Math 418H Fall 2005

Lecture: Wed 11/31
1. Subgroups

e Subgroup: H C G closed under multiplication and inverses: if
a,b € H, then ab,a ! € H.

e Informally, if G = Sym(X) is the symmetries of an object X,

then H = Sym(X) is the symmetries of X, which is X with
some “decorations” added to make it less symmetric.

2. Cyclic subgroups

e Abstract cyclic group: C,, = {¢,z,2?,... 2" '} with the relation
2™ = . An isomorphic group is (Z,,+), clock addition modulo
n, with the isomorphism Z, — C,,, j + a7.

e Abstract infinite cyclic group: Coo = {... 272, 27 s, 2, 2%, ... },

with no relations. This is isomorphic to (Z, +).

e An element a € G generates the cyclic subgroup
(a) :={...,a % a " 1,a,d% ... }.

This group can be finite (if a* = ¢ for some k # 0) or infinite (if
a® # 1 for all k # 0).

e Order of an element: ord(a) := min{k > 0 | a* = .}; also
ord(a) := oo if there is no such & > 0.

[

e Proposition: (a) = C,, , where m = ord(a) .
Proof. Suppose m is finite. I claim @/ = d* if and only if j =
k mod m . Indeed, if ¢/ = a*, then /=% = 1. Taking j—k = gm+r
for 0 < r < m, we have : = @’ % = a?a” = a”. Since there cannot
be any 0 < r < m with a” = ¢, we must have r = 0, so m|(j—k),
meaining j = k mod m. The reverse claim is obvious.

Now consider the map (a) — C,, defined by @’ +— z7 . This is well-

defined, since if @/ = a”, then j = gm + k and 27 = 29ma% = 2.

It is one-to-one since if 2/ = z*, then j = k mod m, so @/ = a*.
It is clearly onto and respects multiplication.
If m is infinite, then clearly o/ # a* for any j # k, and the

isomorphism is obvious.



3. Product of groups

e For groups G, Gy, the product is the set

Gy x Gy :={(91,92) | n €G1,92€ G2},
with componentwise multiplication: (ai, az)(b1, b2) := (a1by, azbs) .
The identity is ¢ := (t1,2) , and (g1,92)"" == (g7 ' 92 ') -
e The product group contains copies of its factors: G X 1o = G,
and 11 X Gy = (G5 . These copies commute:

(g1, 2)(t1, 92) = (91, 92) = (11, 92) (g1, t2) -
o Theorem: Every abelian (commutative) group G is isomorphic to
a product of cyclic groups: G = C),, x Cy, X Cy, X - -+, where n;
are positive integers or oo.

This is a difficult theorem which we will not prove.
4. Cosets and Lagrange’s Theorem

e Given H C G a subgroup, the H-coset of g € G is the set gH =
{gh | h € H}. For example, for any h € H we have hH = H,
since hH is a row of the multiplication table of H.

e G/H = {gH | g € G} is the collection of all cosets.

e Lemma: If two cosets overlap, then they are identical. That is,
for a,b € G, either aH NbH =0 or aH = bH .
Proof. Suppose aH NbH # (). An element in the intersection is of
the form ah; = bho, so that b = ahth_I. Thus bH = ahth_IH =
aH, since hH = H for any h € H .

e Lemma: Any two cosets have the same number of elements: |aH| =
|bH| for any a,b € G.
Proof. The map aH — bH, ah — bh is one-to-one, since if
bhy = bhy then hy = hy and ahy; = ahs. The map is obviously
onto. Thus it is a bijection, a one-to-one correspondence between
the cosets, which must thus have the same size.

5. Lagrange’s Theorem

e Theorem: If G is a finite group with |G| = n elements and H
is a subgroup with |H| = m elements, then m|n: the order of a
subgroup evenly divides the order of the group.

Proof. By the above two lemmas, the cosets partition the n ele-
ments of G into disjoint subsets: G = g1H U---U g,H , with each
coset having m elements. Thus, n = ¢m meaning m|n. That is:

G| = |G/H] [H].
e Theorem: If |G| = p a prime, then G = C,, a cyclic group.

Proof. Let g # 1 € G. Then ord(g) := k > 1, and by Lagrange’s
Theorem, k|p, so k = p. Thus the cyclic subgroup (g) = Cj, = C,
is all of G, and G = (), ..



