
Math 418H Fall 2005

Lecture: Mon 9/19/05

1. Factoring polys and finding roots

• Root of a polynomial f(x) means a value c with f(c) = 0.

• Prop: For f(x) ∈ Q[x], have: f(c) = 0 for c ∈ Q =⇒ (x−c) | f(x).

Proof of ⇒ : Divide: f(x) = q(x) (x−c) + r(x) with deg r(x) < deg(x − c) = 1. Thus
r(x) = a , a constant (possibly zero). Now: 0 = f(c) = q(c) (c−c) + a = a, i.e. f(x) =
q(x) (x−c).

• Prop: The number of distinct roots of a polynomial is always less than its degree.

Proof: Let f(x) = a0+ · · · + anxn with deg f(x) = n. Let c1, . . . , ck be its distinct
roots. Then f(x) = (x−c1) f1(x) by the previous proposition. Further 0 = f(c2) =
(c2 − c1) f1(c2), and c2 − c1 �= 0, so f1(c2) = 0, and similarly c2, . . . , ck are roots of f1(x).
Repeating, get:

f(x) = (x−c1) · · · (x−ck) fk(x)

for some poly fk(x) of degree d ≥ 0. Taking degrees of both sides, n = k + d, so k ≤ n.

2. Rational Root Test

• Theorem: If f(x) = a0+a1x+ · · ·+anxn ∈ Z[x] (i.e., ai ∈ Z), and f(c/d) = 0 for c/d ∈ Q

in lowest terms, then c | a0 and d |an in Z.

• Example: Find all complex roots of

g(x) = x3 − 13

3
x2 − 1

3
x + 2 = 0 .

Clear denominators to get f(x) = 3x3 − 13x2 − x + 6 = 0. Any rational root c/d must
satisfy c | 6 and d | 3 , so candidates are:

c

d
= ±6 , ±2 , ±1 , ±2

3
, ±1

3
.

Plugging in f(c/d), find the only rat root is f(−2/3) = 0. Factoring, get h(x) =
g(x)/(x+2/3) = x2−5x+3. Now apply quadratic formula to find the remaining 2 roots
of h(x).

3. Factorization in R[x]

• For any commutative ring R, we can define R[x], the ring of polynomials with coefficients
in R. The unit polynomials are just the unit constant functions: R[x]× = R× .

• Irreducible polynomial p(x) ∈ R[x] means: the only divisors of p(x) in R[x] are p(x) and
1 (times a unit c ∈ R×).

• For general R, if p(x) is irreducible, then it is impossible to factor p(x) = f(x)g(x) with
g(x), g(x) ∈ R[x] and deg g(x) , deg g(x) < deg p(x) .
But if R is not a field, we can have irreducible constants c �∈ R×, so p(x) could be
reducible even if there is no factorization p(x) = f(x)g(x) as above.

• Example: Consider p(x) = 2x2 − 4 .



– In R[x] with real number coefficients, we can factor:

p(x) = x2 − 2 = 2(x −
√

2)(x +
√

2) ∈ R[x] .

So p(x) is reducible in R[x].

– In Q[x] with rational coefficients, any non-trivial factors p(x) = f(x)g(x) would have
to be linear: f(x) = x−a for some a ∈ Q with f(a) = 0, but the roots a = ±√

2 are
irrational. So p(x) is irreducible in Q[x] .

– In Z[x], where the coefficients are not a field, we can factor p(x) = 2 (x2−2) , where
2 and (x2−2) are both irreducible in Z[x]. So p(x) is reducible in Z[x].

4. Factorization in Z[x] vs Q[x]

• Units: Z[x]× = {±1}, but general f(x) = c is not invertible in Z[x].
Q[x]× = Q× , the non-zero constant polynomials

• Two types of primes in Z[x]. First, any prime integer p ∈ Z is also a prime in Z[x].
Second, for any irreducible f(x) ∈ Q[x] , we can clear denominators and get an irreducible
in Z[x]. Example: x2−x−1

2
in Q[x] corresponds to the irreducible 2x2−2x−1 in Z[x] .

However, 4x2−4x−2 = 2 (2x2−2x−1) is reducible in Z[x] , but irreducible in Q[x], since
the constant 2 is a unit in Q[x] .

• Gauss Lemma: If an integer polynomial f(x) is irreducible in Z[x] , then f(x) is also
irreducible in the larger ring Q[x] .

Equivalently, if an integer polynomial f(x) is reducible in Q[x], then f(x) is also reducible
in the smaller ring Z[x].

5. Proof of the Rational Root Test

• Idea of Proof: If f(x) = anxn + · · · + a1x + a0 with f(c/d) = 0, then f(x) = (x −
c/d) g(x) for some g(x) ∈ Q[x] with deg g(x) = n−1 . We can factor in Z[x] by clearing
denominators:

f(x) = (dx − c) (bn−1x
n−1 + · · ·+ b1x + b0)

= dbn−1x
n + · · ·+ (db0−cb1)x − cb0

with bi ∈ Z. Thus a0 = −cb0 and an = dbn−1 , so c | a0 and d | an.

• Why this proof is incomplete: The dubious phrase is “clearing denominators.” If we
multiply (x − c/d) by d, we have to divide g(x) by d, and it is not at all clear that the
resulting factor bn−1z

n−1 + · · · + b0 will be in Z[x]. Also, notice that we never used the
hypothesis gcd(c, d) = 1 , so we have actually “proved” RRT without assuming c/d is in
lowest terms, which is FALSE!

• Proof (assuming Gauss Lemma): Induction on n = deg f(x).

If n = 1, then . . . (Exercise)

If n > 1, we may assume RRT is true for polynomials of degree k < n . Since f(c/d) = 0,
we known f(x) = (x−c/d) g(x) for g(x) ∈ Q[x], so f(x) is reducible in Q[x]. Thus by the
Gauss Lemma f(x) is reducible in Z[x], meaning f(x) = f1(x) f2(x) for f1(x), f2(x) ∈
Z[x] with deg f1(x) , deg f2(x) < n.

Now 0 = f(c/d) = f1(c/d) f2(c/d) , so c/d is a root of f1(x) or f2(x) (say f1(x) ).
By induction, RRT applies to f1(x) having degree k < n , so f1(x) = bkx

k + · · ·+ b0 for
bi ∈ Z with c | b0 and d | bk . Writing out the coefficients of f(x) = f1(x) f2(x) gives the
divisibility c | a0 and d | an , so RRT holds for f(x) of degree n.


