\documentclass[12pt]{article} \usepackage{amsmath,amsfonts,amssymb} \addtolength{\topmargin}{-1.5in} \addtolength{\textheight}{4in} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} %\setlength{\parindent}{0em} \pagestyle{empty} \newcommand{\ds}{\displaystyle} \newcommand{\sh}[1]{{#1}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\ord}{\mathrm{ord}} \renewcommand{\mod}{\,\mathrm{mod}\ } \begin{document} \noindent {Student Name:\underline{\quad \sc group theory review\quad}\hfill\mbox{}} \\[1em] \noindent {\bf MTH 418H \hfill Fall 2004} \\[-1.2em] \centerline {\Large \bf Quiz 11/5} \vspace{-.2em} \noindent If $H$ is a subgroup of $G$, the {\it index} $[G\sh:H]$ is the number of distinct right cosets $gH$, where $g\in G$. Note that this is also the number of left cosets $Hg$, since the bijection $G\stackrel{\sim}\to G$,\ $g\mapsto g^{-1}$ takes each right coset $gH$ to a left coset $Hg^{-1}$. \\[.5em] {\bf 1.} Is it possible that $G$ is an infinite group, but $[G\sh:H]$ is finite? \\[.5em] {\sc solution:} Yes, it is possible. For example, take $G=\Z^+$, the additive group of integers, and $H=n\Z$. Then the distinct cosets are: $$n\Z,\ 1\sh+n\Z,\ 2\sh+n\Z,\ldots,\ n\sh-1\sh+n\Z\,$$ and $G/H=\Z/n\Z\cong \Z_n^+$, the additive group of clock arithmetic mod $n$. \\[1em] Another example: $G=\R^\times$ (non-zero reals under multiplication), $H=\R_{>0}^\times$ , $[G\sh:H]=2$. \\[1em] {\bf 2.} Show that if $[G\sh:H]=2$, then $H$ is a normal subgroup of $G$. \\[.5em] {\sc proof:} If $[G\sh:H]=2$, then $G$ partitions into right and left cosets as $G=H\cup gH=H\cup Hg$, where $g$ is any element not in $H$. Thus: $$ gH = G\smallsetminus H = Hg\,, $$ or equivalently $gHg^{-1}=H$, which is the definition of a normal subgroup. (Here $G\smallsetminus H$ means $G$ with the elements of $H$ removed.) \\[1em] {\bf 3.} Show that if $n,m>0$ with $\gcd(n,m)=1$, then the product of the cyclic groups $C_n$ and $C_m$ is isomorphic to the cyclic group $C_{nm}$ : $$C_n\times C_m\cong C_{nm}\,.$$ \\[-1em] {\sc proof:} Let $C_n=\langle x\rangle$ and $C_m=\langle y\rangle$, so that $C_n\times C_m = \{(x^i,y^j)\mid i,j\in \Z\}$. Of course, these are not all distinct elements, since $x^k = 1$ whenever $n|k$ , and $y^k=1$ whenever $m|k$ . Now, let $z:=(x,y)$. I claim $z$ has order $nm$. Clearly $z^{nm}=(x^{nm},y^{nm})=(1,1)=1$, so $\ord(z)\leq nm$. Now, since $\gcd(n,m)=1$, we can write $an+bm=1$ for integers $a,b$. Thus $z^k=1$ means $(x^k,y^k)=(1,1)$, i.e., $n|k$ and $m|k$, so that: $$ nm\,|\, (ank+bmk) = k\,. $$ That is, \, $z^k=1\Longrightarrow nm|k$ , \, and $\ord(z)=nm$. Therefore $C_n\times C_m=\{z,z^2,\ldots,z^{nm}=1\}$, which is clearly a cyclic group $C_{nm}$. \\[1em] {\sc note:} Let us rewrite this as: $C_n\times C_m\cong\Z_n^+\times\Z_m^+$, so that $z\leftrightarrow(1\mod n,1\mod m)$ and $z^k\leftrightarrow k(1,1)=(k\mod n, k\mod m)$. Thus, we have the isomorphism: $$\begin{array}{rcl} \Z_{nm}^+&\rightarrow&\Z_n^+\times\Z_m^+\\[.3em] k\mod nm&\mapsto&(k\mod n\,,\, k\mod m)\,. \end{array}$$ Since this is an bijection, we get the remarkable fact:\\[.5em] {\it Chinese Remainder Theorem}: Suppose $n,m$ are relatively prime. Then for any $i\mod n$ and $j\mod m$, there is a unique $k\mod nm$ such that $k\equiv i\mod n$ and $k\equiv j\mod m$. \pagebreak \addtolength{\topmargin}{.4in} \addtolength{\textheight}{-3in} \addtolength{\textwidth}{-1in} \addtolength{\evensidemargin}{.5in} %\mbox{}\vspace{1in} \noindent {\bf Proposition:} If $G$ is a group with 6 elements, then $G$ is isomorphic to the cyclic group $C_6$ or the dihedral group $D_3$. \\[1em] {\bf Proof:} {\sc case (1)} \ Suppose $G$ has an element $x$ of order 6. Then the cyclic subgroup $\langle x\rangle =\{1,x,x^2,\ldots,x^5\}$ has 6 elements and is all of $G$, so that $G$ is cyclic. \\[1em] {\sc case (2)} \ Suppose $G$ has an element $x$ of order 3, but none of order 6. Taking some element $y\not\in\langle x\rangle=\{1,x,x^2\}$ , we have: $$ G=\langle x\rangle \cup y\langle x\rangle =\left\{\begin{array}{ccc} 1,&x,&x^2\\ y,&yx,&yx^2 \end{array}\right\}\,.$$ {\sc question}: Which of these 6 elements is $y^2$ ? \begin{itemize} \item Since the index $[G\sh:\langle x\rangle]=2$, the subgroup $\langle x\rangle$ is normal by Quiz Question 2. Thus we have a quotient group $G/\langle x\rangle =\{\overline 1,\overline y\}$, and clearly $\overline y^2 = \overline 1$ , i.e., $y^2\in \langle x\rangle$ . \item If $y^2=x$, what is the order of $y$ ? We have $y^6=x^3=1$, so $\ord(y)$ divides $6$, and $\ord(y)\neq 1,2$. If $\ord(y)=3$, then $1=y^3=xy$ and $y=x^{-1}=x^2$, which is false. Thus $\ord(y)=6$, contrary to our assumption. Hence $y^2=x$ is impossible. \item We can show $y^2=x^2$ is impossible by an exactly similar argument. For example, if $\ord(y)=3$, then $1=y^3=x^2y$, so that $y=x^{-2}=x$, which is false. \item The only remaining possiblility is $y^2=1$ . \end{itemize} {\sc question}: What is $yxy^{-1}$ ? \begin{itemize} \item Since as noted $\langle x\rangle$ is normal, we have \ $y\langle x\rangle y^{-1}=\langle x\rangle$ \ and \ $yxy^{-1}\in\langle x\rangle$ . \item Since conjugating does not change the order of an element, we have $\ord(yxy^{-1})=\ord(x)=3$. Thus $yxy^{-1}=x$ or $x^2$. \item If $yxy^{-1}=x$ , then $yx=xy$ and: $$ \langle xy\rangle= \{1,xy,x^2y^2,x^3y^3, x^4y^4,x^5y^5\} = \{1,xy,x^2,y,x,x^2y\}\,, $$ so that $\ord(xy)=6$, contrary to assumption. (In other words: $C_2\times C_3\cong C_6$.) \item The only remaining possibility is: $yxy^{-1}=x^2$. \end{itemize} {\sc summary}: $G$ is generated by elements $x,y$ with $x^3=y^2=1$ and $yx=x^2y$ . But we know that this defines the multiplication table of $D_3$ , and we have $G\cong D_3$ . \\[1em] {\sc case (3)} \ Suppose $G$ has only elements of order 1 and 2. Then for any $x\in G$, we have $x^{-1}=x$. For any $x,y\in G$, we have $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$, so $G$ is abelian. Now consider two distinct elements $x,y\neq 1$, which clearly generate the subgroup: $$ H:=\langle x,y\rangle = \{1,x,y,xy\}\cong C_2\times C_2\,. $$ But then $G$, with 6 elements, could not possibly be partitioned into disjoint cosets of $H$, each with 4 elements. (Indeed, for any subgroup $H\subset G$, we have $\#H\,|\,\#G$ for this same reason.) \ Thus this case is impossible. \end{document} {\sc lemma:} If $p$ is prime, and $G$ is any group of order $p$, then $G\cong C_p$ , a cyclic group. \\[.3em] {\sc proof:} Let $1\neq x\in G$. Then $