Math 411.001 HW: Groups of Order 21

In the following, G denotes a group of order |G| = 21. Argue briefly.

1. What do Sylow Theorems I–III say about G, for each prime p dividing 21?

2. Show that $G = \langle x, y \rangle$ for generators x of order 3 and y of order 7. *Hint:* Use the previous problem to show x and y exist, then show $x^i y^j$ for i = 0, 1, 2, j = 0, 1, ..., 6 make 21 *distinct* elements: $x^i y^j = x^k y^{\ell}$ only for i = k and $j = \ell$.

3. Show that the cyclic subgroup $\langle y \rangle$ is a normal subgroup, and that $xyx^{-1} = y^j$ for j = 1, 2 or 4. *Hint:* What happens if you conjugate three times: $x^3yx^{-3} = \cdots$?

4. Show that if j = 1, then $G \cong C_3 \times C_7$, where $C_n = \{e, r, \dots, r^{n-1}\}$ with $r^n = e$.

5. Give an isomorphism mapping $C_3 \times C_7 \to C_{21}$. Indeed, we have found the *only* possible abelian group of order 21, up to isomorphism.

6. Consider the case $G = \langle x, y \rangle$ with j = 2, so $xy = y^2 x$; and the case $\tilde{G} = \langle \tilde{x}, \tilde{y} \rangle$ with j = 4, so $\tilde{x}\tilde{y} = \tilde{y}^4\tilde{x}$. Give an isomorphism $\phi : G \to \tilde{G}$ by finding appropriate $x' = \phi(x)$ and $y' = \phi(y)$, and checking that $x', y' \in \tilde{G}$ obey the relations for G. We have found the *only* non-abelian group of order 21, up to isomorphism.

7. Draw the Cayley graph of the above *abelian* G, with 21 vertices $g = y^j x^i$ and colored arrows $g \xrightarrow{x} gx$ and $g \xrightarrow{y} gy$. *Hint:* Draw 3 concentric 7-cycles of y-arrows.

8. From now on, let $G = \langle x, y \rangle$ denote the *non-abelian* group with $x^3 = y^7 = e$ and $xy = y^2x$. Draw the Cayley graph of G. *Hint:* Start with the same 3 concentric rings of 7 elements, but now the y-arrows skip around each ring.

9. Give the 8×8 multiplication table of the finite field $\mathbb{F}_8 = \mathbb{Z}_2[\alpha]$, where α satisfies the minimal polynomial $\alpha^3 + \alpha + 1 = 0$. Remember 2 = 0 and -1 = 1.

10. Recall the Frobenius mapping $\chi : \mathbb{F}_8 \to \mathbb{F}_8$ defined by $\chi(\gamma) = \gamma^2$; it is a field isomorphism because $(a+b)^2 = a^2 + b^2$. (χ is pronounced *chi*.) If we consider \mathbb{F}_8 as a 3-dimensional vector space with basis $\{1, \alpha, \alpha^2\}$ over the base field \mathbb{Z}_2 , then χ becomes a linear mapping. *Problem:* Give its 3×3 matrix with entries in \mathbb{Z}_2 .

11. Define the mapping $\psi : \mathbb{F}_8 \to \mathbb{F}_8$ by $\psi(\gamma) = \alpha \gamma$. Show this is a linear mapping over the base field \mathbb{Z}_2 , and give its 3×3 matrix. (ψ is is pronounced *psi*.)

12. Show $\chi^3 = I$, where *I* is the identity mapping: doing χ three times takes each $\gamma \in \mathbb{F}_8$ back to itself; and similarly $\psi^7 = I$ and $\chi \psi = \psi^2 \chi$. (Compute using the definitions of χ, ψ rather than the matrices.) Find a group isomorphic to *G*, consisting of 21 3×3 matrices with \mathbb{Z}_2 entries. (Multiply matrices with Wolfram.)

13. The mappings χ, ψ permute the 7 non-zero elements of \mathbb{F}_8 . Number these elements, and write χ and ψ as permutations in S_7 , using cycle notation. Then how does G relate to S_7 ?