king wants 15 for taxes, how many left?
z + 15 = 11, z = 11 − 15 = −4, debt of 4 sheep
new type of number, has meaning in original context

• Z = {0,±1,±2, . . .} integers (from German Zahl)

2. Q rational numbers

• 300 peasants, 15 sheep each in taxes, how much revenue?
multiplication operation: u = 300 × 15 = 4500

• 4500 revenue, 160 soldiers, how much for each?
4500/60 = 225/8 = 28 + 1

8
fraction

• Q = { a/b with a, b,∈ Z , b �= 0 } rational numbers (fractions)

• make definitions for Q in terms of known terms for Z

equality of fractions: a/b = c/d ⇐⇒ ad = bc
addition of fractions: a/b + c/d := (ad + bc)/bd

3. R real numbers

• square field has area, 200 yd2, side is how long?
s2 = 200, s =

√
200 = 10

√
2.

• Proposition:
√

2 �∈ Q: that is, (a/b)2 �= 2 for all a/b ∈ Q

• Lemma: a2 even =⇒ a even
Proof of Lemma: if even a = 2n, then a2 = 4n2 even; if odd
a = 2n+1, then a2 = 4n2+4n+1 = 2(2n2+2n)+1 odd.

• Proof of Proposition: Suppose a/b ∈ Q in lowest terms, so a, b are
not both even. Suppose (a/b)2 = 2, so that a2 = 2b2 is even. By
the Lemma, a = 2n is even, so 2b2 = (2n)2 = 4n2 and b2 = 2n2

is even. By the Lemma, b is also even, so we could not have any
solution a/b in lowest terms.
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• solve x2 = c =⇒ solve ax2 + bx + c = 0
Complete-the-square trick: Rewrite eqn as x2+(b/a)x+(c/a) = 0.
If 2d = b/a then:

(x + d)2 − d2 +
c

a
= x2 +

b

a
x +

c

a
= 0

Now we can solve (x + d)2 = d2 − c/a, so x = −d±√
d2 − c/a for

d = b/2a. Work out the usual quadratic formula.

4. C = { a + ib for a, b ∈ R }, complex numbers

• solve x2 + 1 = 0 gives new number i =
√−1

• can define operations on numbers a + bi for a, b ∈ R in terms of
known operations on R.
(a + bi)(c + di) = ac + i2bd + iad + ibc = (ac − bd) + i(ad + bc)

• can now solve x2 = −a : x =
√−a = i

√
a for a ≥ 0.

• can now solve ax2 + bx + c = 0 for any a, b, c ∈ R (even if no real
solution): quadratic formula

• Fundamental Theorem of Algebra: Any polynomial equation

a0 + a1x + a2x
2 + · · ·+ anxn = 0

with coefficients a0, a1, . . . , an ∈ C has at least one solution x =
a + bi ∈ C.

• Thus, the process of finding more general number systems to solve
equations ends with C.
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Lecture: Mon 8/31/05

1. Pythagorean triples

• Number theory: properties of integers Z

finding integer solutions to equations

• Example: Pythagorean triples
all 3 sides of a right triangle are whole numbers
solve a2 + b2 = c2 for integers a, b, c > 0.

• Let x = a/c , y = b/c , then solve:
x2 + y2 = 1 for rational numbers x, y ∈ Q.
find rational points (x, y) on unit circle

• Projection of circle from (−1, 0) to line x = 1:
miraculously, rational points (1, t) on line
correspond one-to-one with rational points (x, y) on circle

• E.g. t = 3
2
, line between (1, t) and (−1, 0) is y = 3

4
(x+1)

intersect with x2 + y2 = 1 =⇒ 1 − x2 = 9
16

(x + 1)2

=⇒ 1 − x = 9
16

(x + 1) =⇒ (x, y) = ( 7
25

, 24
25

)

=⇒ (a, b, c) = (7, 24, 25).

2. Prime factorization of integers

• divisibility: a|b ⇐⇒ b = ac for some c ∈ Z

a is a factor of b , a divides b , b is divisible by a

• prime p means only possible factors d|p are d = 1, p
convention: 1 is not a prime

• Fundamental Theorem of Arithmetic (Unique Factorization):
Any positive integer n can be factored into primes: n = p1p2 · · · pr.
This can be done in only one way (except for the order of the
factors).

3. Greatest common divisor

• gcd(a, b) = max{ d such that d|a and d|b }
• Euclidean algorithm to find gcd(a, b)

Example: (a, b) = (36, 15)
repeat division with remainder until remainder is 0:

(36, 15) 36 = 2(15) + 6 3|36
(15, 6) 15 = 2(6) + 3 3|15
(6, 3) 6 = 2(3) + 0 3|6
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• Claim: (i) 3|36 and 3|15 (ii) d|36 and d|15 =⇒ d|3
Proof of (i): clear from above.
Proof of (ii): 3 = 2(6) − 15 , 6 = 2(15) − 36
so back-substitute: 3 = 2(2(15)− 36) − 15 = −36 + 3(15)
Since 3 = �(36) + m(15) , if d|36 and d|15, then d|3.

4. General Euclidean Algorithm to find gcd(a, b)

• x0 := a , x1 = b , repeat division with remainder:
x0 = q1x1 + x2 , x1 = q2x2 + x3 , · · · , xn−1 = qnxn + 0

• Proposition: xn = gcd(a, b).

• Claim: (i) xn|a and xn|b (ii) xn = �a + mb for �, m ∈ Z

• Prove Claims just as in above example, and prove Proposition
using Claims.

5. Lemma: For p a prime: p|ab =⇒ p|a or p|b.
• Proof: Let d = gcd(p, a). Since d|p, we have d = p or d = 1.

If d = p, then p|a, OK. If d = 1, then 1 = d = �p + ma, so
b = �pa + mab. Since p|�pa and p|abm, we have p|b, OK.

6. Proof of Fundamental Theorem of Arithmetic

• Obviously there is some factorization of n into primes: keep fac-
toring until factors are prime. But why unique (except for re-
arrangement)?

• Suppose p1 · · · pr = q1 · · · qs. Then p1|q1(q2 · · · qs) . Use Lemma:
if p1|q1, then p1 = q1. If p1|q2 · · · qs , repeat to get p1 = q2 or
p1|q3 · · · qs. In the end, we find p1 = qi for some i.

• Removing p1 = qi from both sides of the product, get: p2 · · · pr =
q1 · · · qi−1qi+1 · · · qs.
Now repeat to find p2 = qj , and remove this factor from both
sides, etc.

• This process ends when there are no more primes on right or left
side, leaving 1. But this means the product of remaining primes
on the other side is 1, so the other side must have no primes left
either. Thus r = s.

• In the end, we find the list p1, . . . , pr is a rearrangement of the
list q1, . . . , qs, so factorization is unique.
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Math 418H Fall 2005

Lecture: Wed 9/7/05

1. Fundamental Theorem of Arithmetic (Unique Factorization)

• Any positive integer n can be expressed in only one way as:

n = pk1
1 pk2

2 · · · pkr
r

for some primes p1, . . . , pr and integers k1, . . . , kn ≥ 0. That is,
n can be uniquely identified by how many powers of each prime
divide it.

• Proof: Division algorithm =⇒ Euclidean algorithm for gcd =⇒
Key property of primes (if p|ab then p|a or p|b) =⇒ Fundamental
Theorem

• Proposition: If m/n ∈ Q is in lowest terms, and
√

m/n ∈ Q, then√
m,

√
n ∈ Z.

Proof: Suppose a/b in lowest terms with
√

m/n = a/b. Let
p1, . . . , pr be all the primes which divide any one of a, b, m, n,
and write: a = pa1

1 · · · par
r , b = pb1

1 · · · pbr
r , etc. Now write out

a2 n = b2 m in terms of prime products, and show that m = a2

and n = b2.

2. Sieve of Eratosthenes to list primes

• Make list of numbers 1,2, . . . ,n. Cross out 1 (not a prime). Circle
first uncrossed number 2, cross out all multiples of 2. Again circle
first uncrossed number 3, cross out all multiples of 3. Repeat until
all numbers are circled or crossed out: circled ones are the primes.

• In fact, after you circle a given prime p, the first new number you
cross out will be p2. Thus, you can stop crossing out when p2 >
n, and just circle all remaining numbers. (Thanks to Benjamin
Osborn & Alan Kish for the explanation.)

3. The sequence of primes

• p = 2, 3, 5, 7,, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, . . .

• Theorem: There exist infinitely many primes.
Proof (Euclid): Consider any list of primes: p1, p2, . . . , pr, and let
n := p1p2 · · · pr + 1. Now if pi|n, then pi|(n − p1 · · · pr) = 1, but
no prime divides 1, so this is impossible. Thus the prime factors
of n are different from p1, . . . , pr, and we can extend our list with
new primes. Repeating, we can extend the list indefinitely.
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• Example: 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509, so the new
primes are 59 and 509. We skip over many primes this way, but
we do get an infinite list.

• Fermat’s formula: F (n) = 22n
+ 1 takes values: F (0) = 3 ,

F (1) = 5 , F (2) = 17 , F (3) = 257 , which are all prime. Fer-
mat conjectured F (n) is always prime, but this is false. Primes
p = F (n) are called Fermat primes, but only 5 such p are known!
(What are they?)

• Is there any formula f(n) giving only primes? None is known.

4. Prime Number Theorem

• Let pn = the nth-largest prime; and π(n) := the number of primes
≤ n.

• For two sequences f(n), g(n), we write f(n) ≈ g(n) to mean that
the percentage difference between the two sides approaches zero
for large n:

lim
n→∞

f(n)

g(n)
= 1 .

• Theorem:

pn ≈ n log(n) and π(n) ≈ n

log(n)
,

where log means natural logarithm (base e).

• Proof uses sophisticated complex analysis, encoding the sequence
of primes in terms of the Riemann zeta function

ζ(s) :=
∏

p prime

1

1 − ps
.

5. Twin Primes

• Pairs of primes (p, q) with q = p + 2 . E.g. (11,13) and (71, 73).

• Conjecture: There are infinitely many pairs of twin primes. If you
prove it, you’ll be famous!
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Math 418H Fall 2005

Lecture: Fri 9/9/05

1. Prop: If m/n ∈ Q in lowest terms, and
√

m/n ∈ Q, then
√

m,
√

n ∈ Z.

• First Proof (based on Fund Thm of Arithmetic). Assume a/b in lowest
terms with (a/b)2 = m/n, so that a2n = b2m. Let p1, . . . , pr be all
primes dividing a, b, n, m, and let a = pa1

1 · · · par
r , b = pb1

1 · · · pbr
r , etc.,

with integers ai, bi, mi, ni ≥ 0. Then a2 = b2m is equivalent (by the
Fund Thm) to 2ai + ni = 2bi + mi.

We have gcd(a, b) = gcd(m, n) = 1. We will show 2ai = mi and 2bi = ni

for all i, so a2 = m , b2 = n.

– Suppose pi|a. We have: pi � | b. Also pi|a2n = b2m, so pi|m and
pi � |n. Thus: ai, mi > 0 and bi = ni = 0. Thus 2ai + ni = 2bi + mi

means 2ai = mi and 2bi = ni = 0.

– Suppose pi|b. Similarly we get ai = mi = 0 and bi, ni > 0 and
2ai = mi = 0 , 2bi = ni.

– Suppose pi � | a, b. If pi|m then pi|b2m and pi|b2 and pi|b. But then
gcd(a, b) > 1, so this cannot happen. Similarly pi|n cannot happen.
Thus pi � | a, b, m, n, so forget about pi.

First Proof is done.

• Lemma on Uniqueness of Fractions. If a/b = c/d are both positive
fractions in lowest terms, then a = c and b = d.
Proof of Lemma: We have gcd(a, b) = 1, so we can write 1 = ma+nb, so
c = mac+nbc = mac+nad = a(mc+nd) , so a|c. Also d = mad+nbd =
mbc+nbd = b(mc+nd) so b|d. Similarly use 1 = pc+ qd to get c|a and
d|b. Conclude a = c and b = d.

• Second Proof of Prop (based on Uniqueness of Fractions). Suppose a/b
in lowest terms with (a/b)2 = m/n . Then a2/b2 = m/n with both sides
in lowest terms (prove!), a2 = m and b2 = n.

• Both proofs ultitmately rest on the key lemma resulting from the Euclid-
ean algortithm: we can always write gcd(a, b) = ma + nb for some
m, n ∈ Z.

2. Fermat’s Little Theorem: If p is prime, then p |np − n for any n ∈ Z.

• Proof (David Krcatovic): Use induction on n. For n = 1, the statement
is obvious. Now assume p |np − n. By the Binomial Theorem:

(n+1)p − (n+1) = np + pnp−1 + 1
2
p(p−1)np−2 + · · · + pn + 1 − (n+1)

= (np − n) +
∑p−1

k=1
p!

k!(p−k)!
np−k .

In the last expression, p divides the first term by the inductive hypoth-
esis, and p divides each term in the summation because the numerator
contains the prime p, and every term in the denominator is less than
p. Conclusion: p | (n+1)p − (n+1), so the induction proceeds, and the
Theorem is true for every positive integer n.



MTH 418H Fall 2005

Lecture Mon 9/12/05

Algebra Definitions 1

We define some terms concerning generalized number systems.

• A ring is a set R along with operations of addition + : R × R → R and
multiplication • : R × R → R, satisfying the following properties:

(i) + associativity: (a + b) + c = a + (b + c) for all a, b, c ∈ R .

(ii) + identity: there exists 0 ∈ R such that 0 + a = a + 0 = a for all a ∈ R .

(iii) + inverse: for any a ∈ R, there is a b ∈ R with a + b = b + a = 0 : we
denote b by −a .

(iv) + commutativity: a + b = b + a for all a, b ∈ R .

(i′) • associativity: (a • b) • c = a •(b • c) for all a, b, c ∈ R .

(ii′) • identity: there exists 1 ∈ R such that 1 • a = a • 1 = a for all a ∈ R .

(v) distributivity: a •(b + c) = a • b + a • c and (a + b) • c = a • c + b • c .

• A division ring is a ring satisfying:

(iii′) • inverse: for any non-zero a ∈ R , there is a b ∈ R with a • b = b • a = 0 :
we denote b by a−1 or 1/a .

• A commutative ring is a ring satisfying:

(iv′) • commutativity: a • b = b • a for all a, b ∈ R .

• A field is a ring satisfying both (iii′) and (iv′).

• A unit in ring R is an element a which has a mulitiplicative inverse a−1 ∈ R .
The set of units is denoted R×. Thus, a field F is a ring in which every non-zero
element is a unit: F× = F \ {0}. Elements of a ring are associates if they
differ by a unit factor: a, b ∈ R such that a = ub for u ∈ R×.

• A zero-divisor in a ring R is an element a �= 0 such that a • b = 0 for some
b ∈ R . A domain is a commutative ring with no zero-divisors.

• A Euclidean ring is a domain R along with a function

size : R \{0} → N

(where N = {0, 1, 2, · · · }) such that for any a, b ∈ R, there are q, r ∈ R with
a = qb+ r and r = 0 or size(r) < size(b). The elements q, r are not necessarily
unique.



Examples

• Z, the integers, is commutative ring, a Euclidean domain, but not a field. The
units are: Z× = {±1}.

• Q , R , C , the rational, real and complex numbers, are all fields.

• Zn , clock arithmetic mod n, is a commutative ring for any n. It is a field for
n = 2. For which n is it a field? What are the units and zero-divisors?

• Mn(Q), the n × n matrices with entries in Q under matrix addition and multi-
plication, is a ring, but not commutative, and without division. The units are
the nonsingular matrices, the zero-divisors are the singular matrices (prove!).

• Q[x], the polynomial functions:

f(x) = a0 + a1x + a2x
2 + · · · + anxn ,

with a0, . . . , an ∈ Q, under the pointwise addition and multiplication, is a com-
mutative ring and a domain. The units are the non-zero contstant functions
f(x) = c . It is also a Euclidean domain under the polynomial division algo-
rithm, with size function size f(x) = deg f(x) = n, the degree of the highest
non-zero term anxn.

All of these features make the polynomial ring Q[x] analogous to the integer
ring Z .

• Q(x), the rational functions, is the set of quotients of two polynomial functions:
f(x)/g(x) with g(x) �= 0. This is a field, analogous to Q.



Math 418H Fall 2005

Lecture: Wed 9/14/05

1. Q[x] polynomial ring

• Q[x] is the set of all polynomial functions

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn ,

where the coefficients ai ∈ Q for all i.

• Degree: If an �= 0, we say n = deg f(x) , the degree of the poly-
nomial. A constant function f(x) = c �= 0 has degree 0, and the
zero function f(x) = 0 has no degree (or degree −∞).

• Monic polynomial: an = 1 .

• Addition:

n∑
i=0

aix
i +

m∑
i=0

bix
i :=

max(m,n)∑
i=0

(ai+bi)x
i

Thus, deg(f(x) + g(x)) = max(deg f(x) , deg g(x)) .

• Multiplication:(
n∑

i=0

aix
i

)
•
(

m∑
i=0

bix
i

)
:=

m+n∑
k=0

(
k∑

i=0

aibk−i

)
xk

Thus deg(f(x) • g(x)) = deg f(x) + deg g(x) .

• We can think of f(x) ∈ Q[x] as a function f : Q → Q with the
usual addition and multiplication of functions. From this, it is
clear that Q[x] is a commutative ring and a domain, because Q is
so.

• Arithmetic in Q[x] is analogous to Z, with x taking the role of
base 10 :

(3x2+5x) + (2x+3) = 3x2+7x+3

350 + 23 = (3·102+5·10) + (2·10+3) = 3·102+7·10+3 = 373

• The key algorithm for Q[x], as for Z, is long division. For any
f(x), g(x) ∈ Q[x], there exist q(x), r(x) ∈ Q[x] with:

f(x) = q(x)g(x) + r(x) and deg r(x)< deg g(x) or r(x)=0 .

• Units: Q[x]× = {f(x) = c �= 0} , the non-zero constant functions
(the polynomials of degree 0).



2. Factorization in Q[x]

• Divisibility: g(x) divides f(x), written g(x) | f(x) , means f(x) =
g(x)h(x) for some h(x) ∈ Q[x]. Note that the units c �= 0 divide
every polynomial f(x) , since f(x) = c • 1

c
f(x) .

• Irreducible polynomials: The analog of primes are the polynomials
p(x) whose only divisors are 1 and p(x) (times units).

• Polynomial greatest common divisor: d(x) = gcd(f(x) , g(x)) is
the highest degree polynomial with d(x) | f(x) and d(x) | g(x).
Note that d(x) is not unique, but can be multiplied by any unit.
We usually normalize d(x) to be monic.

• Euclidean Algorithm: Works exactly as for Z. Shows that

gcd(f(x) , g(x)) = n(x)f(x) + m(x)g(x)

for some n(x), m(x) ∈ Q[x].

• Key Property of Primes: If an irreducible p(x) | a(x)b(x) , then
p(x) | a(x) or p(x) | b(x) .

Proof. If gcd(a(x) , p(x)) = p(x), then p(x) | a(x). Otherwise,
gcd(a(x) , p(x)) = 1, so by the Euclidean Algorithm 1 = m(x)a(x)+
n(x)p(x) and:

b(x) = m(x)a(x)b(x) + n(x)p(x)b(x) .

Since p(x) divides both terms on the righthand side, it also divides
the lefthand side: p(x) | b(x) .

• Unique Factorization: In Q[x] , any polynomial factors into a prod-
uct of irreducibles in a unique way, except for rearranging the fac-
tors, and multiplying by units. If we specify that all polynomials
are monic, we can forget about multiplying by units.

Proof. Same as for Z.

3. R[x], general polynomial ring.

• We can define polynomials R[x] with coefficients in any commu-
tative ring R.

• All results above hold whenever R = F , any field. For example
R = R the reals, or C the complex numbers, or Z2 the clock
arithmetic modulo 2.

• If R is not a field, the division algorithm for R[x] does not work,
and R[x] is not Euclidean.
Example: Z[x] has no possible division algorithm.



Math 418H Fall 2005

Lecture: Wed 9/14/05

1. Q[x] polynomial ring

• Q[x] is the set of all polynomial functions

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn ,

where the coefficients ai ∈ Q for all i.

• Degree: If an �= 0, we say n = deg f(x) , the degree of the poly-
nomial. A constant function f(x) = c �= 0 has degree 0, and the
zero function f(x) = 0 has no degree (or degree −∞).
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i +
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so.
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• Units: Q[x]× = {f(x) = c �= 0} , the non-zero constant functions
(the polynomials of degree 0).



2. Factorization in Q[x]

• Divisibility: g(x) divides f(x), written g(x) | f(x) , means f(x) =
g(x)h(x) for some h(x) ∈ Q[x]. Note that the units c �= 0 divide
every polynomial f(x) , since f(x) = c • 1
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f(x) .

• Irreducible polynomials: The analog of primes are the polynomials
p(x) whose only divisors are 1 and p(x) (times units).
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the highest degree polynomial with d(x) | f(x) and d(x) | g(x).
Note that d(x) is not unique, but can be multiplied by any unit.
We usually normalize d(x) to be monic.

• Euclidean Algorithm: Works exactly as for Z. Shows that

gcd(f(x) , g(x)) = n(x)f(x) + m(x)g(x)

for some n(x), m(x) ∈ Q[x].

• Key Property of Primes: If an irreducible p(x) | a(x)b(x) , then
p(x) | a(x) or p(x) | b(x) .

Proof. If gcd(a(x) , p(x)) = p(x), then p(x) | a(x). Otherwise,
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Since p(x) divides both terms on the righthand side, it also divides
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• Unique Factorization: In Q[x] , any polynomial factors into a prod-
uct of irreducibles in a unique way, except for rearranging the fac-
tors, and multiplying by units. If we specify that all polynomials
are monic, we can forget about multiplying by units.

Proof. Same as for Z.

3. R[x], general polynomial ring.

• We can define polynomials R[x] with coefficients in any commu-
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R = R the reals, or C the complex numbers, or Z2 the clock
arithmetic modulo 2.

• If R is not a field, the division algorithm for R[x] does not work,
and R[x] is not Euclidean.
Example: Z[x] has no possible division algorithm.
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1. Factoring polys and finding roots

• Root of a polynomial f(x) means a value c with f(c) = 0.

• Prop: For f(x) ∈ Q[x], have: f(c) = 0 for c ∈ Q =⇒ (x−c) | f(x).

Proof of ⇒ : Divide: f(x) = q(x) (x−c) + r(x) with deg r(x) < deg(x − c) = 1. Thus
r(x) = a , a constant (possibly zero). Now: 0 = f(c) = q(c) (c−c) + a = a, i.e. f(x) =
q(x) (x−c).

• Prop: The number of distinct roots of a polynomial is always less than its degree.

Proof: Let f(x) = a0+ · · · + anxn with deg f(x) = n. Let c1, . . . , ck be its distinct
roots. Then f(x) = (x−c1) f1(x) by the previous proposition. Further 0 = f(c2) =
(c2 − c1) f1(c2), and c2 − c1 �= 0, so f1(c2) = 0, and similarly c2, . . . , ck are roots of f1(x).
Repeating, get:

f(x) = (x−c1) · · · (x−ck) fk(x)

for some poly fk(x) of degree d ≥ 0. Taking degrees of both sides, n = k + d, so k ≤ n.

2. Rational Root Test

• Theorem: If f(x) = a0+a1x+ · · ·+anxn ∈ Z[x] (i.e., ai ∈ Z), and f(c/d) = 0 for c/d ∈ Q

in lowest terms, then c | a0 and d |an in Z.

• Example: Find all complex roots of

g(x) = x3 − 13

3
x2 − 1

3
x + 2 = 0 .

Clear denominators to get f(x) = 3x3 − 13x2 − x + 6 = 0. Any rational root c/d must
satisfy c | 6 and d | 3 , so candidates are:

c

d
= ±6 , ±2 , ±1 , ±2

3
, ±1

3
.

Plugging in f(c/d), find the only rat root is f(−2/3) = 0. Factoring, get h(x) =
g(x)/(x+2/3) = x2−5x+3. Now apply quadratic formula to find the remaining 2 roots
of h(x).

3. Factorization in R[x]

• For any commutative ring R, we can define R[x], the ring of polynomials with coefficients
in R. The unit polynomials are just the unit constant functions: R[x]× = R× .

• Irreducible polynomial p(x) ∈ R[x] means: the only divisors of p(x) in R[x] are p(x) and
1 (times a unit c ∈ R×).

• For general R, if p(x) is irreducible, then it is impossible to factor p(x) = f(x)g(x) with
g(x), g(x) ∈ R[x] and deg g(x) , deg g(x) < deg p(x) .
But if R is not a field, we can have irreducible constants c �∈ R×, so p(x) could be
reducible even if there is no factorization p(x) = f(x)g(x) as above.

• Example: Consider p(x) = 2x2 − 4 .



– In R[x] with real number coefficients, we can factor:

p(x) = x2 − 2 = 2(x −
√

2)(x +
√

2) ∈ R[x] .

So p(x) is reducible in R[x].

– In Q[x] with rational coefficients, any non-trivial factors p(x) = f(x)g(x) would have
to be linear: f(x) = x−a for some a ∈ Q with f(a) = 0, but the roots a = ±√

2 are
irrational. So p(x) is irreducible in Q[x] .

– In Z[x], where the coefficients are not a field, we can factor p(x) = 2 (x2−2) , where
2 and (x2−2) are both irreducible in Z[x]. So p(x) is reducible in Z[x].

4. Factorization in Z[x] vs Q[x]

• Units: Z[x]× = {±1}, but general f(x) = c is not invertible in Z[x].
Q[x]× = Q× , the non-zero constant polynomials

• Two types of primes in Z[x]. First, any prime integer p ∈ Z is also a prime in Z[x].
Second, for any irreducible f(x) ∈ Q[x] , we can clear denominators and get an irreducible
in Z[x]. Example: x2−x−1

2
in Q[x] corresponds to the irreducible 2x2−2x−1 in Z[x] .

However, 4x2−4x−2 = 2 (2x2−2x−1) is reducible in Z[x] , but irreducible in Q[x], since
the constant 2 is a unit in Q[x] .

• Gauss Lemma: If an integer polynomial f(x) is irreducible in Z[x] , then f(x) is also
irreducible in the larger ring Q[x] .

Equivalently, if an integer polynomial f(x) is reducible in Q[x], then f(x) is also reducible
in the smaller ring Z[x].

5. Proof of the Rational Root Test

• Idea of Proof: If f(x) = anxn + · · · + a1x + a0 with f(c/d) = 0, then f(x) = (x −
c/d) g(x) for some g(x) ∈ Q[x] with deg g(x) = n−1 . We can factor in Z[x] by clearing
denominators:

f(x) = (dx − c) (bn−1x
n−1 + · · ·+ b1x + b0)

= dbn−1x
n + · · ·+ (db0−cb1)x − cb0

with bi ∈ Z. Thus a0 = −cb0 and an = dbn−1 , so c | a0 and d | an.

• Why this proof is incomplete: The dubious phrase is “clearing denominators.” If we
multiply (x − c/d) by d, we have to divide g(x) by d, and it is not at all clear that the
resulting factor bn−1z

n−1 + · · · + b0 will be in Z[x]. Also, notice that we never used the
hypothesis gcd(c, d) = 1 , so we have actually “proved” RRT without assuming c/d is in
lowest terms, which is FALSE!

• Proof (assuming Gauss Lemma): Induction on n = deg f(x).

If n = 1, then . . . (Exercise)

If n > 1, we may assume RRT is true for polynomials of degree k < n . Since f(c/d) = 0,
we known f(x) = (x−c/d) g(x) for g(x) ∈ Q[x], so f(x) is reducible in Q[x]. Thus by the
Gauss Lemma f(x) is reducible in Z[x], meaning f(x) = f1(x) f2(x) for f1(x), f2(x) ∈
Z[x] with deg f1(x) , deg f2(x) < n.

Now 0 = f(c/d) = f1(c/d) f2(c/d) , so c/d is a root of f1(x) or f2(x) (say f1(x) ).
By induction, RRT applies to f1(x) having degree k < n , so f1(x) = bkx

k + · · ·+ b0 for
bi ∈ Z with c | b0 and d | bk . Writing out the coefficients of f(x) = f1(x) f2(x) gives the
divisibility c | a0 and d | an , so RRT holds for f(x) of degree n.
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1. Gauss Lemma for primitive polynomials in Z[x]

• Divisibility: g(x) | f(x) in Z[x] means f(x) = g(x) h(x) for some
h(x) ∈ Z[x] . We say p(x) is irreducible in Z[x] if its only divisors
are 1 and p(x) (times ±1).

• A constant n ∈ Z divides f(x) = a0+a1x+ · · ·+anxn ∈ Z[x] when-
ever n | a0, . . . , an . A constant p ∈ Z is irreducible in Z[x] when-
ever it is prime in Z.
These just restate the above in the case of constant polynomials.

• Primitive polynomial: f(x) ∈ Z[x] with gcd(a0, a1, . . . , an) = 1 .
That is, no integer n divides f(x) (except units ±1).

• Lemma: If f(x), g(x) ∈ Z[x] are primitive, then the product
f(x) g(x) is also primitive.

• Equivalently: If f(x) g(x) is not primitive, then f(x) or g(x) is
not primitive. That is, if a prime p ∈ Z divides f(x) g(x) in Z[x] ,
then p divides f(x) or g(x).

• Proof: Let f(x) =
∑n

i=0 aix
i and g(x) =

∑m
j=0 bjx

j , and suppose
p divides the product:

f(x) g(x) =
n+m∑
k=0

ckx
k =

n+m∑
k=0

(
k∑

i=0

aibk−i

)
xk .

Assume we have: p | a0, a1, . . . , ak and p | b0, b1, . . . , b� for some
k < n and � < m. Either or both lists are allowed to be empty,
containing no elements, in which case we have assumed nothing.
Now we have:

ck+�+2 =
a0bk+�+2 + a1bk+�+1 + · · · + akb�+2

+ ak+1b�+1
ak+�+2b0 + ak+�+1b1 + · · · + ak+2b�

.

By assumption, p divides the lefthand side ck+�+2, and p divides
all the terms on the righthand side except possibly ak+1b�+1 . But
then p must divide the last term, and p | ak+1 or p | b�+1 .

Hence we can add one item (ak+1 or b�+1) to our list of coef-
ficients divisible by p. We can keep repeating this argument and
enlarging our list: the process will only end when k = n or � = m ,
which means p | f(x) or p | g(x).



2. Factorization in Z[x] versus Q[x]

• Gauss Lemma: If a non-constant f(x) ∈ Z[x] is irreducible in
Z[x], then f(x) is irreducible in Q[x].

• Equivalently: If f(x) ∈ Z[x] has non-trivial factors in Q[x], then
it has non-trivial factors in Z[x].

• Proof: Suppose f(x) = g(x)h(x) with f(x) ∈ Z[x] and g(x), h(x) ∈
Q[x]. We must find factors of f(x) in Z[x]. Let f(x) = af0(x) ,
g(x) = bg0(x) , h(x) = ch0(x) , where f0, g0, h0 ∈ Z[x] are primi-
tive polynomials, and a ∈ Z , b, c ∈ Q.

Then a
bc

f0(x) = g0(x)h0(x) , which is a primitive polynomial
by Gauss’ Lemma above. Thus both f0(x) and a

bc
f0(x) are prim-

itive integer polynomials, so we must have a/bc = 1 and a = bc.
Thus f(x) = bcg0(x)h0(x) = ag0(x)h0(x) , with all factors in Z[x].

3. Unique factorization for Z[x]

• Z[x] has no possible division algorithm because gcd(2, x) = 1, but
2n(x) + xm(x) �= 1 for any n(x), m(x) ∈ Z[x].

• Proposition: Any integer polynomial factors into a product of
irreducibles in Z[x], namely into prime constants and irreducible
primititve polynomials, and this factorization is unique except for
re-ordering and ± signs.

• Proof: Suppose

p1 · · · pr f1(x) · · · fu(x) = q1 · · · qs g1(x) · · · gv(x) ,

where pi, qi ∈ Z are prime constants and fi(x), gi(x) ∈ Z[x] are
primitive irreducibles. Thus fi(x), gi(x) are also irreducibles in
Q[x] by the above Gauss Lemma on Factorization. By the Unique
Factorization for Q[x] we may assume fi(x) = cigi(x) for constants
ci ∈ Q×. But since both fi(x) and gi(x) are primitive integer
polynomials, we must have ci = ±1. Factoring fi(x) = gi(x) from
both sides, we have p1 · · · pr = q1 · · · qs. By Unique Factorization
for Z, we may assume pi = ±qi, so we are done.
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1. Why define abstract structures like a field or a Euclidean ring, rather
than just prove things for Q and Z directly?

• The field axioms are the crucial properties of Q , which give a
foundation from which to rigorously prove most of the formulas
of algebra. Similarly, the crucial properties of Z are captured in
the definition of a Euclidean ring, giving us a foundation to prove
non-obvious facts such as Unique Factorization.

• Once we prove a formula using only the field axioms, we know it
holds not only for F = Q , but for any new field we may define,
such as the clock arithmetic field Zp (p prime) or the rational
functions Q(x). Similarly,since Unique Factorization depends only
on the division algorithm, we know it holds not only for Z but for
Q[x] and any other Euclidean ring we find.

2. Basic formulas for any field F

• We assume axioms (i)–(iv), (i’)–(iv’), (v) . In the proofs, we will
use commutativity and associativity without comment.

• Lemma: The elements 0, 1, −a, a−1 are unique.
Proof: If we have two zero elements 0, 0′ with a + 0 = a + 0′ = a
for all a, then: 0 = 0 + 0′ = 0′. If we have two inverse elements
−a,−a′ with (−a) + a = (−a′) + a = 0, then:

−a = (−a) + 0
= (−a) + a + (−a′)
= 0 + (−a′) = −a′ .

Similarly for 1 and a−1.

• Lemma: 0 • a = 0
Proof: 0 = −(0 • a) + 0 • a

= −(0 • a) + (0+0) • a
= −(0 • a) + 0 • a + 0 • a
= 0 • a .

• Lemma: −(−a) = a
Proof: −(−a) = −(−a) + 0

= −(−a) + (−a) + a
= 0 + a = a .



• Lemma: (−a) • b = −(a • b)
Proof: By definition, −(a • b) is the unique element such that
−(a • b) + a • b = 0. Now:

(−a) • b + a • b = ((−a) + a) • b
= 0 • b = 0 .

• Lemma: (−a) •(−b) = a • b
Proof: Using the previous lemma twice:

(−a) •(−b) = −(a •(−b))
= −(−(a • b)) = a • b .

3. Advanced formulas for any field F

• Prove the following as exercises.

• Quadratic formula: The only roots of ax2 + bx + c ∈ F [x] are
x = (−b±d)/2a , where d ∈ F is an element with d2 = b2−4ac. If
there is no such element d ∈ F , then the equation has no solution.

• FOIL: (a + b)(c + d) = ac + ad + bc + bd .
This holds in any commutative ring, not necessarily a field.

• Binomial Theorem:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)n = an +
(

n
1

)
an−1b +

(
n
2

)
an−2b2 + · · · + bn ,

where the binomial coefficients
(

n
k

)
are defined recursively by:

(
n
0

)
=

(
n
n

)
= 1 and

(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
.

Again, this holds in any commutative ring.

• Example: In F = Z2 , we have 2 = 0, so (a + b)2 = a2 + b2. This
is not so remarkable, since Z2 has only two elements. But now
consider Z2[x], polynomials with coefficients in Z2. For example:

f(x) = 0 , 1 , x , x+1 , x2 , x2+1 , x2+x , x2+x+1 , . . .

Then we once again have:

(f(x) + g(x))2 = f(x)2 + g(x)2

for any polynomials f(x), g(x) ∈ Z2[x].

• an − bn = (a − b)(an−1 + an−2b + · · ·abn−2 + bn−1).
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Algebra Definitions 2: Real Numbers

• There is not necessarily any natural order on a given commutative ring R : rather, we must
define it. An order relation on R is a specification of when a < b holds for elements
a, b ∈ R. Once < is defined, we let a > b mean b < a, and we let a ≤ b mean a < b or
a = b. The defined relation must obey the following axioms:

(i) Compatibility with + and •

If a < b and c is arbitrary, then a + c < b + c.
If 0 < a < b and 0 < c, then a • c < b • c.

(ii) Trichotomy: For any a ∈ R, exactly one of the following holds: a > 0, a = 0 or a < 0.

exercises: These axioms imply all the usual algebraic properties of inequalities. Prove
the follwing:

• a < b ⇐⇒ b − a > 0 • If a < b and b < c, then a < c.

• If a > 0, then −a < 0. • If a, b < 0, then ab > 0.

• If R contains an element with a2 = −1, then there is no possible order relation on R.
(Thus, there is no possible order on the complex numbers R = C.)

• Consider an ordered ring R. An upper bound of a subset A ⊂ R is an element b ∈ R such
that b ≥ a for all a ∈ A. A least upper bound of A is an upper bound b such that b ≤ b′ for
every upper bound b′ of A .

We say that R is topologically complete if it obeys the least upper bound property:
If a set A has any upper bound in r ∈ R , then A has a least upper bound in r′ ∈ R.

exercises:

• The field of rational numbers R = Q is not topologically complete. Answer: The set
S = {x ∈ Q | x2 < 2} has upper bounds 1.5 , 1.42 , 1.415 , etc., but does not have any
least upper bound in Q.

• The ring of integers R = Z is topologically complete.

• We construct the field of real numbers R out of the rational numbers Q by defining
a real number to be a cutset: i.e., a set of rational numbers S ⊂ Q such that:

(i) S is a downset: s ∈ S implies t ∈ S for all t < s.

(ii) S is non-trivial: S �= ∅, Q.

(iii) S contains no maximal element: no element s ∈ S is an upper bound of S.

Defining +, • , and < appropriately, we show that R is a topologically complete, ordered
field.



– Addition: S + T := {s + t | s ∈ S , t ∈ T} .

– Zero element: S0 = Q<0 := {s ∈ Q | s < 0}.
– Negatives: −S := {−s | s �∈ S , s �= lub(S)} .

– Order: S < T means S ⊂ T

– Multiplication: For S, T ≥ S0 , define:

S • T := {st | s ∈ S , t ∈ T , s, t ≥ 0} ∪ S0 .

For S < 0 < T , define S • T := −(−S • T ) , and similarly for other cases.

We then proceed to prove that the above definition satisfies the properties of a field with
order and topological completeness. This involves a lot of checking, but our definitions at
least make the completeness easy: If A ⊂ R is any collection of downsets S ∈ A, then an
upper bound is a cutset B ⊂ Q with S ⊂ B for all S ∈ A . Then we easily check that
B :=

⋃
S∈A S is a cutset, and is the least upper bound of A.

Our definition establishes the existence of R, but once we have established it, we never use
it in proofs. Rather, we rely on the unique properties of R stated in the following result.

• Theorem If R is any topologically complete ordered field, then R is naturally isomorphic
to R. That is, there is a unique map φ : R → R which is one-to-one and onto, and which
respects addition and multiplication: φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) for
all a, b ∈ R.

That is, any topologically complete ordered field is just a “copy” of the real numbers, so
that anything true about R also holds for any such field. Thus, in proving things about R,
we should only use the properties of a complete ordered field, never any specific construction
of R such as the one above.

• A function f : R → R is continuous at x = a if, for any y-tolerance ε > 0, there is some
sufficiently small x-tolerance δ > 0 such that x being within distance δ of a guarantees
that f(x) is within distance ε of f(a). That is:

∀ε>0 ∃δ>0 : |x − a| < δ =⇒ |f(x) − f(a)| < ε .

We have:

• f(x) = const and f(x) = x are continuous at all x = a.

• If f(x), g(x) are continuous at x = a, then so are f(x)+g(x), f(x)·g(x), and f(x)/g(x)
(the last provided g(a) �= 0).

• Any polynomial function f(x) ∈ R[x] is continuous at all x = a, and any rational
function f(x)/g(x) ∈ R(x) is continuous at all x = a with g(a) �= 0.

• Theorem (Intermediate Value Theorem) If f : [a, b] → R is a function continuous on an
interval [a, b], and f(a) < v < f(b), then there is some value c ∈ [a, b] such that f(c) = v.

That is, f(x) cannot go past the value v without hitting it. This implies that any odd-
degree polynomial f(x) ∈ R[x] has a root f(c) = 0.
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1. Classifying real numbers

• R \ Q are the irrational numbers.

• Let A be the set of algebraic real numbers, those reals which are
roots of some polynomial f(x) ∈ Q[x].

• We call R \ A the transcendental numbers. For example, π =
3.14 · · · is transcendental, meaning that a0 +a1π + · · ·+anπn �= 0
for any a0, . . . , an ∈ Q.

2. Degrees of infinity (Georg Cantor)

• Cardinality: Two sets are said to have the same size or cardinality
if there exists a one-to-one correspondence (bijection) between
them.

• Countable: a set whose elements can be put into a list; i.e., the
set has the cardinality of the natural numbers N.

• Z is countable: Z = {0, 1,−1, 2,−2, . . .}
• Q is countable: Q>0 = {1

1
, 1

2
, 2

1
, 1

3
, 2

2
, 3

1
, 1

4
, 2

3
, 3

2
, 4

1
, . . .}. In the list,

skip over repeated rational numbers. Then alternate positive and
negative to list all Q.

• A is countable by a similar argument.

• R is not countable. Suppose we had a list {a1, a2, . . . } of all the
real numbers in the interval (0, 1). Write each number in decimal
form: ai = 0.ai1ai2ai3 · · · ), where aij is a digit 0–9. Define a
decimal number b = 0.b1b2b3 · · · by choosing the digits b1 �= a11 ,
b2 �= a22 , etc. Then clearly b �= ai for any i, since they differ in
the ith digit, so b is a real number not on the list. Therefore, there
can be no such complete list.

• The irrational numbers, and even the transcendental numbers,
are uncountable, so there are much, much more of them than of
rationals or algebraic numbers.

3. Uniqueness of the real numbers

• Theorem: The real numbers R are structurally defined by the
properties of a topologically complete ordered field.

That is, if R is any topologically complete ordered field, then
there exists a unique one-to-one correspondence φ : R → R which
respects addition and multiplication:

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a) φ(b) ,



for every a, b ∈ R (so that φ(a), φ(b) ∈ R). We say that φ is an
isomorphism of fields. Furthermore, φ respects order: a < b ⇐⇒
φ(a) < φ(b) .

• Proof. First R, being a field, has unique additive and multiplica-
tive identity elements 0̃, 1̃ ∈ R. Now define the counterpart of an
integer

ñ := 1 + · · · + 1︸ ︷︷ ︸
n times

∈ R .

Now 1̃ = 1̃2 > 0̃ in the ordered field R, so if n < m ∈ Z, then in
R:

ñ < ñ + 1̃ + · · ·+ 1̃ = m̃ .

We can now make a copy of Q in R consisting of the quantities
ñ/m̃, and these numbers behave the same as ordinary rationals.
Finally, every real number a ∈ R is the least upper bound of a
cutset S ⊂ Q, so define its counterpart ã := lub{s̃ | s ∈ S} ∈
R, which exists since R is topologically complete. Now define
φ : R → R by φ(a) := ã . We may show this has the desired
properties, and is unique.

4. Exercise: Z is topologically complete

• We check the least upper bound property. Let A ⊂ Z be a
bounded, non-empty set of integers with upper bound r ∈ Z.
For a ∈ A, the subset A ∩ [a, r] = {a1, . . . , an} has at most r − a
elements. We clearly have m = max(a1, . . . , an) = maxA, and
this is the least upper bound of A in Z.

5. Exercise: If f(x), g(x) are continuous functions at x = a, then the
product function f(x)g(x) is likewise.

• We want to control the deviation |f(x)g(x) − f(a)g(a)| in terms
of |f(x) − f(a)| and |g(x) − g(a)| . We have:

|f(x)g(x) − f(a)g(a)| = |f(x)g(x) − f(x)g(a) + f(x)g(a) − f(a)g(a)|
≤ |f(x)| |g(x)−g(a)| + |f(x)−f(a)| |g(a)|

• Given ε > 0, choose δ > 0 small enough so that

|f(x) − f(a)| < min

(
ε

2(|g(a)| + ε)
, ε

)
,

|g(x) − g(a)| <
ε

2(|f(a)| + ε)
.

Then we have |f(x)| ≤ |f(a)| + ε , and:

|f(x)g(x) − f(a)g(a)| < (|f(a)|+ε)
ε

2(|f(a)|+ε)
+ |g(a)| ε

2(|g(a)|+ ε)
< ε/2 + ε/2 = ε .


