In the following, G denotes a group of order $|G|=21$. Argue briefly.

1. What do Sylow Theorems I-III say about G, for each prime p dividing 21?
2. Show that $G=\langle x, y\rangle$ for generators x of order 3 and y of order 7 .

Hint: Use the previous problem to show x and y exist, then show $x^{i} y^{j}$ for $i=0,1,2$, $j=0,1, \ldots, 6$ make 21 distinct elements: $x^{i} y^{j}=x^{k} y^{\ell}$ only for $i=k$ and $j=\ell$.
3. Show that the cyclic subgroup $\langle y\rangle$ is a normal subgroup, and that $x y x^{-1}=y^{j}$ for $j=1,2$ or 4 . Hint: What happens if you conjugate three times: $x^{3} y x^{-3}=\cdots$?
4. Show that if $j=1$, then $G \cong C_{3} \times C_{7}$, where $C_{n}=\left\{e, r, \ldots r^{n-1}\right\}$ with $r^{n}=e$.
5. Give an isomorphism mapping $C_{3} \times C_{7} \rightarrow C_{21}$. Indeed, we have found the only possible abelian group of order 21, up to isomorphism.
6. Consider the case $G=\langle x, y\rangle$ with $j=2$, so $x y=y^{2} x$; and the case $\tilde{G}=\langle\tilde{x}, \tilde{y}\rangle$ with $j=4$, so $\tilde{x} \tilde{y}=\tilde{y}^{4} \tilde{x}$. Give an isomorphism $\phi: G \rightarrow \tilde{G}$ by finding appropriate $x^{\prime}=\phi(x)$ and $y^{\prime}=\phi(y)$, and checking that $x^{\prime}, y^{\prime} \in \tilde{G}$ obey the relations for G. We have found the only non-abelian group of order 21, up to isomorphism.
7. Draw the Cayley graph of the above abelian G, with 21 vertices $g=y^{j} x^{i}$ and colored arrows $g \xrightarrow{x} g x$ and $g \xrightarrow{y} g y$. Hint: Draw 3 concentric 7 -cycles of y-arrows.
8. From now on, let $G=\langle x, y\rangle$ denote the non-abelian group with $x^{3}=y^{7}=e$ and $x y=y^{2} x$. Draw the Cayley graph of G. Hint: Start with the same 3 concentric rings of 7 elements, but now the y-arrows skip around each ring.
9. Give the 8×8 multiplication table of the finite field $\mathbb{F}_{8}=\mathbb{Z}_{2}[\alpha]$, where α satisfies the minimal polynomial $\alpha^{3}+\alpha+1=0$. Remember $2=0$ and $-1=1$.
10. Recall the Frobenius mapping $\chi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{8}$ defined by $\chi(\gamma)=\gamma^{2}$; it is a field isomorphism because $(a+b)^{2}=a^{2}+b^{2}$. (χ is pronounced chi.) If we consider \mathbb{F}_{8} as a 3 -dimensional vector space with basis $\left\{1, \alpha, \alpha^{2}\right\}$ over the base field \mathbb{Z}_{2}, then χ becomes a linear mapping. Problem: Give its 3×3 matrix with entries in \mathbb{Z}_{2}.
11. Define the mapping $\psi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{8}$ by $\psi(\gamma)=\alpha \gamma$. Show this is a linear mapping over the base field \mathbb{Z}_{2}, and give its 3×3 matrix. (ψ is is pronounced psi.)
12. Show $\chi^{3}=I$, where I is the identity mapping: doing χ three times takes each $\gamma \in \mathbb{F}_{8}$ back to itself; and similarly $\psi^{7}=I$ and $\chi \psi=\psi^{2} \chi$. (Compute using the definitions of χ, ψ rather than the matrices.) Find a group isomorphic to G, consisting of 213×3 matrices with \mathbb{Z}_{2} entries. (Mulitply matrices with Wolfram.)
13. The mappings χ, ψ permute the 7 non-zero elements of \mathbb{F}_{8}. Number these elements, and write χ and ψ as permutations in S_{7}, using cycle notation. Then how does G relate to S_{7} ?

