
Math 418H Fall 2005

Lecture: Wed 11/31

1. Subgroups

• Subgroup: H ⊂ G closed under multiplication and inverses: if
a, b ∈ H , then ab, a−1 ∈ H .

• Informally, if G = Sym(X) is the symmetries of an object X,

then H = Sym(X̃) is the symmetries of X̃, which is X with
some“decorations” added to make it less symmetric.

2. Cyclic subgroups

• Abstract cyclic group: Cn = {ι, x, x2, . . . , xn−1} with the relation
xn = ι . An isomorphic group is (Zn, +), clock addition modulo
n, with the isomorphism Zn → Cn , j �→ xj .

• Abstract infinite cyclic group: C∞ = {. . . , x−2, x−1, ι, x, x2, . . . },
with no relations. This is isomorphic to (Z, +).

• An element a ∈ G generates the cyclic subgroup

〈a〉 := {. . . , a−2, a−1, ι, a, a2, . . . } .

This group can be finite (if ak = ι for some k �= 0) or infinite (if
ak �= ι for all k �= 0).

• Order of an element: ord(a) := min{k > 0 | ak = ι}; also
ord(a) := ∞ if there is no such k > 0 .

• Proposition: 〈a〉 ∼= Cm , where m = ord(a) .

Proof. Suppose m is finite. I claim aj = ak if and only if j ≡
k mod m . Indeed, if aj = ak, then aj−k = ι. Taking j−k = qm+r
for 0 ≤ r < m, we have ι = aj−k = aqmar = ar. Since there cannot
be any 0 < r < m with ar = ι, we must have r = 0, so m|(j−k),
meaining j ≡ k mod m. The reverse claim is obvious.

Now consider the map 〈a〉 → Cm defined by aj �→ xj . This is well-
defined, since if aj = ak, then j = qm + k and xj = xqmxk = xk .
It is one-to-one since if xj = xk, then j ≡ k mod m, so aj = ak.
It is clearly onto and respects multiplication.

If m is infinite, then clearly aj �= ak for any j �= k, and the
isomorphism is obvious.



3. Product of groups

• For groups G1, G2, the product is the set

G1 × G2 := { (g1, g2) | g1 ∈ G1 , g2 ∈ G2 } ,

with componentwise multiplication: (a1, a2)(b1, b2) := (a1b1, a2b2) .
The identity is ι := (ι1, ι2) , and (g1, g2)

−1 := (g−1
1 , g−1

2 ) .

• The product group contains copies of its factors: G1 × ι2 ∼= G1

and ι1 × G2
∼= G2 . These copies commute:

(g1, ι2)(ι1, g2) = (g1, g2) = (ι1, g2)(g1, ι2) .

• Theorem: Every abelian (commutative) group G is isomorphic to
a product of cyclic groups: G ∼= Cn1 ×Cn2 ×Cn3 × · · · , where nj

are positive integers or ∞.

This is a difficult theorem which we will not prove.

4. Cosets and Lagrange’s Theorem

• Given H ⊂ G a subgroup, the H-coset of g ∈ G is the set gH :=
{ gh | h ∈ H } . For example, for any h ∈ H we have hH = H ,
since hH is a row of the multiplication table of H .

• G/H = {gH | g ∈ G} is the collection of all cosets.

• Lemma: If two cosets overlap, then they are identical. That is,
for a, b ∈ G, either aH ∩ bH = ∅ or aH = bH .

Proof. Suppose aH ∩ bH �= ∅ . An element in the intersection is of
the form ah1 = bh2, so that b = ah1h

−1
2 . Thus bH = ah1h

−1
2 H =

aH , since hH = H for any h ∈ H .

• Lemma: Any two cosets have the same number of elements: |aH| =
|bH| for any a, b ∈ G .

Proof. The map aH → bH , ah → bh is one-to-one, since if
bh1 = bh2 then h1 = h2 and ah1 = ah2 . The map is obviously
onto. Thus it is a bijection, a one-to-one correspondence between
the cosets, which must thus have the same size.

5. Lagrange’s Theorem

• Theorem: If G is a finite group with |G| = n elements and H
is a subgroup with |H| = m elements, then m|n : the order of a
subgroup evenly divides the order of the group.

Proof. By the above two lemmas, the cosets partition the n ele-
ments of G into disjoint subsets: G = g1H ∪ · · · ∪ g�H , with each
coset having m elements. Thus, n = �m meaning m|n . That is:

|G| = |G/H| |H| .
• Theorem: If |G| = p a prime, then G ∼= Cp a cyclic group.

Proof. Let g �= ι ∈ G. Then ord(g) := k > 1, and by Lagrange’s
Theorem, k|p, so k = p. Thus the cyclic subgroup 〈g〉 ∼= Ck = Cp

is all of G, and G ∼= Cp ..


