Math 418H Fall 2005

Lecture: Mon 9/19/05
1. Factoring polys and finding roots

e Root of a polynomial f(x) means a value ¢ with f(c) = 0.

e Prop: For f(z) € Q[z], have: f(c)=0force Q = (z—c)|f(x).

Proof of = : Divide: f(z) = q(z) (z—c) + r(z) with degr(z) < deg(x — ¢) = 1. Thus
r(z) = a, a constant (possibly zero). Now: 0 = f(c¢) = q(¢) (c—¢c) + a = a, ie. f(x) =
q(z) (z—c).

e Prop: The number of distinct roots of a polynomial is always less than its degree.
Proof: Let f(z) = ap+--- + a,a™ with deg f(z) = n. Let ¢1,...,cx be its distinct
roots. Then f(z) = (z—c;) fi(x) by the previous proposition. Further 0 = f(c3) =
(ca—c1) fi(ea), and co — 1 # 0, s0 fi(c2) = 0, and similarly ca, ... , ¢t are roots of fi(z).
Repeating, get:

f(@) = (@=c1) - (2—ci) fu(2)

for some poly fi(z) of degree d > 0. Taking degrees of both sides, n = k + d, so k < n.
2. Rational Root Test
e Theorem: If f(z) = ap+arx+- - -+a,a™ € Z[z] (i.e., a; € Z), and f(c/d) = 0 for ¢/d € Q
in lowest terms, then ¢|ay and d|a, in Z.

e Example: Find all complex roots of

13 1
g(x) :x3—§x2—§x+2:0.

Clear denominators to get f(x) = 32® — 1322 — 2 + 6 = 0. Any rational root ¢/d must
satisfy ¢|6 and d |3, so candidates are:

16,42 41,42 42

d - 9 9 9 3 9 3 .
Plugging in f(c/d), find the only rat root is f(—2/3) = 0. Factoring, get h(z) =
g(z)/(x+2/3) = 2 — 52+ 3. Now apply quadratic formula to find the remaining 2 roots
of h(x).

3. Factorization in R|z]
e For any commutative ring R, we can define R[z], the ring of polynomials with coefficients
in R. The unit polynomials are just the unit constant functions: R[z]* = R*.

e Irreducible polynomial p(x) € R[x] means: the only divisors of p(z) in R[z] are p(z) and
1 (times a unit ¢ € R*).
e For general R, if p(z) is irreducible, then it is impossible to factor p(z) = f(z)g(x) with

9(z), g(z) € R[z] and degg(z),deg g(z) < degp(z).
But if R is not a field, we can have irreducible constants ¢ ¢ R*, so p(z) could be
reducible even if there is no factorization p(z) = f(z)g(x) as above.

e Example: Consider p(z)=2z*—4.



— In R[z] with real number coefficients, we can factor:

p(x) =2 —2=2(z - V2)(z +V2) e R[z].
So p(x) is reducible in R[z].

— In Q[z] with rational coefficients, any non-trivial factors p(z) = f(x)g(x) would have
to be linear: f(z) = x—a for some a € Q with f(a) = 0, but the roots a = £+/2 are
irrational. So p(z) is irreducible in Q[z] .

— In Zlx], where the coefficients are not a field, we can factor p(x) = 2 (z?*—2), where
2 and (2%—2) are both irreducible in Z[z]. So p(z) is reducible in Z[z].

4. Factorization in Z[z] vs Q[z]

e Units: Z[z]* = {£1}, but general f(z) = c is not invertible in Z[x].
Q[z]* = Q*, the non-zero constant polynomials

e Two types of primes in Z[x]. First, any prime integer p € Z is also a prime in Z[x].
Second, for any irreducible f(x) € Q[z], we can clear denominators and get an irreducible
in Z[z]. Example: 2°—z—1 in Q[z] corresponds to the irreducible 22?—2z—1 in Z[z].
However, 4r?—4x—2 = 2 (222—2x—1) is reducible in Z[x], but irreducible in Q[z], since
the constant 2 is a unit in Q[z].

e Gauss Lemma: If an integer polynomial f(z) is irreducible in Z[x], then f(z) is also
irreducible in the larger ring Q[z].

Equivalently, if an integer polynomial f(z) is reducible in Q[z], then f(x) is also reducible
in the smaller ring Z|x].

5. Proof of the Rational Root Test

e Idea of Proof: 1If f(x) = apax™ + -+ + a1z + ag with f(¢/d) = 0, then f(z) = (v —
c/d) g(x) for some g(x) € Q[z] with deg g(x) = n—1. We can factor in Z[z]| by clearing
denominators:

flx) = (dz—c)(bp—ra" ' + -+ bz + by)
= dbn,lx” + -+ (dbo—Cbl>33' — Cbo
with b; € Z. Thus ag = —cby and a, = db,_1, so ¢|ag and d | a,,.

o Why this proof is incomplete: The dubious phrase is “clearing denominators.” If we
multiply (z — ¢/d) by d, we have to divide g(z) by d, and it is not at all clear that the
resulting factor b, 12""' + -+ + by will be in Z[z]. Also, notice that we never used the
hypothesis ged(c, d) = 1, so we have actually “proved” RRT without assuming c¢/d is in
lowest terms, which is FALSE!

e Proof (assuming Gauss Lemma): Induction on n = deg f(z).
If n =1, then ... (Ezercise)

If n > 1, we may assume RRT is true for polynomials of degree k < n. Since f(c/d) = 0,
we known f(z) = (z—c/d) g(z) for g(x) € Q[z], so f(x) is reducible in Q[x]. Thus by the
Gauss Lemma f(z) is reducible in Z[z], meaning f(z) = fi(z) fo(x) for fi(z), fo(x) €
Z[z] with deg fi(x) ,deg fo(z) < n.

Now 0 = f(c/d) = fi(c/d) f2(c/d), so ¢/d is a root of fi(x) or
By induction, RRT applies to fi(z) having degree k < n, so fi(z) =
b; € Z with ¢|bg and d| b, . Writing out the coefficients of f(z) = f;
divisibility ¢|ag and d|a,, so RRT holds for f(z) of degree n.

fa(z) (say fi(x)).
bk$k++bo for
(x) fo(z) gives the



