
Math 418H Fall 2005

Lecture: Mon 10/31

1. Electromagnetic vector fields

• Let g(x, y) = (r(x, y), s(x, y)) be any vector field.

• Divergence of g measures rate of outflow from each point:

div g(x, y) :=
∂r

∂x
+

∂s

∂y
= rx(x, y) + sy(x, y) .

• Curl of g measures counter-clockwise torque (rotational force)
around each point:

curl g(x, y) :=
∂s

∂x
− ∂r

∂y
= sx(x, y) − ry(x, y) .

• An electric force field g(x, y) satisfies Maxwell’s equations: the curl
and divergence must vanish at all points:

curl g(x, y) = div g(x, y) = 0 .

That is:

(Maxwell) rx = −sy , ry = sx .

These equations hold in a region with no charge present. In gen-
eral, div g is the charge density at each point.

2. Complex analytic vs electric vector fields

• Let f(x + iy) = u(x, y) + i v(x, y) be complex analytic, meaning
it satisfies:

(Cauchy-Riemann) ux = vy , uy = −vx .

• Proposition: Given f(x+ iy), let g(x, y) be the complex conjugate
vector field: g(z) := f(x + iy) ,

g(x, y) := (u(x, y),−v(x, y)) .

Then clearly:

f(x, y) complex analytic ⇐⇒ g(x, y) satisfies Maxwell.



• Example: f(z) = z , g(x, y) = (x,−y). Then f(z) is analytic
everywhere and curl g = div g = 0.

• Example: f(z) = 1/z ,

g(x, y) =
(x, y)

x2 + y2
= point-charge ,

an outward force proportional to inverse of distance (which is the
2-dimensional version of Coulomb’s Law). Then f(z) is analytic
except at the origin, and g(x, y) satisfies Maxwell except at the
origin, where there is a point-charge with infinite charge-density:
div g(0, 0) = ∞ .

• Example: g(z) = (x, y) corresponds to f(z) = z . Then f(z) is not
analytic, and g(x, y) does not satisfy Maxwell’s equations, since
curl g(x, y) = 0 but div g(x, y) = 2 everywhere.

3. Parametrized curves in the plane

• Parametrized curve: C = c(t) = (x(t), y(t)) for a ≤ t ≤ b.
We can imagine c(t) as the position at time t of a particle moving
along C from the start point c(a) = (x(a), y(a)) to the end point
c(b) = (x(b), y(b)) . C is a closed curve if c(a) = c(b).

• Tangent vector at point c(t):

c′(t) = lim
ε→0

c(t + ε) − c(t)

ε
= (x′(t), y′(t)) .

Rephrasing: for two points c0 = c(t0) and c1 = c(t1) close together
along C, the increment vector between them is approximately the
velocity vector multiplied by the time increment:

c1 − c0 ≈ c′(t1) (t1−t0) = c′(t1) ∆t1 .

• Example: C = c(t) = (cos t, sin t) for 0 ≤ t ≤ 2π, unit circle.
Tangent vector at c(t) is: c′(t) = (− sin t, cos t) .
For t = π/2 , c(t) = (0, 1) , c′(t) = (−1, 0) .

4. Circulation around a curve

• We wish to measure the total drag or circulation of g(x, y) pushing
around a closed curve C . This is a large-scale version of curl g ,
which measures the rate of circulation of g(x, y) near a particular
point.



• Drag: The drag of a constant vector field g(x, y) = (c, d) along
the line segment from (0, 0) to (p, q) is the dot-product:

(c, d) • (p, q) = cp + dq ,

the product of vector lengths times cos of the angle between.

• Circulation line integral of g(x, y) along C . Mark N points of C:

c0, c1, . . . , cN = c0 ,

with cj = c(tj) . We have:

cj − cj−1 ≈ c′(tj) (tj−tj−1) = c′(tj) ∆tj .

We can compute the total circulation of g(x, y) around C by adding
up the drag along each tiny line segment from cj−1 to cj :

∮
C
g(x, y) • dc := lim

N→∞

N∑
j=1

g(cj) • (cj−cj−1)

:= lim
N→∞

N∑
j=1

g(c(tj)) • c′(tj) ∆tj

=

∫ b

t=a

g(c(t)) • c′(t) dt .

Note that g(c(t)) • c′(t) is a scalar-valued function of t, so the last
line is an ordinary integral.

• Example: Let C = (cos t, sin t) for 0≤t≤2π , and g(x, y) = (1, 0)
a horizontal constant vector field. Since the drag on top of the
curve cancels the opposite drag on the bottom, we expect zero
circulation. In fact:
∮
C
g(c) • dc =

∫ 2π

t=0

g(cos t, sin t) • (cos′ t, sin′ t) dt

=

∫ 2π

t=0

(1, 0) • (− sin t, cos t) dt =

∫ 2π

t=0

− sin t dt = 0 .

5. Global outflow via line integrals

• We wish to measure the total outflow or flux of g(x, y) across a
closed curve C . This is a large-scale version of div g(x, y) , which
measures the rate of outflow near a particular point.



• Flux: The flow of a constant vector field g(x, y) = (c, d) across a
line segment from (0, 0) to (p, q) is the cross-product:

(c, d)×(p, q) = cq − dp ,

the product of vector lengths times sin of the angle between.

• Flux line integral of g(x, y) along C . As before, we compute the
total outflow as:∮
C
g(x, y)×dc = lim

N→∞

N∑
j=1

g(cj)×(cj−cj−1) =

∫ b

t=a

g(c(t))×c′(t) dt .

• Example: Again let C = (cos t, sin t) and g(x, y) = (1, 0) . Since
inflow on the left should cancel outflow on the right, we expect
zero flux. In fact:∮

C
g(c)×dc =

∫ 2π

t=0

(1, 0)×(− sin t, cos t) dt =

∫ 2π

t=0

cos t dt = 0 .

6. Green’s Theorems: global versus local

• Let R be a region on the plane whose boundary is a simple closed
curve C (oriented counter-clockwise). Let g(x, y) be vector field
which is defined and differentiable at every point of R.

• Theorem: The circulation of g around the boundary curve is equal
to the total curl of g inside the region:∮

C
g(c) • dc =

∫∫
R

curl g(x, y) dx dy ,

where the right side is a double integral over the region R .

• Theorem: The flux of g around the boundary curve is equal to the
total divergence of g inside the region:∮

C
g(c)×dc =

∫∫
R

div g(x, y) dx dy .

• Proof: Divide R into little regions, and write the total line integral
as a sum of line integrals over tiny regions. Inside each tiny region,
g(x, y) can be replaced by its linear approximation, so that we can
compute the tiny line integrals to be the area times curl g or div g.

• Corollary: If g(x, y) is an electical force field with curl g = div g =
0 inside the region R , then g has zero circulation and flux over
the boundary curve C :∮

C
g(c) • dc =

∮
C
g(c)×dc = 0


