Math 418H Fall 2005

Lecture: Wed 10/10

1. Classifying real numbers

R\ Q are the irrational numbers.

Let A be the set of algebraic real numbers, those reals which are
roots of some polynomial f(z) € Q[x].

We call R\ A the transcendental numbers. For example, © =
3.14 - -+ is transcendental, meaning that ag + a7+ - -+ a, 7" # 0
for any ag, ... ,a, € Q.

2. Degrees of infinity (Georg Cantor)

Cardinality: Two sets are said to have the same size or cardinality
if there exists a one-to-one correspondence (bijection) between
them.

Countable: a set whose elements can be put into a list; i.e., the
set has the cardinality of the natural numbers N.

Z is countable: Z ={0,1,—-1,2,—-2,...}
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QIS countable: Q>0_{I’ 2513 3199 10 Z,g,g,i,...}. In the hSt,
skip over repeated rational numbers. Then alternate positive and

negative to list all Q.
A is countable by a similar argument.

R is not countable. Suppose we had a list {a,as, ...} of all the
real numbers in the interval (0,1). Write each number in decimal
form: a;, = 0.a;1a,0a;3---), where a;; is a digit 0-9. Define a
decimal number b = 0.b1bybs - - - by choosing the digits b; # aq,
by # ags, etc. Then clearly b # a; for any ¢, since they differ in
the " digit, so b is a real number not on the list. Therefore, there
can be no such complete list.

The irrational numbers, and even the transcendental numbers,
are uncountable, so there are much, much more of them than of
rationals or algebraic numbers.

3. Uniqueness of the real numbers

Theorem: The real numbers R are structurally defined by the
properties of a topologically complete ordered field.

That is, if R is any topologically complete ordered field, then
there exists a unique one-to-one correspondence ¢ : R — R which
respects addition and multiplication:

¢la+b) = ¢(a) +¢(b)  and  @(ab) = ¢(a) 4(b) ,



for every a,b € R (so that ¢(a), ¢p(b) € R). We say that ¢ is an
1somorphism of fields. Furthermore, ¢ respects order: a < b <=

¢(a) < ¢(b).
e Proof. First R, being a @eld, has unique additive and multiplica-
tive identity elements 0,1 € R. Now define the counterpart of an

integer
n=1+4+---+1€R.
—_——
n times
Now 1 = 12 > 0 in the ordered field R, so if n < m € Z, then in
R:

i<fi+l+---+1=m.

We can now make a copy of Q in R consisting of the quantities
n/m, and these numbers behave the same as ordinary rationals.
Finally, every real number a € R is the least upper bound of a
cutset S C Q, so define its counterpart a := lub{s | s € S} €
R, which exists since R is topologically complete. Now define
¢ : R — R by ¢(a) := a. We may show this has the desired
properties, and is unique.

4. Exercise: Z is topologically complete

e We check the least upper bound property. Let A C Z be a
bounded, non-empty set of integers with upper bound r € Z.
For a € A, the subset AN la,r] = {a1,...,a,} has at most r — a
elements. We clearly have m = max(ay,...,a,) = max A, and
this is the least upper bound of A in Z.

5. Exercise: If f(x),g(x) are continuous functions at z = a, then the
product function f(x)g(x) is likewise.

e We want to control the deviation |f(z)g(z) — f(a)g(a)| in terms
of |f(x) — f(a)|] and |g(x) — g(a)|. We have:

[f(2)g(z) = fla)g(a)] = |f(z)g(x) = f()9(a) + f(x)g(a) — f(a)g(a)]
< [f@)lg(x)=g(a)l + [f(x)=F(a)llg(a)]

e Given € > 0, choose § > 0 small enough so that

/(&) - f(a)] < min (W) |
9(z) — g(a)] < W

Then we have |f(z)| < |f(a)| + €, and:

£@)9(@) = f@e@] < (S(@l+e) greams + o0 g

< €/2+¢€¢/2=¢.



